
Low-Power Parallel Algorithms for Single Image based
Obstacle Avoidance in Aerial Robots

Ian Lenz,1 Mevlana Gemici,2 and Ashutosh Saxena.1
1Department of Computer Science, 2Department of Electrical & Computer Engineering.

Cornell University, Ithaca, NY.
Email: ianlenz@cs.cornell.edu, mcg74@cornell.edu, asaxena@cs.cornell.edu

Abstract— For an aerial robot, perceiving and avoiding obsta-
cles are necessary skills to function autonomously in a cluttered
unknown environment. In this work, we use a single image
captured from the onboard camera as input, produce obstacle
classifications, and use them to select an evasive maneuver. We
present a Markov Random Field based approach that models
the obstacles as a function of visual features and non-local
dependencies in neighboring regions of the image. We perform
efficient inference using new low-power parallel neuromorphic
hardware, where belief propagation updates are done using
leaky integrate and fire neurons in parallel, while consuming
less than 1 W of power. In outdoor robotic experiments, our
algorithm was able to consistently produce clean, accurate
obstacle maps which allowed our robot to avoid a wide variety
of obstacles, including trees, poles and fences.

I. INTRODUCTION
Perceiving obstacles is extremely important for an aerial

robot in order to avoid collisions. Methods based on stereo
vision [25], [9] are fundamentally limited by the finite
baseline between the stereo pairs [22], and fail in textureless
regions and in presence of specular reflections [4]. Active
range-finding devices (e.g., [36], [20]) are either designed
for indoor low-light environments (e.g., the Kinect [1]), or
are too heavy for aerial applications. More importantly, they
demand more onboard power, which is at a premium for
aerial vehicles.

In this paper, we use a single monocular camera for
obstacle perception. Recent works [31], [21], [29], [32], [30],
[3] have shown that it is possible to obtain depth from a
single monocular image. Multiple frames can also be used in
combination to determine depth, but this approach does not
work well on an aerial robot due to camera disturbances from
robot motion and vibrations. Here, we present an algorithm
that takes a single image as input and classifies each region
in the image as obstacle or not. We will define an obstacle as
an object which the robot could not safely pass through. This
approach is very attractive for aerial robots because cameras
are small and draw little power.

Our second key contribution is to formulate a Markov
Random Field classification model and design fast inference
algorithms for estimating obstacles in a new low-power
parallel hardware that implements a leaky integrate and fire
neuron architecture. One implementation of such hardware
[19] consumes only 45 pico-Joules per spike (see Sec-
tion III for an overview). The combination of using a camera
(miniature cameras that consume extremely low power are

(a) Aerial Robot. (b) Single image from camera.

(c) Initial inferred obstacle map. (d) Inferred obstacle map.

Fig. 1. We use our low-power parallel hardware for computing an obstacle
map, given a single image from the camera onboard the aerial robot. We
then use these results to select an evasive maneuver.

available) and this hardware could allow miniature aerial
robots to successfully fly amidst obstacles even in unknown
environments. Inference in our MRF is solved using Belief
Propagation (BP). While performing belief propagation in
a traditional computer is expensive, our design allows the
low-power hardware to do so natively. Each logical clock
cycle performs a full parallel update of BP. We obtain good
obstacle estimates once the BP network has converged (see
Figure 1). We then use the estimated obstacle map to select
a evasive manuever for avoiding the obstacle.

In detail, we represent the energy function of the MRF
over the neuron architecture, and use spikes to propagate
beliefs during inference. Our MRF uses the logistic function
to model the local dependence of visual features to the
obstacle label, where each spatial region of the image is
represented using a different set of neurons—this allows par-
allel computation. Furthermore, we use different parameters
for different spatial regions of the image [15] for improved
performance. Finally, we induce sparsity in the parameters of
the model to satisfy constraints on the number of parameters
allowed by our hardware.

We performed extensive experiments in a variety of en-
vironments, containing obstacles such as trees, fences, and
poles. In learning experiments, we obtained an average
precision and recall of 81.9% and 93.6% respectively. In

53 outdoor robotic experiments, our algorithm was able to
successfully perceive obstacles in every case, and avoid them
in 51 cases. The two failures were due to communication
delays and robot drift. Some of these experiments involved
avoiding a series of obstacles of multiple types.

