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Abstract—Peer-to-peer (P2P) architectures are popular for
tasks such as collaborative download, VoIP telephony, and
backup. To maximize performance in the face of widely variable
storage capacities and bandwidths, such systems typically need to
shift work from poor nodes to richer ones. Similar requirements
are seen in today’s large data centers, where machines may have
widely variable configurations, loads and performance. In this
paper, we consider the slicing problem, which involves partition-
ing the participating nodes into k subsets using a one-dimensional
attribute, and updating the partition as the set of nodes and their
associated attributes change. The mechanism thus facilitates the
development of adaptive systems. We begin by motivating this
problem statement and reviewing prior work. Existing algorithms
are shown to have problems with convergence, manifesting as
inaccurate slice assignments, and to adapt slowly as conditions
change. Our protocol, Sliver, has provably rapid convergence, is
robust under stress, and is simple to implement. We present both
theoretical and experimental evaluations of the protocol.

Index Terms—Distributed Systems, Fault Tolerance, Perfor-
mance evaluation of algorithms and systems.

I. INTRODUCTION

Peer-to-peer (P2P) protocols are widely used for purposes
such as building VoIP overlays and sharing files or storage. In
principle, by exploiting the bandwidth and storage of partici-
pating nodes, P2P systems can achieve high performance with-
out requiring an expensive data center. However, these systems
struggle with a problem not seen in conventional client-
server architectures: peers can be notoriously unpredictable
and highly heterogeneous. For example, early versions of the
Gnutella file-sharing system assigned roles to nodes without
regard to their bandwidth and storage capacity. Experience
revealed that even a few degraded nodes were enough to
disrupt the entire platform [11], [20].

To avoid such problems, successful P2P platforms generally
assume that resources such as storage space and bandwidth
resources exhibit heavy-tailed distributions [21], [24]. They
incorporate mechanisms that classify nodes, and then match
workload to peer capacity, revising the mapping as conditions
evolve over time. For example in the Kazaa [17] file sharing
service, peers with longer lifetime and greater bandwidth
play a more active role. Skype [23], a peer-to-peer telephony
application, avoids routing calls through nodes that are slug-
gish or have low bandwidth. BitTorrent [6] uses an incentive
mechanism under which nodes cooperate more closely with
peers that match their own performance. Our goal is to offer

Vincent Gramoli is with EPFL and University of Neuchâtel, Switzerland.
Ymir Vigfusson, Ken Birman, and Robbert van Renesse are with Cornell

University, NY.
Anne-Marie Kermarrec is with INRIA Rennes Bretagne Atlantique, France.
A brief announcement of this article appeared in the proceedings of the

27th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC 2008). This work was supported, in part, by NSF, AFRL,
AFOSR, INRIA, and Intel Corporation.

a standardized solution that could be applied in a wide range
of such settings.

A slicing algorithm is a mechanism for organizing a set of
nodes into k groups (the slices), such that each node rapidly
learns the index of the slice to which it belongs. Slicing is done
with respect to a one-dimensional attribute.1 For the class of
P2P applications in which peers, in a decentralized manner,
adaptively work towards a global objective by some form of
proportional resource sharing, slicing should be appealing.

For example, with k = 4 the slicing service would organize
the nodes into quartiles. With n nodes and k = n, slicing
sorts them. No assumptions are made about the distribution of
attribute values. Our target environments are highly dynamic:
nodes come and go (churn), and attributes can change rapidly.

We are not the first to study slicing. In [15], the authors
describe a communication-efficient parallel sorting algorithm
and present node classification as a possible application, but
the approach makes assumptions that many systems would
not satisfy. For example, it requires uniform random value
distributions and is not able to tolerate churn correlated to
attribute values. An accurate slicing algorithm called the Rank-
ing protocol was presented in subsequent work [10], but with
very slow convergence. In larger deployments, membership
churn can prevent the protocol from stabilizing. Moreover, as
we will show in our experimental section, this sensitivity can
be a real problem even when no churn occurs: our experiments
reveal that even under relatively benign conditions, Ranking
sometimes reports incorrect slice estimates that continue to
drift as the run gets longer.

These observations motivate us to seek a slicing algorithm
that satisfies the following properties:
(i) Efficient and accurate computation of slice indices.

(ii) Rapid convergence to optimal slice indices, with provable
guarantees.

(iii) Robustness to membership churn and evolution of under-
lying attribute values.

The protocol should also be simple, both to facilitate imple-
mentation and for ease of analysis.

The main contribution of this article is a new randomized
algorithm, Sliver (Slicing Very Rapidly). At its core is a
sampling technique that uses a bounded memory to avoid value
duplication. We compare Sliver with other possible solutions
to the problem, including both prior slicing algorithms and
parallel sorting, which we adapt to slicing. These alternatives
each fail to achieve one or more of our goals. In contrast,
Sliver is simple, achieves our goals, and is very fast.

1Although beyond the scope of this paper, our protocol can be extended to
slice multiple attributes. The protocol is such that by simply extending each
message to carry distinct fields, for each of the attributes of interest, a single
pattern of message exchanges can drive concurrent, side-by-side, executions
of the algorithm.
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II. PROBLEM AND MODEL DEFINITION

This section formalizes the model and gives a more precise
definition of the slicing problem.

