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1. INTRODUCTION

If Artificial Intelligence (AI) researchers can agree on anything, it is that
an intelligent artifact must be capable of reasoning about the world it
inhabits. The artifact must possess various forms of knowledge and beliefs
about its world, and must use this information to infer further information
about that world in order to make decisions, plan and carry out actions,
respond to other agents, etc. The technical problem for AI is to characterize
the patterns of reasoning required of such an intelligent artifact, and to
realize them computationally. There is a wide range of such reasoning
patterns necessary for intelligent behavior. Among these are:

¯ Probabilistic reasoning (e.g. Bundy 1985; Nilsson 1986), in which prob-
abilities are associated with different items of information. Reasoning
requires, in part, computing appropriate probabilities for inferred
information, based upon the probabilities of the information used to
support the inference.

¯ Fuzzy reasoning (e.g. Zadeh 1981), designed to characterize vague
concepts like "tall" or "old" and to assign degrees of vagueness to
conclusions inferred using such concepts.

¯ Inductive reasoning (e.g. Michalski 1983), which is concerned with
determining plausible generalizations from a finite number of obser-
vations.

¯ Deductive reasoning, the concern of mathematical logic, which char-
acterizes, among other things, the axiomatic method in mathematics.

This is far from a complete enumeration of human reasoning patterns.
The most recent addition to this list is nonmonotonic reasoning, the study
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of which appears to be unique to AI. In order to convey an intuitive sense
of what this is all about, it is first necessary to consider what has come to
be known in AI as the knowledge representation problem.

Because an agent must reason about something (its knowledge, beliefs),
any consideration of the nature of reasoning requires a concomitant con-
cern with how the agent represents its knowledge and beliefs. The stance
adopted by AI research on nonmonotonic reasoning is in agreement with
the dominant view in AI on knowledge representation; the "knowledge
content" of a reasoning program ought to be represented by data structures
interpretable as logical formulas of some kind. As Levesque (1986) puts
it:

For the structures to represent knowledge, it must be possible to interpret them pro-
positionally, that is, as expressions in a language with a truth theory. We should be able
to point to one of them and say what the world would have to be like for it to be true.

The province of nonmonotonic reasoning is the derivation of plausible
(but not infallible) conclusions from a knowledge base viewed abstractly
as a set of formulas in a suitable logic. Any such conclusion is understood
to be tentative; it may have to be retracted after new information has been
added to the knowledge base.

In what follows, I assume the reader is logically literate, at least with
respect to the fundamental ideas of first-order logic (with a smattering of
second-order) and the familiar modal logics of necessity (e.g. $4 and $5).

2. MOTIVATION

Nonmonotonic reasoning is a particular kind of plausible reasoning. Vir-
tually every example in AI that calls upon such reasoning fits the following
pattern:

Normally, A holds.

Several paraphrases of this pattern are commonly accepted:

Typically, A is the case.
Assume A by default.

The remainder of this section is devoted to a number of examples of
this pattern as it arises in various settings of special concern to AI. The
ubiquity of this pattern is remarkable. Once one learns to look for it, one
discovers it virtually everywhere.
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NONMONOTONIC REASONING 149

2.1 The Canonical Example

The standard example in AI of a nonmonotonic reasoning pattern has to
do with flying birds. The sentence "Birds fly" is not synonymous with "All
birds fly" because there are exceptions. In fact, there are overwhelmingly
many exceptions--ostriches, penguins, Peking ducks, tar-coated birds,
fledglings, etc. etc.--a seemingly open-ended list. Nevertheless, if told only
about a particular bird, say Tweety, without being told anything else about
it, we would be justified in assuming that Tweety can fly, without knowing
that it is not one of the exceptional birds. In other words, we treat Tweety
as a typical or normal bird.

We can represent the sentence "Birds fly" by instances of our patterns
of plausible reasoning:

"Normal, birds fly."
"Typically, birds fly."
"It x is a bird, then assume by default that x flies."

We can now see why these are plausible reasoning patterns. We wish to
use them to conclude that Tweety can fly, but should we subsequently
learn information to the contrary--say, that Tweety is a penguin--we
would retract our earlier conclusion and conclude instead that Tweety
cannot fly. Thus initially we jumped to the conclusion or made the default
assumption that Tweety can fly. This, of course, is what makes our rule
patterns plausible rather than deductive; they sanction assumptions rather
than infallible conclusions.