II. RELATED WORK
In aerial robotics, most works which perform obstacle

avoidance either make strong assumptions on precise knowl-
edge of 3D location of obstacles [18], or use sensors that
are not onboard, such as GPS (together with known obstacle
map). Other work such as [8] focuses on mapping obstacles
from overhead images. For a small aerial robot to fly
autonomously in a real environment full of obstacles, these
techniques do not directly apply.

Navigation by labeling obstacles in images has been used
for several ground robots. For example, Ghosh and Mulligan
[7] use a ground segmentation approach for navigation, while
Nabbe and Hebert [26] use ground-vertical segmentation for
extending the path planning horizon for ground robots. Work
such as [12], [33] employs learning algorithms to determine
terrain traversability for ground vehicles. Michels, Saxena
and Ng [21] and Plagemann et. al. [28] attempt to determine
range directly from monocular images. However, these works
use only a local feature based classifier for navigating a
ground vehicle. For an aerial robot such as ours, we are
severely constrained by onboard power, and we present
methods that allow even a complex inference method such
as BP to be efficiently computed in low-powered hardware.

There are other works that consider single monocular
image based obstacle avoidance for aerial robots. McGee
et. al. [17] use sky segmentation for detecting obstacles,
but apply only a local classifier. Soundararaj, Sujeeth and
Saxena [34] and Courbon et. al. [6] use vision techniques
to navigate aerial robots, but are limited to known indoor
environments. Bills, Chen and Saxena [5] and Zingg et. al
[37] perform similar work to unknown environments, but still
handle only a few known types of indoor environment. On
the other hand, we consider general outdoor environments,
employing learning algorithms which allow our approach to
be easily adapted to new obstacle types and integrate non-
local information to enhance classification.

Vision algorithms have implemented in neural architec-
tures or embedded systems, such as [13], [2], [11]. Other
works [23], [10] used spiking neurons for basic obstacle
detection and navigation. However, these approaches do not
generalize to real-world outdoor cases.

III. NEUROMORPHIC HARDWARE
Our goal is to develop algorithms for obstacle mapping

that can be implemented in low-power parallel hardware. In
particular, we use a neuromorphic hardware platform that
comprises a network of linear-leak integrate and fire (LLIF)
artificial neurons as in [19]. The LLIF neurons represent
an extremely versatile high-level primitive which couples

memory and processing. More importantly, this architecture
uses extremely low power, as discussed below.

Each neuron integrates the weighted synaptic inputs from
other neurons and fires if the integrated value exceeds a
preset threshold. More formally, each neuron has some
integer-valued internal potential Z and binary-valued spiking
output S. For ith neuron, S and Z update as:

Zi+t = Zit +
∑

j∈N (i)

wijY
j
t − λi

Zit+1 = 1{Zi+t < αi}Zi+t
Sit+1 = 1{Zi+t ≥ αi} (1)

where N (i) are the neighbors of neuron i, wi,j indicates
the synaptic weight from neuron j to neuron i, α indicates
neuron threshold, and λ is a constant decay. 1{...} is the
indicator function, which takes the value one if its argument
is true and zero otherwise.

Since these are spiking neurons, one major restriction is
that the inputs and outputs be binary-valued. We address
this by using representations where the spike count over a
particular time window is proportional to the value being
represented. Since each neuron can integrate over time, this
is still a useful representation. The expected spike rate given
the input x is simply a ramp function with limits, as follows:

g(x, α) =


0 if x ≤ 0

x/α if 0 < x < αi

1 if x ≥ αi
(2)

Cardinality constraints in hardware. To allow for a more
compact design with lower power consumption, hardware
such as that in [19] typically imposes a constraint on the
cardinality of the weights w. That is to say, each neuron’s
weights may take at most k unique nonzero values.

Power consumption in hardware. In a well-designed hard-
ware platform such as [19], power consumption will be
proportional to the number of spikes and the density of
connections. In particular, the hardware in [19] takes only
45 pico-Joules (pJ) per spike, and has very low quiescent
power draw in their absence.

IV. OBSTACLE CLASSIFICATION
The primary goal of our approach is to produce an

obstacle map of sufficient quality for obstacle avoidance.
This is a challenging problem, as outdoor environments are
perceptually complex, with variations in obstacle appearance,
lighting, background appearance, and other factors. Our
model will define obstacles as objects which project upwards
from the ground and thus present a navigational challenge
to the robot. We will use the labels it produces to select an
evasive maneuver for the perceived obstacles.