A. System Model

The system consists of n nodes with unique identifiers
(e.g., IP addresses); each node knows of a small number of
neighbors, and the resulting graph is connected. We assume
that n is large: solutions that collect Ω(n) information at
any single node are impractical. Time passes in discrete steps
starting from time 0.

Each node can leave (or fail by halting) and new nodes can
join the system at any time (so-called churn), thus the number
of nodes is a function of time. A system with no membership
churn is static. In this article, we do not differentiate between
a failure and a voluntary node departure and we say that the
nodes currently in the system are active. Let At denote the set
of active nodes at time t, and let nt = |At| be the number of
active nodes at that time (nt ≤ n).

At any time t, each node i has an attribute value ai(t) ∈
R that represents its capacity in the metric of interest, for
example uplink bandwidth. These attribute values can have an
arbitrary skewed distribution.

When attribute values remain fixed over time, that is
ai(t) = ai(t′) for all t and t′, we refer to i’s constant attribute
value simply as ai. Additionally, throughout the paper, we
sometimes omit t where it is clear from context.

Every node i keeps an array of records about its neighbors.
A record includes the neighbor’s identifier i′, the last time a
message was received from i′, the latest attribute value ai′ of
i′, and optionally the value that i′ estimates to be its position
(defined below). This array, denoted Ni, is called the view of
node i. To bound the required memory, every node has a view
of at most c neighbors where c is a global constant.

B. Definitions

At any time t, we can define a total ordering over the nodes
based on their attribute value, with the node identifier used to
break ties. Formally, we say node i precedes i′ at t if and
only if ai(t) < ai′(t), or ai(t) = ai′(t) and i < i′. We
refer to this totally ordered sequence as the attribute sequence.
The attribute-based rank of a node i at time t, denoted by
αi(t) ∈ {1, . . . , nt}, is defined as the index of ai in the
attribute sequence. We denote by pi(t) = αi(t)

nt
the position

of node i in the system at time t and by p̂i(t) its position
estimate at time t. In other words, the position pi(t) of node
i at time t is the index of ai(t) within the sorted attribute
values, normalized to fall within the range (0, 1].

In the remainder of the article, we assume that nodes are
sorted according to a single attribute.

Suppose we partition the attribute sequence at time t into k
equally balanced sets. We call each set a slice, and preserve
the order within the partition such that the jth slice has a slice
index j. More formally, the slice with slice index j is the set

Sj(t) =
{
i ∈ At :

j − 1
k

< pi(t) ≤
j

k

}

for 1 ≤ j ≤ k. Each node belongs to exactly one slice. For
example, when k = 4 the values of the nodes in the slices
correspond to the quartiles of the attribute value distribution.
A slice boundary refers to a value j

k for some j, delimiting
the positions of nodes belonging to the jth slice and nodes
belonging to the (j + 1)st slice.

Initially, nodes have no global information about the struc-
ture or size of the system, or about the attribute values of any
other node. We assume that k and c are global knowledge
because both can be easily provided to newly joining nodes.

C. Distributed Slicing

In the slicing problem all nodes try to discover the number
of the slice to which their attribute value belongs. The correct
slice index oi(t) of slice i at t is the index of the unique slice
Sj(t) which contains ai(t).

Suppose each node i estimates its slice index to be ei(t) at
time t. To measure the overall quality of the estimates, we use
the slice disorder measure (SDM) [10] at time t :

SDM(t) =
∑
i∈At

|oi(t)− ei(t)| .

This metric is minimized at 0 when all estimates match the
correct slice index.

In a distributed slicing protocol [10], nodes communicate
via message-passing and estimate their own slice index during
each time step. One of the metrics of interest is the message
load incurred by a slicing protocol. A static network is a
network with no membership churn and fixed attribute values.
A slicing protocol converges if it eventually provides a correct
slicing of a network that is static from some point on, meaning
that SDM(t) = 0 for all t ≥ t′ for some t′.

As noted earlier, we are interested in protocols that are (i)
simple, (ii) accurate, (iii) rapidly convergent, and (iv) efficient.
With respect to efficiency, we will look at message load both
in terms of the load experienced by participating nodes and
the aggregated load on the network.

Let us illustrate the goal with a small example. Suppose
the active nodes have attribute values 1, 2, 3, 7, 8, 9 and that
k = 3. One way to slice the set is to sort the values (as shown),
divide the list into three sets, and inform the nodes of the
outcome. Alternatively, we might use an estimation scheme.
For example, if node 7 obtains a random sample of the values,
that sample might consist of 1, 7, and 9, enabling it to estimate
the correct slice index. In the next section, we consider these
and other options.

III. APPROACHES TO SLICING

This section reviews prior protocols related to Sliver. These
fall into two classes. The first group are solutions that use
a sorting mechanism to drive a probabilistic slicing scheme,
while the second class use sampling to estimate the attribute
distribution (these depend upon the ability to do uniform
sampling).
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A. Slicing by Sorting

Intuitively, sorting and slicing are closely related problems.
In particular, if we are given a decentralized mechanism for
sorting attribute values, so that each node can learn the number
of nodes in the system and its index in the sort order, the
computation of its slice becomes trivial. Below, we show that
parallel sorting algorithms can be adapted to a P2P setting,
and hence used to solve slicing. However, we will also see
that the solutions are complex and potentially fragile in the
face of churn.