Notice also that there is another possible paraphrase of our reasoning
pattern. In the case of Tweety the bird we were prepared to assume that
Tweety can fly provided we knew of no information to the contrary,
namely that Tweety is a penguin or an ostrich or the Maltese Falcon or ....
So one possible reading of our pattern of plausible reasoning is:

In the absence of information to the contrary, assume A.

What is problematic here (as it is for notions like "typically" and "nor-
mally") is defining precisely what one means by "absence of information
to the contrary." A natural reading is something like "nothing is known
that is inconsistent with the desired assumption A." As we shall see later,
this consistency-based version of the pattern motivates several formal
theories of nonmonotonic reasoning. We shall also see that other intuitions
are possible, leading to formalisms that apparently have little to do with
consistency.

2.2 Databases

In the theory of databases there is an explicit convention about the rep-
resentation of negative information that appeals to a particular kind of
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default assumption. To see why negative information poses a problem,
consider the simple example of a database for an airline flight schedule
representing flight numbers and the city ipairs they connect. We certainly
would not want to include in this database all flights and the city pairs
they do not connect, which clearly would be an overwhelming amount of
information. For example, Air Canada flight 103 does not connect London
with Paris, or Toronto with Montreal, or Moose Jaw with Athens, or ....
There is far too much ne#ative information to represent explicity, and this
will be true for any realistic database.

Instead of explicitly representing such negative information, databases
implicitly do so by appealing to the so-called closed worm assumption
(Reiter 1978b), which states that all relevant positive information has been
explicitly represented. If a positive fact is not explicitly present in the
database, its negation is assumed to hold. For simple databases consisting
of atomic facts only, e.g. relational databases, this approach to negative
information is straightforward. In the case of deductive databases,
however, the closed world assumption (CWA) is not so easy to formulate.
It is no longer sufficient that a fact not be explicitly present in order to
conjecture its negation; the fact may be derivable. So in general we need a
closed world rule that, for the flight schedule example, looks something
like:

If f is a flight and cl, c2 are cities, then in the absence of information to
the contrary, assume -~ CONNECT(f, cl, c2).

Here, by "absence of information to the contrary" we mean that CON-
NECT(f, cl, c2) is not derivable using the database as premises. As 
shall see below, there are formal difficulties with this version of the CWA;
but on an intuitive level the CWA conforms to the pattern of plausible
reasoning we are considering in this section. When we consider various
proposed formalizations for nonmonotonic reasoning, below, we shall
return to the question of the CWA since it plays a dominant role in many
approaches.

2.3 Diagnosis from First Principles

There are two basic approaches in the AI literature to diagnostic reasoning.
Under the first approach, which might be called the experiential

approach, heuristic information plays a dominant role. The corresponding
systems attempt to codify the rules of thumb, statistical intuitions, and
past experience of human diagnosticians considered experts in some par-
ticular task domain. In particular, the structure or design of the object
being diagnosed is only weakly represented, if at all. Successful diagnoses
stem primarily from the codified experience of the human expert being
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NONMONOTONIC REASONING 151

modeled rather than from detailed information about the object being
diagnosed. This is the basis of so-called rule-based approaches to diagnosis,
of which the MYCIN system (Buchanan & Shortliffe 1984) is a notable
example.

Under the second approach, often called diagnosis from first principles,
or diagnosis from structure and behavior, the only information at hand is
a description of some system, say a physical device or setting of interest,
together with an observation of that system’s behavior. If this observation
conflicts with intended system behavior, then the diagnostic problem is to
determine which components could by malfunctioning account for the
discrepancy between observed and correct system behavior. Since com-
ponents can fail in various and often unpredictable ways, their normal or
default behaviors should be described. These descriptions fit the pattern
of plausible reasoning we have been considering. For example, an AND-
gate in a digital circuit would have the description:

Normally, an AND-gate’s output is the Boolean and function of its
inputs.

In a medical diagnostic setting, we might want the description:

Normally, an adult human’s heart rate is between 70 and 90 beats per
minute.

In diagnosis, such component descriptions are used in the following
way: We first assume that all of the system components are behaving
normally. Suppose, however, the system behaviorpredictedby this assump-
tion conflicts with (i.e. is inconsistent with) the observed system behavior.
Thus some of the components we assume to be behaving normally must
really be malfunctioning. By retracting enough of the original assumptions
about correctly behaving components, we can remove the inconsistency
between the predicted and observed behavior. The retracted components
yield a diagnosis. This approach to diagnosis from first principles forms
the basis for several diagnostic reasoning systems (de Kleer & Williams
1986; Genesereth 1985; Reiter 1987). Poole (1986) took a somewhat differ-
ent but closely related approach.