Our classification model is a Markov Random Field
(MRF) model (e.g., see [14]), where we use an Ising pairwise
potential for modeling dependencies between neighboring

Fig. 2. Left: input images. Middle: initial classification. Right: classification
with full MRF model with belief propagation. Initial classification results
which would present problems for navigation, but are greatly improved by
integrating non-local information using our MRF.

image regions. More formally, an MRF is an undirected
graph G = (V, E), where we represent each labeled location
in the image as a vertex V , and edges E connecting neigh-
boring image locations. Let Y i ∈ {−1,+1} represent the
binary labels indicating presence or absence of an obstacle
at the ith location in the image, and Xi represent the input
visual features at that location.

We model the joint conditional likelihood of the labels
given the features as:

P (Y |X, θ) ∝ exp (−E(Y |X, θ)) (3)

where the E(Y |X, θ) is an energy function containing three
terms:

E(Y |X, θ) = −
∑
i∈V

Y iA(Xi, θ)−
∑

(i,j)∈E

wijY
iY j + β||θ||1

(4)

The first term uses a logistic model, with θ as its parameters,
to model the dependence of the label on the local visual
features. More formally, we model the association potential
as A(X, θ) = 2∗σ(XT θ)−1, where σ(x) = 1/(1+exp(−x))
is the sigmoid function. The second term prefers neighboring
labels to be similar, with w indicating the relative importance
of the two terms. Finally, β controls the strength of an L1

regularization term on the local feature weights, which helps
with the weight cardinality constraints in the hardware.

During learning, we will be given a set of labeled examples
and our goal is to find the optimum value of the parameters.
During inference, we are given a new image and our goal
is to find the optimal value of Y using the LLIF neuron
architecture.

A. Learning
We manually set parameters wij , and learn parameters θ

by maximizing the pseudo-conditional log-likelihood. We are
given M labeled ground-truth pairs as {(Xm, Ym) : m =

1, . . . ,M}, and we learn θ∗ as:

θ∗ = argmin
θ

M∑
m=1

E(Ym|Xm, θ) (5)

= argmin
θ

M∑
m=1

(
−
∑
i∈V

Y imA(X
i
m, θ)

)
+ β||θ||1 (6)

Here, Y im indicates Y i from the mth training example,
and Xi

m is similar for input features. This sub-problem is
convex, and is equivalent to solving logistic regression with
an additional L1 penalty term. We vary the β parameter until
the number of non-zero weights fits within what is allowed
in the hardware.
B. Inference

The goal of inference is to find an optimal value for the
label estimates Y , given features X and parameters θ:

Y ∗ = arg max
Y

P (Y |X, θ) (7)

Our inference algorithm is based on loopy belief propa-
gation [27], [24]. In order to derive the update rule for node
i, we assume that the values of the other nodes are known
and compute the messages as follows:

ψ(Xi) = σ(θTXi) (8)

µi(X
i) = ψ(Xi)

∏
(i,j)∈E

µj(X
j)wij (9)

P (Y i = 1|X) = µi(X
i) (10)

Our goal is to perform obstacle avoidance in new envi-
ronments, and the product above may give zero probability
of being an obstacle if any of terms is zero. This is not
preferable, and we need to account for such cases. Following
ideas of additive smoothing in statistics [35], we include an
additive smoothing term in ψ and µ. This is a small constant
factor ε added to each function. Denote the versions of these
functions with additive smoothing as ψs and µs.

If we consider these update equations in log-space, they
become sum of weighted terms, and thereby can be imple-
mented in neuromorphic hardware (Eqn. 1). In such a case,
the additive smoothing term becomes a constant lower bound
on the log probability terms. Thus, in log-space, we have:

logψs(X
i) = max(log ε, log σ(θTXi)) (11)

logµs,i(X
i) = max

(
log ε, logψs(X

i)

+
∑

(i,j)∈E

wij logµs,j(X
j)
)

(12)

To implement this in hardware, we will use one neuron each
to represent ψs(Xi) and µs,i(Xi) for each node. Each ψ unit
will take input in spike-rate from local features, weighted as
θ. Each µ unit will take input from the corresponding ψ unit
and neighboring µ units, weighted as w.