A closely related option is to use randomized gossip-based
sorting algorithms to drive a slicing mechanism. This has
been explored in prior work, and yields approximate slice
estimates [10], [15]. As we will see, however, these algorithms
may fail to converge.

1) Parallel Sorting on a P2P Overlay: We begin by looking
at the feasibility of using parallel sorting in P2P settings. Most
parallel sorting algorithms [1], [3], [4], [7], [12], [18], [22]
“wire together” nodes into a sort-exchange network, within
which they can compare their value and decide whether to
exchange their position. Such sorting networks are useful since
they can provide nodes with indices in the sorted list, thus they
make slicing possible. Ajtai, Komlós, and Szemerédi proposed
the first algorithm to sort a system of n nodes in O(log n)
steps. The big-O notation hides a large constant, which subse-
quent work has sought to decrease [5]; nonetheless, it remains
over 1,000. Batcher’s algorithm [4] has complexity O(log2 n).
Although an O(log n log log n)-step algorithm is known [18],
it competes with Batcher’s solution only when n > 220.
Other algorithms significantly reduce the convergence-time,
sorting in O(log n) steps at the cost of achieving probabilistic
precision. For example, an intuitive algorithm known as the
Butterfly Tournament [18] compares nodes in a pattern similar
to the ranking of players during a tennis tournament. At the
end of the algorithm each player has played O(log n) matches
and can estimate its rank accurately. In a static network,
a probabilistic parallel sorting algorithm can solve slicing
with high probability within O(log n) time. In contrast, a
deterministic sorting algorithm would need time O(log2 n) to
slice a static system.

To convert a parallel sorting algorithm into a P2P slicing
solution, one starts by constructing an overlay tree on the
active nodes. It is not difficult to build a spanning tree, within
which nodes can be counted and assigned identifiers in the
range 1, . . . , n. Having done this, one can route messages
from node i to node j along the tree. Of course, such a
tree can be disrupted by churn, and this makes the approach
more complex: to tolerate failures, both the tree itself and the
attribute values must be replicated.

Having taken these steps, one can then run a parallel sorting
algorithm on the overlay. If we sort tuples consisting of
(value,origin node) pairs, and then report the final location
of each value back to the origin node, each node learns its
position in the sort order and hence its exact slice number.
Although brevity precludes inclusion of a detailed analysis,
tree construction brings an additional O(log n) cost, beyond
the cost of the sorting algorithm itself. Thus the approach is

feasible. However, the construction is complex, particularly
because of the need to make the overlay robust to churn.

2) Gossip-Based Parallel Sorting: As noted earlier, one can
also use a gossip-based sorting mechanism to drive a slicing
protocol [10], [15]. In the remainder of this paper, we refer
to these protocols as Ordering protocols, as suggested in [10].
The idea is for each node to choose a random value (between
0 and 1) as an initial position estimate. Then, in a series of
randomized gossip exchanges, each node i searches its view
Ni for misplaced neighbors. In particular, if i estimates its
position to be ahead of its neighbor j, then i’s attribute value
should be less than j, and vice versa. If this is not the case,
i swaps its position estimate with j. This process is repeated
until all nodes are sorted.

Here, we focus on the Ordering protocol in [10], which
improves on the one in [15]. The protocol works by having
each node measure the slice disorder using local information.
This leads to a heuristic used by nodes to determine the best
neighbor with which to swap position estimates. Let the local
attribute sequence and the local position estimate sequence of
node i be the ordered sequence of attribute values and position
estimates, respectively, of all nodes in Ni. These sequences are
computed locally by i using the information Ni∪{i}. For any
i′ ∈ Ni ∪ {i}, let αi′(t) and ρi′(t) be the indices of ai′ and
ei′ in the attribute sequence and the local position estimate
sequence, respectively, of i at time t. At any time t, the local
disorder measure of node i is defined as

LDMi(t) =
∑

i′∈Ni(t)∪{i}

|αi′(t)− ρi′(t)|.

At time t, the Ordering protocol considers each neighbor i′

with which it could exchange its random value, and picks the
one that maximizes the local gain LDMi(t) − LDMi(t + 1).
However, while it is straightforward for each node to compute
the LDM, doing so gives only a rough idea of the value of
the global disorder measure. Accordingly, we make no further
use of the LDM in what follows.

3) Limitations: The sorting algorithms do not solve the
slicing problem unless a sorted network gives the nodes their
attribute value index. For slicing, each node needs to know its
position relative to other nodes in the system. Recall that in our
attempt to adapt parallel sorting algorithms to solve the slicing
problem, we addressed this by sorting tuples and ultimately
informing each node of the index at which its attribute ended
up, in the sorted order. The Ordering protocol, however, lacks
this kind of fine-grained information, and merely estimates
the position, and this turns out to be a significant source of
inaccuracy.

Recall that the key idea in the Ordering protocol is to use
a random number as a position estimate that is exchanged
between nodes. Initially, every node chooses a random number
as its position estimate, then each node compares periodically
its estimate with that of a randomly selected peer. Since the
initial random numbers will be used as the final position
estimates of the nodes, if those numbers are not uniformly
distributed, the final slice estimate is inaccurate. This can be a
serious problem because in general, random position estimates
may be far from uniform. The problem becomes even more
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severe if membership churn is correlated with the attribute
values.