2.4 Prototypes, Natural Kinds, and Frames

Nonmonotonic reasoning is intimately connected to the notion of proto-
types in psychology (Rosch 1978) and natural kinds in philosophy (Putnam
1970). To see the connection, observe that both these notions concern
concepts that cannot be defined via necessary and sufficient conditions.
We cannot, for example, define the natural kind "bird" by writing some-
thing like

(¥x) BIRD(x) -- BIPED(x) & FEATHERED(x) 
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because we can always imagine a bird that lacks one or more of the defining
properties, say a one-legged bird. The best we seem capable of doing is to
describe one or more "typical" members of the concept, and to define the
concept as the set of individuals that do not deviate too far from the typical
member(s). This notion of a "typical" member of such a concept provides
the link with nonmonotonic reasoning. The rest of this section elaborates
on this link.

The concepts that concern us are those lacking necessary and sufficient
defining conditions. Recall that N is said to be a necessary condition for a
predicate P if the following formula holds:

(Vx)P(x) ~ N(x).

S is said to be a sufficient condition for P if the following holds:

(Vx)S(x) P(x).
Finally, P possesses a classical definition if there are formulas D1 ..... D,
that are both necessary and sufficient for P--i.e. if the following holds:

(Vx)P(x) =- D,(x) & " " ).

As we have seen, commonsense concepts like "bird," "chair," "game,"
etc are not like mathematical concepts; they lack classical definitions based
on necessary and sufficient conditions. Nevertheless, by appealing to con-
ventional logic together with our pattern of plausible reasoning, we can
define notions that correspond to normal necessary and sufficient
conditions. For example, we have the following "necessary conditions"
for the concept "bird":

If BIRD(x) then VERTEBRATE(x).
If BIRD(x) then normally FLY(x).
If BIRD(x) then assume by default BIPED(x).
If BIRD(x) then typically FEATHERED(x).
If BIRD(x) then typically HAS-AS-PART(x,beak(x)).
etc. 1.

It is natural to define a prototypical bird as one that enjoys all of the
consequences, including the default assumptions, of the above "necessary
conditions": It is a beaked, bipedal, feathered vertebrate that flies, etc.

The bird concept also possesses "sufficient conditions," some of which
are logical implications while others fit our pattern for default reasoning:

If SPARROW(x) then BIRD(x).
If FLY(x) & CHIRP(x) then assume by default that BIRD(x).
If FLY(x) & FEATHERED(x) then assume by default that BIRD(x).
etc. 2.
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NONMONOTONIC REASONING 153

It is natural, then, to take the concept of a bird to be defined by the
above "necessary and sufficient conditions."

Now the obvious problem for AI knowledge representation is this: How
do we characterize, represent, and compute with prototypes, or concepts
like natural kinds, where default assumptions play such a prominent role?
In his very influential "frames paper," Minsky (1975) proposed the notion
of a frame, a complex data structure meant to represent certain stereotyped
information. While Minsky’s description of a frame is informal and often
impressionistic, central to his notion are the issues we have just considered:
prototypes, default assumptions, and the unsuitability of classical defi-
nitions for commonsense concepts like natural kinds. A few quotations
from (Minsky 1975, p. 212) serve to illustrate this point.

Here is the essence of the theory: When one encounters a new situation (or makes 
substantial change in one’s view of the present problem) one selects from memory 
substantial structure called a frame. This is a remembered framework to be adapted to
fit reality by changing details as necessary ....

A frame is a data-structure for representing a stereotyped situation, like being in a
certain kind of living room, or going to a child’s birthday party ....

We can think of a frame as a network of nodes and relations. The "top levels" of a
frame are fixed, and represent things that are always true about the supposed situation.
The lower levels have many terminals--"slots" that must be filled by specific instances
or data ....

Much of the phenomenological power of the theory hinges on the inclusion of expec-
tations and other kinds of presumptions. A frame’s terminals are normally already filled
with "default" assignments. Thus, a frame may contain a great many details whose
supposition is not specifically warranted by the situation.