The log-sigmoid ψs term can be approximated as a linear
function which saturates at 0. With the lower bound from

the additive smoothing function, this becomes a scaled and
shifted version of Eqn. 2. We will refer to the version of
g(x, α) adjusted to fit the log-sigmoid function as gψ(x).
logµs,i(X

i) is also well approximated by a thresholded
linear function, and can thus also be modeled by g(x, α),
as gµ(x). In both cases, α is fixed to some value which
gives the best fit. The equations for our system are then:

logψs(X
i) = gψ(θ

TXi)− logZψ (13)

logµs,i(X
i) = gµ(wiiψs(X

i) +
∑

(i,j)∈E

wijµs,j(X
j))− logZµ

(14)

Where the Z’s are two separate constants, necessary to
include here to preserve exact equality, but unnecessary to
implement in hardware since relative values are preserved.
Except for the error introduced by approximating the log-
sigmoid function with gψ(x) and discretization, this is ex-
actly Eqn. 12. To infer optimal values for Y , we can simply
threshold the gµ terms once the network has converged.
C. Visual Features

Our basic features are a standard set of texture filter
responses, similar to those in [16]. They consist of oriented
edge filters (in our case, Gabor filters) and center-surround
filters (difference-of-Gaussian filters) as shown in Figure 3.
We also include color information in the form of patch-
averaged RGB values in our feature set. In addition to
raw filter responses, we include the absolute value of these
responses and the maximum and average of this absolute
value over a local area.

We found it difficult to design features which fit the hard-
ware constraints of [19], so the features given here do not.
They do, however, rely only on simple local computations,
and thus are amenable to efficient implementation in circuitry
or parallel hardware. Only features given nonzero weights
by some classifier would need to be implemented in this
hardware, significantly reducing complexity.

Fig. 3. Our filter set, which includes two scales of Gabor filters at six
orientations and two scales of difference-of-Gaussian filters.

D. Spatially-varying models and multiple models

Often the statistics of the dependence of the obstacles on
the visual features varies with their location in the image
[15]. For example, while leaves on the trees are typically
obstacles, they are not if they fall on the ground in the
Fall season. Thus our parameters θ should be different for

different rows in the image. In order to do so, we divide
the image vertically into three equally sized areas. This is
equivalent to considering a separate θi for each i ∈ V , and
tying weights within regions. By dividing the classification
as such, each region can have a different feature set. Tying
the parameters of these different models helps to avoid
over-fitting. Since our neuron architecture is distributed for
different spatial regions in the image, each neuron gets the
appropriate synaptic weights depending on which region in
the image it is representing.

To detect multiple visually different obstacle classes, we
train a model for each class and use the combined output
of these models. In order to exercise maximum caution, we
combine outputs using the logical OR of the results, ie if
any classifier classifies a region as obstacle, it is considered
to be an obstacle for purposes of navigation.

Since our algorithms run natively in parallel hardware,
neither of these changes require a change to the architecture
or cause an increase in runtime.

E. Tuning for Power Consumption
One major strength of the hardware described in [19]

is that its power consumption can be estimated a priori
from simulation with high accuracy. This is because power
consumption in this hardware is determined largely by two
factors: a) connection density and b) spike count. While
a) is fixed for a particular local connection pattern, b) can
change drastically depending on the relative weight between
local classifier estimates and neighboring labels, as well as
neuron threshold and decay. In particular, faster convergence
of the MRF model in terms of hardware timesteps can
significantly reduce power consumption, as the model can be
terminated earlier and thus generates fewer spikes. Therefore,
in practice, we tune our models for a tradeoff between power
and accuracy, aiming to produce results which produce fewer
spikes while still yielding results which would be useful for
obstacle avoidance.

In practice, we obtained good performance in terms of
both accuracy and performance for the following parameter
settings for each neuron:
• wii: set slightly below α (firing threshold).
• wij : set to a small local connectivity pattern (4- or 8-

way), with uniform weights set to 10-20% of α.
• λ (decay): set to 5-10% of α.

V. OBSTACLE AVOIDANCE MANUEVERS
The goal of our obstacle avoidance algorithm is to avoid

obstacles in near to mid-range (e.g., about 2m to 10m). Our
motion selection algorithm uses a library of paired motions
and visual-space masks. If less than some threshold’s worth
of pixels within a masked area are labeled as obstacles, the
corresponding motion is considered to be safe. The effects
of sweeping this threshold are shown in Figure 6. A fixed
preference order is used to select motions in cases where
more than one is found to be safe.

Fig. 4. Time series of belief propagation in action. Left: original image and baseline classification result. Top: internal node potential. Middle: spike
locations. Bottom: spike counts. Time proceeds from left to right. Best viewed in color.