As an example in a three-node network, suppose that the
initial random numbers of three nodes are 0.1, 0.15, and 0.2
but that a uniform distribution would have yielded values 0,
0.5, and 1. When the parallel sort terminates, all three will
believe they belong to the first half of the system. In other
words, slice estimates may be incorrect even when the sorting
phase terminates with the random values in a correct sort order.
Even if the initial distribution of random values is initially
perfectly uniform, a variation in the distribution of attribute
values leads also to incorrect slice estimates. In the following
section we describe solutions where this problem does not
arise.

B. Slicing by Ranking
Next, we present Ranking, a recently proposed slicing

protocol. Although the protocol is simple, we will see that it
depends strongly upon the assumption that there is a good way
to obtain uniform random samples of node values that improve
steadily over time. In many settings this is not possible, and
with non-uniform samples, the algorithm does not converge
even in a static system.

1) Ranking, Slicing Eventually: The Ranking protocol was
introduced in [10]. Unlike the Ordering protocols of the pre-
vious section, a Ranking protocol does not assign immutable
random values as initial position estimates. Instead, nodes
improve their position estimate each time new information is
received. This reduces the slice disorder by a positive amount
and eventually slices the system.

The Ranking protocol works roughly as follows. Periodi-
cally each node i updates its view Ni following an underlying
protocol that provides a uniform random sample (e.g., [16]).
Node i computes its position estimate (and hence the estimate
of its slice index) by comparing the attribute value of its
neighbors to its own attribute value. The estimate is computed
as the ratio of the number of lower attribute values that i has
seen over the total number of attribute values i has seen.

Periodically i sends a message to some neighbors. There are
two ways for node i to choose the destinations of its message.
Either node i sends its message to a subset of neighbors from
its current view Ni or i sends one message to each of the
neighbors present in its view.

The first technique is used by the original Ranking proto-
col [10] and is as follows. Node i looks at the position estimate
of all its neighbors. Then, i selects the node i′ closest to a slice
boundary (according to the position estimates of the neighbors
of i). Node i also selects a random neighbor i′′ among its
view. Now, i sends an update message to i′ and i′′, containing
its attribute value. The reason why a node close to the slice
boundary is selected as one of the destinations is that such
nodes need more samples to accurately determine which slice
they belong to. This technique introduces a bias towards them,
so they receive more messages.

The second technique speeds up the convergence at the price
of additional messages: each node sends the message to all
nodes present in its current viewNi. We will use this technique
when we evaluate the Ranking protocol.

With either technique, upon reception of a message from
node i, i′ and i′′ compute their new position estimate p̂i′ and
p̂i′′ depending on the attribute value received. The estimate of
the slice a node belongs to follows the computation of the
position estimate. Messages are transmitted using an asyn-
chronous, one-way protocol, resulting in identical message
complexity to the Ordering protocols.

2) Limitations: The Ranking protocol is not guaranteed to
converge, even on a static network. Upon message reception,
each node i estimates its position by comparing the attribute
values of its neighbors with its own attribute value. It then
estimates its position (and hence its slice index) as the ratio of
the number of smaller attribute values that i has seen over the
total number of values i has seen. As the algorithm runs, the
position estimate improves. However, in the Ranking protocol
node i does not keep track of the nodes from which it has
received values, thus, two identical values sent from the same
node i′ are treated by i as coming from two distinct nodes.
The event that i’s slice estimate is skewed because of receiving
too many identical values below (or above) ai happens with
positive probability and thus no convergence guarantee can be
established. This crucial shortcoming will also be evident in
our experimental work.

IV. SLIVER, FAST AND ACCURATE SLICING

We now introduce Sliver, a simple distributed slicing pro-
tocol that samples attribute values from the network and
estimates the slice index from the sample.

A. Tracking Value Owners

Sliver temporarily retains the attribute values and the node
identifiers that it encounters. With this information, Sliver is
guaranteed to converge in a static network. Sliver reduces
slice disorder rapidly: in Subsection IV-B we show that slice
estimates are expected to be close (off by at most one) with
high probability after O(log n) time when k = O(log n), and
O
(√
k log n

)
time when k = O(n) and k = Ω(log n).

To address churn, Sliver also retains the time at which it last
interacted with each node, and gradually discards any values
associated with nodes that have not been encountered again
within a prespecified time window. The timeout ensures that
the amount of saved data is bounded, because the communi-
cation pattern we use has a bandwidth limit that effectively
bounds the rate at which nodes are encountered. Moreover,
this technique allows all nodes to cope with churn, regardless
of potential changes to the distribution of attribute values in
the presence of churn.

The code running on each node in this scheme at every time
step is as follows.
• Each node i sends its attribute value to the nodes of its

view Ni. It then changes its view to a new random set of
c nodes using peer sampling [16] or random walks [19].

• Each node i keeps track of the values it receives, along
with the sender i′ and the time they were received, and
discards value records that have expired.

• Each node i sorts the m values it currently stores.
Suppose Bi of them are lower than or equal to ai.
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• Each node i estimates its position as Bi/m and the slice
index is estimated as the closest integer to kBi/m.

Conceptually, Sliver is similar to the Ranking protocol. They
differ in that nodes in Sliver track the node identifiers of the
values they receive, whereas nodes in the Ranking protocol
only track the values themselves. This change has a significant
impact: Sliver retains the simplicity of the Ranking protocol,
but no longer requires that the sending nodes have a uniform
sample of attribute values in the network as a whole. If no
time-out is specified, we assume that it is infinite.