TABLE I
CLASSIFIER PRECISION AND RECALL, IN PERCENT, FOR FOUR OBSTACLE CLASSES, AND AVERAGE ACROSS CLASSES. RESULTS PRESENTED FOR

BASELINE LOCAL CLASSIFIER AND MRF MODEL, WITH AND WITHOUT SPATIALLY VARYING MODEL, AND VARYING WEIGHT CARDINALITIES.

Algorithm Card. Trees Buildings Fences Poles Average
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Chance - 50.7 52.0 70.1 65.3 28.9 21.5 5.4 4.4 29.3 26.4

Local association term only, no spatial-varying model

110 80.0 81.5 83.6 91.0 61.5 92.6 56.6 94.7 71.8 88.2
8 78.6 77.2 86.9 89.4 68.3 90.0 62.2 92.6 74.8 86.0
5 77.4 75.4 90.3 73.2 67.6 90.1 47.9 95.6 70.8 86.2
3 77.2 75.3 88.7 78.2 66.8 90.7 47.7 95.4 69.7 86.4

Local association term only, spatial-varying model

110 75.9 85.5 91.2 86.1 80.3 92.1 54.0 86.7 75.4 87.6
8 74.1 84.0 91.7 85.3 78.2 93.0 59.8 86.6 75.9 87.2
5 72.8 81.3 91.0 85.6 77.4 93.2 56.3 86.8 74.4 85.6
3 70.5 77.9 90.7 79.9 66.6 93.4 57.0 86.8 71.2 84.5

Full MRF, no spatialy varying model

110 79.8 94.8 89.0 94.2 82.1 87.4 80.8 91.7 82.2 92.3
8 76.3 91.9 84.8 95.0 89.2 85.3 82.1 90.7 83.5 91.1
5 76.0 92.0 90.3 89.6 84.1 87.9 80.6 90.2 81.7 91.5
3 71.5 88.1 87.1 90.0 90.2 89.2 81.8 89.9 82.2 90.7

Full MRF, spatialy varying model

110 81.9 94.0 87.7 96.3 95.0 94.0 63.1 90.1 81.9 93.6
8 78.9 92.7 87.6 96.2 92.2 93.9 65.3 89.1 81.0 93.0
5 79.3 92.0 87.2 95.6 91.1 93.6 65.7 89.6 80.8 92.8
3 74.4 90.1 86.9 95.8 90.3 92.5 64.2 88.5 79.0 91.7

Fig. 5. Figure showing the results of our algorithm for a variety of obstacles. Top: Input image. Bottom: Inferred obstacle labels.

For vertical obstacles such as trees and poles, the motions,
in order of preference, were diagonal-left, diagonal-right,
and forwards. For horizontal obstacles such as fences, the
motions were forwards or upwards.

VI. EXPERIMENTS AND RESULTS
A. Offline Learning Experiments
Dataset. Our dataset includes 120 images taken from var-
ious locations around the Cornell University campus using
the onboard camera of our aerial robot. The environments

include four types of obstacles: trees, buildings, light poles,
and fences. The dataset includes 63 images of trees, 45 of
buildings, 10 of poles and 10 of fences. We used 80% of the
images for training and 20% for testing.
Belief Propagation. During inference, our BP system ex-
hibits distinct phases of operation as seen in Figure 4. First,
there is a warm-up phase where nodes with high values of
classifier output build up energy. Eventually, some of these
nodes’ local potential exceeds their thresholds and they fire,
spreading energy to neighboring nodes which may also fire
in response. Spikes begin to propagate across the network,
which finally reaches a steady state from which inferred
classification labels are determined.
Results. Table I shows the performance of our algorithm. We
present comparisons with different models. First, we consider
a model with only the association term, i.e., equivalent to a
local logistic classifier. Second, we also compare the effects
of training several spatially varying models. We compare the
effects of reducing the cardinality of local classifier weights
as well. Similar baseline results were observed using SVM.

Our results show that the spiking neuron based BP system
has proven very effective in producing cleaner, more usable
results for obstacle avoidance, as compared to baseline
results using the local logistic term only. Since our feature
set contains edge and center-surround filter responses, local
classifier estimates are generally stronger at obstacle edges.
BP propagates these inwards, allowing the entire obstacle
to be classified, causing increases in recall of as much
as 17%. This propagation behavior can sometimes smooth
edges of perceived obstacles slightly, as seen in many cases
in Figure 5, causing a slight decrease in precision offset by
gains elsewhere.