We also consider an indirect information tracking (IIT)
variant of Sliver. Instead of having nodes only forward their
own attribute values to other nodes, this variation also forwards
current attribute values for other nodes (along with their sender
identifier and the time since last confirmed update). To bound
the use of memory and network bandwidth, we retain only
the most recent R values in memory. For simplicity and also
the sake of analysis, we consider only the original version of
Sliver unless otherwise specified.

We leave several topics for future study. These include
support for unevenly balanced slice sizes, and protocols that fix
the slice size, allowing k to vary. A very interesting question
concerns multi-dimensional attribute sets. As noted earlier,
Sliver has an obvious generalization in which messages carry
an array of information, one entry for each attribute, permitting
the algorithm to concurrently slice in several dimensions. But
one can also imagine schemes for combining sets of attributes
to create lower-dimensional pseudo-attributes. Slicing might
then function as a crude (but inexpensive) parallel clustering
algorithm.

B. Theoretical Analysis of Sliver

In this section we analyze the convergence properties of
Sliver. Recall that Sliver stores recent attribute values and node
identifiers it encounters in memory. At any point in time, each
node can estimate its slice index using the current distribution
of attribute values it has stored. We show analytically that if
the system becomes synchronous then relatively short time has
to pass for this estimate to be representative for all nodes. We
derive an analytic upper bound on the expected running time
of the algorithm until each node knows its correct slice index
(within one) with high probability.

1) Assumptions: We focus on a static and synchronous
system with n nodes and k slices, and we assume that
there is no timeout, so that all values/identifiers encountered
are recorded. The analysis can be extended to incorporate
the timeouts we introduced to battle churn and to adapt to
distribution changes, but may not offer as much intuition for
the behavior and performance of the algorithm.

For the sake of simplicity, we assume that each node
receives the values of one other randomly selected node in the
system (c = 1) at each time step, and that all nodes start the
protocol at time t = 1. Clearly, if a node collects all n attribute
values it will know its exact slice index. A node i is close if
it knows its slice index within at most one, and stable at time
t if it remains close from time t henceforth. The problem lies
with nodes whose position lies on the boundary of two slices.

By considering stable nodes instead of exact estimates, we can
derive meaningful results about the asymptotic time required
by the system to reach a very low global slice disorder.

2) Convergence to a Sliced Network: In the following
we show that Sliver slices the network rapidly. We assume
that k = O(n), since the slicing problem for k > n is
uninteresting. The following theorem gives the expected time
it takes to achieve stability with high probability.

Theorem 4.1: We expect all nodes to be stable with high
probability after

O
(√

max {k, log n} log n
)

time steps.
Proof: Let ε > 0. Fix some node i with value ai. We

assume that node i receives a previously unknown attribute
value in each time step. The possibility of receiving redundant
values is addressed later.

Let Bt denote the number of values that are known after t
time steps which are below or equal to ai. The fraction Bn/n
is the true fraction of nodes with lower or equal attribute
values. Knowing this fraction is equivalent to knowing the
correct slice index of node i. There are on average n/k
nodes per slice, so node i is close as long as it reports a
normalized slice index within n/k of Bn/n. We will estimate
the probability that at time t, Bt/t is within t/k of Bn/n.

One can visualize the process, which we coin the P -process,
as follows. There are Bn balls marked red and n−Bn marked
blue. In each time step t, a ball is randomly picked from the
remaining ones and discarded. If it is red, Bt+1 ← Bt + 1,
otherwise Bt+1 ← Bt. The probability

P[red ball at time t] =
Bn −Bt
n− t

depends on the current distribution of ball colors. Denote this
probability by pt. To simplify the analysis, we will consider
the Q-process in which a red ball is picked with probability
qt = Bn/n in each time step and blue otherwise. Notice that
if Bt/t ≤ Bn/n then

pt =
Bn −Bt
n− t

≥ Bn − tBn/n
n− t

=
Bn
n

= qt,

and similarly if Bt/t ≥ Bn/n then pt ≤ qt.
Consequently, the P -process tends to move towards Bn/n

in each time step, whereas the Q-process ignores the proximity
entirely. Analogously, imagine a car driving on the Bn/n road
in the (0, 1] world. Under the P -process the driver is more
likely to turn towards the road when off-roading, whereas
under the Q-process the driver always attempts to drive more
or less parallel to the road. More rigorously, for a fixed
constant a we can show by induction over t that the probability
of next estimate Bt/t falling in the interval

[
Bn

n − a,
Bn

n + a
]

is greater for the P -process than the Q-process, for which
it suffices to compare pt with qt near the endpoints of the
interval. The details are straightforward and left for the reader.
This observation implies that the bounds we will derive for the
deviation from Bn/n at time t for Q-process act as an upper
bound for the P -process.
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We see that under the Q-process, E[Bt] =
∑t
i=1 qt =

tBn/n, since the steps are independent and identically dis-
tributed. We will use the following variant of the Chernoff-
bound [2]. Let X1, . . . XN be independent identically dis-
tributed 0-1 random variables with X =

∑N
i=1Xi and

µ = E[X].

P[X ≤ (1− δ)µ] ≤ exp
(
−µδ2

2

)
0 < δ ≤ 1

P[X ≥ (1 + δ)µ] ≤

 exp
(
−µδ2
2+δ

)
exp

(
−µδ2

3

) δ ≥ 1
0 < δ ≤ 1

For the Q-process we now derive

P
[
Bt
t
≤ E[Bt]

t
− t

k

]
= P

[
Bt ≤

(
1− nt

kBn

)
E[Bt]

]
≤ exp

(
−E[Bt](nt)2

2(kBn)2

)
= exp

(
− t3n

2k2Bn

)
≤ exp

(
− t3

3k2

)
=: st.

since Bn ≤ n.
Letting δt = nt/kBn we can similarly derive for δt ≤ 1

that

P[Bt ≥ (1 + δt)E[Bt]] ≤ exp(−E[Bt]δ2t /3)

≤ exp
(
− t3

3k2

)
=: rt

and for δt ≥ 1 that

P[Bt ≥ (1 + δt)E[Bt]] ≤ exp
(
−E[Bt]δ2t

2 + δt

)
≤ exp(−E[Bt]δt/3)

≤ exp
(
− t

2

3k

)
=: r′t.

Note that st = rt, and rt ≥ r′t iff t ≤ k.
All nodes in the network gather information about neighbors

independently. Thus the probability that all nodes are close at
time t, i.e. Bt/t is within t/k from Bn/n, is at least

(1− P[Bt ≤ (1− δt)E[Bt]])
n · (1− P[Bt ≥ (1 + δt)E[Bt]])

n

≥ (1− st)n(1−max{rt, r′t})n
≥ (1− rt)2n(1− r′t)n.

The probability that all nodes remain close from time t to
n is at least

n∏
T=t

(1− rT )2n(1− r′T )n

≥
n∏
T=t

(1− rt)2n(1− r′t)n

≥ (1− rt)2n
2
(1− r′t)n

2

≥ (1−max{rt, r′t})3n
2

Using that rt ≤ 1
m when t ≥ 3

√
3k2 lnm and r′t ≤ 1

m when
t ≥
√

3k lnm, the previous bound is at least (1 − 1/m)3n
2

when t is at least

max{ 3
√

3k2 lnm,
√

3k lnm}.

Let
m = 1− 3n2

ln(1− ε)
(1)

which is clearly O(n2) for a fixed value of ε. Now, for t ≥ τ

(1−max{rt, r′t})3n
2

≥
(

1− 1
m

)3n2

=
(

1− 1
m

)(m−1)(− ln(1−ε))

≥ (1/e)− ln(1−ε) = 1− ε

by using the fact that
(
1− 1

x

)x−1 ≥ 1/e for x ≥ 2.

We now address the assumption that each node receives a
distinct attribute value in each round.

The classic coupon collector problem asks how many
coupons one should expect to collect before having all x
different labels if each coupon has one of x distinct labels.
The answer is roughly x log(x). For our purposes, the coupons
correspond to attribute values (n distinct labels) and we wish
to know how many rounds it will take to collect t distinct ones.
Let Tj denote the number of rounds needed to have j distinct
coupons if we start off with j − 1. Then Tj is a geometric
random variable with E[Tj ] = n/(n− j + 1).

The total time expected to collect t distinct coupons is thus
t∑

j=1

n

n− j + 1
≤ n(lnn− ln(n− t)) + η

= n ln
(

n

n− t

)
+ η.

Here η is at most the Euler-Mascheroni constant which is less
than 0.6.

We now make use of the fact that k = O(n). Since
ln(m) = O(log n) using the m from equation 1, there exists
some constant α < 1 such that

τ = max
{

3
√

3k2 lnm,
√

3k lnm
}
≤ αn

for large n. Notice that 3
√

3k2 lnm ≥
√

3k lnm iff k ≥ 3 lnm.
Since 1−x ≤ exp(−x) for x ≥ 0, we derive for 0 < x < 1

that
1
x

ln
1

1− x
≤ 1

1− x
.

It follows that

n ln
n

n− τ
= τ

(
n

τ
ln

1
1− τ

n

)
≤ τ

1− τ
n

≤ τ

1− α
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Parallel Ordering Ranking SliverSorting
Accurate yes no yes yes
Efficient yes yes yes yes

Robust to churn no no yes yes
Handles yes no no yesnon-uniformity

Convergence time O(log2 n) O(log s) O

(
p(1− p)
d2

)
O
(√

max {k, log n} log n
)

(for stability)

TABLE I
COMPARISON OF SOLUTIONS TO THE SLICING PROBLEM. HERE s IS THE NUMBER OF SUCCESSFUL POSITION EXCHANGES OF THE ORDERING

PROTOCOL, p IS THE ESTIMATED NORMALIZED INDEX OF A NODE, d IS THE MAXIMAL DISTANCE BETWEEN ANY NODE AND THE SLICE BOUNDARY AS
DEFINED IN THE RANKING PROTOCOL AND k (THE NUMBER OF SLICES) IS O(n).

Hence we expect all nodes to be stable (remain close) with
high probability after

τ

1− α
+ η = O

(
max

{
3
√
k2 lnn,

√
k lnn

})
= O

(√
max {k, log n} log n

)
time steps.