Most clear areas contain no strong local values and thus
do not generate an initial spike, while true positive regions
almost always do. This allows the system to avoid some false
positive cases present in the baseline results. For obstacle
avoidance purposes, recall is much more important than
precision, and errors near an obstacle are less important than
false positives in otherwise clear areas.

In order to evaluate the performance of our algorithm for
obstacle avoidance purposes, we discretized the lower region
of each test image into a 3x5 grid of cells, and considered
a cell to be ground-truth occupied if it contained at least
10% ground-truth obstacles. We produced the curve shown
in Figure 6 by sweeping thresholds for occupancy ratios. Our
algorithm outperforms the baseline in all cases. The most
significant improvement is for high values of recall, which
are necessary for safe obstacle avoidance. Results presented
are for trees, results for other classes were similar.
Weight Cardinality Limitations. Reducing the number of
features available to the classifier decreases performance
on average, producing particularly significant decreases for
varied obstacles such as trees. However, with BP, the results
are generally comparable for all weight cardinalities. This

Fig. 6. Precision-recall curve for cell-based error metric, which demon-
strates improvements over baseline results for navigation purposes.

Fig. 7. Classification results for a tree trunk classifier using our algorithm,
on the same tree under very different lighting conditions.

demonstrates that BP is able to resolve the errors produced
by restricting weight cardinality, making it an ideal choice
as an inference algorithm in neuromorphic hardware which
imposes that constraint.
Spatially-varying models. Baseline results were improved
by spatially-varying models in most cases, and full MRF
results were improved in all cases except poles. This suggests
that spatially varying models are useful in most cases, but
might be foregone for obstacles with spatially consistent
visual appearance such as poles.
Performance in different environments. Since our al-
gorithm uses supervised learning to learn local classifier
weights, it is easily adapted to new obstacle classes. The
four classes presented here are very visually different, yet
our model is able to detect obstacles effectively in each.
Our model was also able to handle variations in lighting
and obstacle appearance (such as leaves falling off the trees).
Figure 7 shows an example of a tree trunk classifier using our
algorithm performing effectively under a variation in lighting
conditions.
B. Robotic Experiments in Real Environments

We performed obstacle avoidance experiments on our
aerial robot platform, an AirRobot with a single onboard

Fig. 8. Our aerial robot avoiding a fence and a pole in sequence. Left: Overhead map of area, red indicates obstacles avoided, blue robot path. Robot
started at the blue dot, behind and below the level of the fence, moved upwards to a safe altitude, and proceeded over the fence and through the clear area.
It then stopped at the pole, detected it as an obstacle, moved diagonally to the right to avoid it, and then forwards again through the following clear area.

Fig. 9. AirRobot avoiding obstacles based on our classification results
(robot circled in red in cases where it’s difficult to see)

TABLE II
ROBOTIC EXPERIMENT RESULTS IN OUTDOOR ENVIRONMENTS. ERROR

RATES PRESENTED FOR CLASSIFICATION, MOTION EXECUTION, AND

OVERALL SUCCESSFUL AVOIDANCE

Type Obstacles Tests Success Rate
Class. Motion Overall

Trees 3 20 100.0% 95.0% 95.0%
Fences 3 25 100.0% 100.0% 100.0%
Poles 2 8 100.0% 87.5% 87.5%
Total 8 53 100.0% 96.2% 96.2%

camera and an onboard IMU for stabilization.1 Since the
hardware described in [19] is still in production, processing
was done using an offboard laptop computer running a
MATLAB simulation of the hardware. Due to transmission
latency and a lack of the necessary parallelism, this limited
us to classifying a single image at a time, then taking a large
step with the robot.

For each experiment, the robot was driven to a hovering
position roughly 2-10 meters from the obstacle. Using the
robot’s IMU, we determined when it was in a stable, level
pose, then captured an image from its onboard camera.

1Because of funding agency’s restrictions, we are not allowed to disclose
more detailed specifications of our system.

This image was transmitted to the laptop, which performed
the classification described in Section IV, using a classifier
trained for the appropriate obstacle class. We then used the
algorithm described in Section V to select an appropriate
avoidance maneuver. The robot then executed a predeter-
mined, fixed motion plan based on the maneuver chosen.

In Table II, we report three types of success-rates: “classi-
fication”: when the obstacle classification was correct, “mo-
tion”: when the computed obstacle avoidance maneuver was
correct, and “overall”: when the robot successfully executed
the maneuver avoiding the obstacle.