From the analysis, we can see that the expected amount
of memory on a node will be bounded by the number of
rounds required for the protocol to converge. However, the
theoretical analysis overlooks practical issues such as churn,
evolution of attribute values over time, and nodes that aren’t
perfectly synchronized. We therefore undertook a series of
realistic experiments that validate Sliver using real churn traces
and attribute distributions, in Section IV-C.

3) Discussion: We are now in a position to compare
the sorting-based protocols discussed in III-A, the Ranking
protocol of Section III-B, as well as our Sliver protocol.

These protocols differ in many ways, making it difficult
to give a precise comparison. Their complexity guarantees
depend on a range of different parameters, such as the dis-
tance between the position of nodes and their closest slice
boundary, and the number of successful position exchanges
that occur during the execution. Despite these complexities,
some observations are particularly interesting. We show details
of the comparison in Table I.

Notice that Sliver compares very favorably with parallel
sorting. If there are very few slices (k small relative to n),
the initial slice estimate is likely to be correct for most nodes.
Parallel sorting would be an absurdly complicated overkill.
With larger values of k, the situation is less clear: When
k = Ω(log3 n), the theory favors parallel sorting, but in our
experiments Sliver converged rapidly even with k = n/2.

C. Performance Evaluation
This section evaluates Sliver’s performance. First, it com-

pares the Sliver and Ranking protocols. We look at a LAN and
then a WAN scenario, slicing with respect to a storage-space
attribute. Next, we evaluate scalability by simulating Sliver
on thousands of nodes, using a realistic trace that embodies
substantial churn.
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Fig. 1. Comparison of Sliver and the Ranking protocol for determining
positions and slicing the network. Solid lines represent the position estimates
and the slice disorder measure obtained with the Ranking protocol as a
function of time (measured by tracking the number of messages received
by each node), while dashed lines represent the positions and measure given
by the Sliver protocol.

1) Distributed Evaluation: We performed experiments us-
ing 50 Emulab nodes that run Sliver and Ranking. Emulab [25]
is a distributed testbed that allows the user to specify a specific
network topology using NS2 configuration file. Using this
feature, we set the communication delays to model realistic
network latencies as observed in PlanetLab.
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Fig. 2. Comparison of Sliver and the Ranking protocol for determining positions and slicing the network depending on the choice of neighbors. Left-hand
side: close or remote neighbors are chosen with the same probability. Right-hand side: close neighbors are chosen preferentially.

Our experiment slices the network according to the amount
of storage space used, a metric of obvious practical value.
We implemented Sliver (not the IIT variant) side by side with
the Ranking protocol, within the GossiPeer [13] framework,
an emulation platform that provides a low-level Java API for
experimentation with gossip-based protocols. For realism, the
distribution of storage space used matches a distribution in a
trace of 140 million files (representing 10.5 TB) on more than
4,000 machines [9]. Our 50 machines randomly sampled this
distribution to set their storage attribute values.

a) Ranking versus Sliver: In the first experiment pre-
sented in Figure 1 all 50 nodes execute Sliver and the Ranking
protocol in parallel (the pattern of peering is thus identical
for Sliver and for Ranking; only the algorithm itself differs).
To bootstrap, nodes are initialized with the addresses of 5
other nodes. Every node chooses c = 1 contact node every
2 seconds by executing a random walk of depth 4. Once the
random target is reached, it responds directly to the initiator.
The top graph of Figure 1 represents the position estimate of
each of the 50 nodes as a function of time. Note that each
node can easily evaluate the slice to which it belongs using
this position estimate since each node knows the number of
slices k. The bottom graph of Figure 1 shows the slice disorder
measure evolution for k = 25 and k = 50 slices resulting from
the above position estimates. It is evident that Sliver is more
rapidly convergent than Ranking. For example, at time 400 the
Sliver position estimate is 3 times less disordered as that of
the Ranking protocol.

We find it striking that Sliver is so much more stable than
Ranking. This highlights the extreme sensitivity of Ranking
to the node sampling technique. To the extent that peers
are revisited by the random walk mechanism, the Ranking
estimate may incorporate the same attribute values more than
once, causing drift. Moreover, there is no particular reason that
additional samples should improve the estimate. We see this as
a significant issue for the Ranking protocol. Of course Sliver
also suffers if a node experiences a poor quality of sampling,
as evidenced by a few nodes that adjust their position estimates
as late as time 500 − 600. However this is really a different
issue: here, the effect is due to non-uniform sampling of the
underlying data distribution, not re-sampling of previously
visited nodes.

b) Geographical network: The experiments in part (a)
assumed constant link latencies, as might occur in a large data
center. However, many P2P systems operate in WAN settings
where this assumption would not be valid. In such settings,
P2P systems very often bias gossip, selectively favoring nearby
nodes (so as to benefit from reduced latency communication)
and reducing the rate of gossip with remote nodes. Readers
interested in the broader issues that arise here are referred
to [8], where Demers and his colleagues offer a rigorous
analysis of this form of biased gossip.

To evaluate the impact of bias on Sliver and Ranking,
we set up an experiment to emulate a pair of data centers
containing 25 nodes each, each node randomly picks storage
attributes based on the distribution in our trace. Inter-node
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latencies were set to 2ms within the data centers, and to 300ms
for communication over the WAN link between the centers.
Each node gossips every second with c = 1 other node. We
implemented a biased version of Sliver and Ranking where
each node communicates preferentially with nearby nodes
and rarely with remote nodes. In the unbiased version when
sending messages the probability that node i communicates
with a remote node is 1

2 . In the biased version this probability
drops to 1

10 . As expected, the unbiased experimental runs give
essentially identical results to those seen above, so the interest
here is in the comparison of unbiased to biased runs.