In all the experiments in Table II, classification results
from our model were of sufficient accuracy to allow the
controller described in Section V to properly select a safe
motion. Our model identified both foreground obstacles and
clear areas consistently in these experiments.

As seen in Figure 9, our algorithm worked even in
environments with visually cluttered backgrounds such as
buildings and background trees. While these backgrounds did
cause some false positives, as seen in some cases in Figure 5,
these were only in the top region of the image, which was
not considered by the controller. Since our algorithm works
at visual range, it was able to perceive obstacles from long
distances, allowing the robot to make large, predetermined
motions to avoid them.

Some obstacles encountered were semi-transparent, such
as the fence in the bottom row of Figure 9. Even though the
visual appearance of the fence varied depending on viewing
angle and background, and the fence exhibited specular
reflections in some places, our algorithm was able to produce
an extremely clean labeling of the fence as seen in Figure 5.

We also performed an experiment where the robot avoided
multiple classes of obstacles in sequence. The classification
models for fences and poles were run in parallel, and only
motions determined to be safe by both were considered. The
robot was re-oriented to its goal travel direction after each
motion. The robot was able to travel roughly 25 meters while
avoiding obstacles, as shown in Figure 8. This approach was

able to produce good results because the models were able
to correctly report a lack of foreground obstacles when there
were none, allowing only the classifiers for which foreground
obstacles were present to dictate maneuver selection.

Video showing our robot avoiding obstacles using our
algorithm is submitted as supplementary material, and is also
available at: http://mav.cs.cornell.edu

VII. CONCLUSIONS
We presented a learning algorithm that takes as input a sin-

gle image and outputs an obstacle map. Our algorithm uses
a Markov Random Field to model the mapping from visual
features to obstacles and the relations between neighboring
regions in the image. We use parallel neuromorphic hardware
for performing inference in the model. This hardware is well-
suited for aerial robots because of its extremely low power
requirements. Our MRF model also considers the cardinality
constraints of the synaptic weights, and tries to minimize the
power requirements for inference by minimizing the number
of spikes. In upcoming hardware, our algorithms would allow
several frames per second to be processed, while consuming
less than 1 W of power.

We evaluated our algorithms in both learning experiments
and robotic experiments. In learning experiments, our MRF
model made significant improvements in classifier accuracy
both quantitatively and qualitatively for the purpose of obsta-
cle avoidance. In robotic experiments, our algorithm was able
to correctly identify the locations of forgeround obstacles in
all tests, allowing the robot to select an evasive maneuver to
avoid them. Some of these tests involved multiple obstacles
of different classes in sequence, demonstrating that inference
results from multiple models can be effectively combined.

VIII. ACKNOWLEDGEMENTS
We would like to thank Dharmendra Modha, Shyamal

Chandra, Thomas Zimmerman, Stefano Carpin, Steve Esser,
Myron Flickner, Jerry Yeh, and Dale Cassidy for useful
disussions, and Jasdeep Hundal and Brian Wojcik for their
help with experiments. This work was partially supported by
DARPA under grant #HR0011-09-C-0002 and by Alfred P.
Sloan research fellowship to one of us (Saxena).

REFERENCES

[1] A. Bachrach, S. Prentice, R. He, and N. Roy. Range - robust
autonomous navigation in gps-denied environments. Journal of Field
Robotics, 28(5):644–666, 2011.

[2] C. Bartolozzi, F. Rea, C. Clercq, M. Hofstätter, D. Fasnacht, G. In-
diveri, and G. Metta. Embedded neuromorphic vision for humanoid
robots. In ECVW, 2011.

[3] D. Batra and A. Saxena. Learning the right model: Efficient max-
margin learning in laplacian crfs. In CVPR, 2012.

[4] D. Bhat and S. Nayar. Stereo in the presence of specular reflection.
In ICCV, 1995.

[5] C. Bills, J. Chen, and A. Saxena. Autonomous mav flight in indoor
environments using single image perspective cues. In ICRA, 2011.

[6] J. Courbon, Y. Mezouar, N. Guenard, and P. Martinet. Visual
navigation of a quadrotor aerial vehicle. In IROS, 2009.

[7] S. Ghosh and J. Mulligan. A segmentation guided label propagation
scheme for autonomous navigation. In ICRA, 2010.

[8] H. K. Heidarsson and G. S. Sukhatme. Obstacle detection from over-
head imagery using self-supervised learning for autonomous surface
vehicles. In IROS, 2011.

[9] S. Hrabar. 3d path planning and stereo-based obstacle avoidance for
rotorcraft uavs. In IROS, 2008.

[10] S. B. i Badia, P. Pyk, and P. F. M. J. Verschure. A fly-locust
based neuronal control system applied to an unmanned aerial vehicle:
the invertebrate neuronal principles for course stabilization, altitude
control and collision avoidance. IJRR, 26(7):759–772, 2007.

[11] T. Jochem, D. Pomerleau, and C. Thorpe . Vision-based neural network
road and intersection detection and traversal. In IROS, 1995.

[12] D. Kim, J. Sun, S. Min, O. James, M. Rehg, and A. F. Bobick.
Traversability classification using unsupervised on-line visual learning
for outdoor robot navigation. In ICRA, 2006.

[13] A. Konno, R. Uchikura, T. Ishihara, T. Tsujita, T. Sugimura,
J. Deguchi, M. Koyanagi, and M. Uchiyama. Development of a high
speed vision system for mobile robots. In IROS, 2006.

[14] S. Kumar and M. Hebert. Discriminative random fields: A discrimi-
native framework for contextual interaction in classification. In ICCV,
2003.

[15] C. Li, A. Saxena, and T. Chen. θ-mrf: Capturing spatial and semantic
structure in the parameters for scene understanding. In NIPS, 2011.

[16] J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and
regions: Cue integration in image segmentation. In ICCV, 1999.

[17] T. McGee, R. Sengupta, and K. Hedrick. Obstacle detection for small
autonomous aircraft using sky segmentation. In ICRA, 2005.

[18] D. Mellinger, N. Michael, and V. Kumar. Trajectory generation and
control for precise aggressive maneuvers with quadrotors. In ISER,
Dec 2010.

[19] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. Modha. A digital neurosynaptic core using embedded crossbar
memory with 45pj per spike in 45nm. In CICC, 2011.

[20] T. Merz and F. Kendoul. Beyond visual range obstacle avoidance and
infrastructure inspection by an autonomous helicopter. In IROS, 2011.

[21] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance
using monocular vision and reinforcement learning. In ICML, 2005.

[22] R. Moore, S. Thurrowgood, D. Bland, D. Soccol, and M. Srinivasan.
A stereo vision system for uav guidance. In IROS, 2009.

[23] R. Mudra, R. Hahnloser, and R. J. Douglas. Neuromorphic active
vision used in simple navigation behavior for a robot. In Proc. 7th
Int. Conf. On Microelectronics for Neural Networks, pages 7–9, 1999.

[24] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation
for approximate inference: An empirical study. In UAI, 1999.

[25] I. Na, S. H. Han, and H. Jeong. Stereo-based road obstacle detection
and tracking. In ICACT, 2011.

[26] B. Nabbe and M. Hebert. Extending the path-planning horizon.
volume 26, pages 997–1024, 2007.

[27] J. Pearl. Fusion, propagation, and structuring in belief networks. Artif.
Intell., 29(3):241–288, 1986.

[28] C. Plagemann, F. Endres, J. M. Hess, C. Stachniss, and W. Burgard.
Monocular range sensing: A non-parametric learning approach. In
ICRA, 2008.

[29] A. Saxena, S. Chung, and A. Ng. Learning depth from single
monocular images. In NIPS, 2005.

[30] A. Saxena, S. Chung, and A. Ng. 3-d depth reconstruction from a
single still image. IJCV, 76(1):53–69, 2008.

[31] A. Saxena, M. Sun, and A. Ng. Make3d: Learning 3d scene structure
from a single still image. PAMI, 2009.

[32] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Depth perception from a
single still image. In AAAI, 2008.

[33] B. Sofman, E. L. Ratliff, J. A. D. Bagnell, J. Cole, N. Vandapel,
and A. T. Stentz. Improving robot navigation through self-supervised
online learning. Journal of Field Robotics, 23(12), 2006.

[34] S. P. Soundararaj, A. K. Sujeeth, and A. Saxena. Autonomous indoor
helicopter flight using a single onboard camera. In IROS, 2009.

[35] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.
[36] K. M. Wurm, R. Kümmerle, C. Stachniss, and W. Burgard. Improving

robot navigation in structured outdoor environments by identifying
vegetation from laser data. In IROS, 2009.

[37] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart. Mav navigation
through indoor corridors using optical flow. In ICRA, 2010.