The results for the unbiased version appear in Figure 2 (left-
hand side) and the results for the biased version appear in
Figure 2 (right-hand side). Again, Sliver significantly outper-
forms Ranking. Notice also that for both algorithms, bias slows
convergence time.

In order to get a closer look at the impact of neighbor choice
on the convergence speed, we compared the convergence time
of two distinct biased Sliver protocols and the unbiased Sliver
protocol while slicing the network into k = 10, k = 20,
k = 30, and k = 40 slices. In the first biased protocol,
remote nodes are chosen with probability 1

6 and close nodes
are chosen with probability 5

6 , whereas in the second biased
protocol, remote nodes are chosen with probability 1

10 and
close nodes are chosen with probability 9

10 . As before, the
unbiased protocol is simply Sliver as originally presented (i.e.,
all nodes are chosen with the same probability). The results
are shown in Figure 3. As expected, Sliver’s convergence time
is longer when the number k of slices is large. Preference
for nearby nodes does not reduce convergence time, which
confirms our former result. However, the effect isn’t extreme:
the convergence time increases by a factor of at most 3 for the
various values of k. We suspect that there are many settings
in which this degree of slowdown could be tolerated to slash
the load on an overburdened WAN link.

We should perhaps stress that all of these experiments used
essentially the same distribution of attribute values for nodes
in each of the two data centers. Had this not been the case (for
example, if nodes in Bangalore happen to have very different
amounts of storage than nodes in Ithaca), the effect of bias
could be dramatic: both algorithms would begin to exhibit
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of slices. Error bars represent one standard deviation.
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represent one standard deviation.

two distinct regions of convergence, first discovering local
conditions, and then adapting as remote data trickles in.

2) Churn in the Skype Network: Next, we explored the
ability of Sliver to tolerate dynamism in a larger scale en-
vironment. We simulated the Sliver protocol on a trace from
the popular Skype VoIP network [23], using data that was
assembled by Guha, Daswani, and Jain [14]. The trace tracks
the availability of 3,000 nodes in Skype between September
1, 2005 to January 14, 2006. Each of these nodes is assigned
a random attribute value and we evaluate our slicing protocol
under the churn experienced by the nodes in the trace.

The goal of this experiment is to slice n = 3, 000 nodes into
k = 20 slices. We assume that every node sends its attribute
value to c = 20 nodes chosen uniformly at random every 10
seconds. Attribute values that have not been refreshed within
90 minutes are discarded. The top curve in Figure 4 shows the
number of nodes that are available at a given point in time.
The results show that on average less than 10% of the active
nodes at any given time report a slice index off by one (or
more), and the network quickly converges to have very low
slice disorder. Under such conditions, use of the IIT variant
of Sliver would be highly advisable.
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Figures 6 and 7 illustrate the sensitivity of convergence time
to k, the number of slices; the results are within the analytic
upper bounds derived in Subsection IV-B. For each of these
figures, we ran the algorithm continuously within the Skype
trace, identified erroneous slice estimates, and then averaged
to obtain a “quality estimate” covering the full 28 hours of
the trace. Each node gossips every 10 seconds. Modifying
this parameter effectively scales the convergence time by the
same amount. We discard values that have not been refreshed
within the last 90 minutes. Note that when churn occurs, or
a value changes, any algorithm will need time to react, hence
the best possible outcome would inevitably show some errors
associated with this lag.

We also evaluated the IIT variant of Sliver on the Skype
trace, to evaluate its quality when faced with heavy churn.
Each node retains at most R = 300 records of other values at
any time, accounting for 10% of the total number of nodes. We
used a timeout of t = 500 seconds, and nodes communicate
every 10 seconds. In Figure 5 we compare the original Sliver

protocol to this new variant by considering the slice disorder
over time in the first 12 hours. We can see that indirect
information tracking reduces slice disorder by 33% on average,
and rarely exceeds the disorder produced by the original Sliver
protocol. This experiment suggests that by using indirectly
acquired information, perturbed nodes learn attribute values
more quickly. Moreover, the impact of records for nodes that
have left the system (“ghost” values) is seen to be insignificant,
at least in this experiment. Clearly, had churn somehow been
correlated with attribute values (for example, if nodes low on
storage space often crash), our findings might have been very
different.

V. CONCLUSION

The slicing problem organizes the nodes in a system into
an integral number of groups, such that each node learns
its slice number. For example, with four slices (k = 4),
nodes are organized into quartiles. Slicing has many uses: the
technique can help systems to route around overloaded nodes,
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to assign special tasks to lightly loaded nodes, or to trigger
adaptation as needed. Here, we started by evaluating existing
slicing methods, and identified a number of limitations. Our
analysis of prior work, and of an approach in which slicing
is performed as a side-effect of running a parallel sorting
algorithm, reveals that all of these options are inadequate in
significant ways. Our Sliver protocol is remarkably cheap,
achieves provably rapid convergence, is robust under various
forms of stress, and is simple to implement.
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