Frames, therefore, are representations of stereotyped information. As
Hayes (1979) points out, formally a frame has a logical status consisting
of a collection of "necessary and sufficient" conditions on the concept
defined by the frame. (Here, the quotation marks remind us that these
conditions may be default assumptions.) Thus, a frame for the concept of
a bird might contain bundle 1 above, of"necessary conditions" and bundle
2, of "sufficient conditions." What Minsky called the "top levels" of a
frame, which represent things always true of the frame, are logical impli-
cations like the first formula of the bundle 1 or 2. The lower-level terminals
or slots are predicates representing the default assumptions normally made
of an instance of the frame. Thus FLY(.) and HAS-AS-PART(., .) 
slots of our BIRD(.) frame. The arguments of these slot predicates are the
"fillers" in Minsky’s description, so that if Tweety is an instance of the
bird frame, i.e. BIRD(Tweety) holds, then the frame instance’s terminals
FLY(.), HAS-AS-PART(., .), etc will be filled by Tweety, so that 
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default assignments FLY(Tweety), and HAS-AS-PART(Tweety,beak
(Tweety)) will be assumed.

We can now see that the "necessary and sufficient" conditions defining
a frame play different roles.

"Necessary conditions" are used for frame instantiation. Given an
instance, say BIRD(Tweety), of the BIRD(.) frame, we can infer some 
Tweety’s other properties, many of them default values. These are the
expectations or presumptions referred to by Minsky, the "details whose
supposition is not specifically warranted by the situation." Because some
of these default assumptions may be specifically contradicted in certain
cases, e.g. in the case of a bird that doesn’t fly, not all the frame’s terminals
will be assumed. This corresponds to Minsky’s assertion that "the default
assumptions are attached loosely to their terminals, so that they can be
easily displaced by new items that better fit the current situation."

"Sufficient conditions" are used for frame selection or recognition. Here
recognition means determination of what kind of thing one might have in
hand based upon knowledge of some of its properties. Of what frame
might this thing be an instance? For example, the BIRD frame has as one
of its sufficient conditions:

If CHIRP(x) and FLY(x) then assume by default BIRD(x).

If we have in hand something that we know chirps and flies, then we might
select and instantiate the bird frame. This frame-selection or concept-
recognition process is determined by some of the concept’s sufficient con-
ditions. These are normally taken to be criterial; chirping and flying are
taken here to be criterial properties for BIRDness. The understanding that
such properties do not guarantee the concept--it might be a flying cricket
for example--is reflected in the default character of the sufficient con-
dition.

3. THE NEED FOR A FORMAL THEORY

Having isolated a common pattern of reasoning, namely "Typically A
holds," or "Assume A by default," we are still left with the problem of
defining what this means. In addition, we shall need a theory of so-called
truth maintenance. While an exploration of truth-maintenance systems is
beyond the scope of this paper, it is important to note their intimate
connection with the kinds of plausible reasoning considered thus far.
Because our reasoning pattern sanctions default assumptions, some of
these assumptions may have to be retracted in the light of new information.
But these retracted assumptions might themselves have supported other
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conclusions, which therefore also ought to be retracted, and so on. It is
the job of truth-maintenance systems, in the style of Doyle’s (1979), 
manage this retraction process. One reason that truth-maintenance systems
are as complex as they are is that default conclusions are normally based
on two things: (a) the presence, either explicit or inferred, of certain
information (e.g. the presence of the fact that Tweety is a bird), and (b)
the absence of certain information, either explicit or inferred (e.g. the
absence of -~ FLY(Tweety)). A truth-maintenance system must maintain
a dependency record with each inferred fact indicating its justification in
terms of both the presence and absence of information. This will obviously
complicate both the system’s bookkeeping and its process of belief revision
whenever the knowledge base is modified.

One reason a formal account is required for default-reasoning is that
the inferences they sanction can be complicated (Reiter& Criscuolo 1983).
For example, two default assumptions can conflict, as the following exam-
ple shows:

The typical Quaker is a pacifist.
The typical Republican is not a pacifist.

Suppose Dick is both a Quaker and a Republican. Then he inherits con-
tradictory default assumptions, so that intuitively neither should be
ascribed to him.

A second example illustrates that typicality is not necessarily transitive,
in the sense tht "Typical As are Cs" need not follow from both "Typical
As are Bs" and "Typical Bs are Cs." For if typicality were transitive, then
from

"Typical high-school dropouts are adults"

and

"Typical adults are employed"

we could conclude the intuitively incorrect

"Typical high-school dropouts are employed."

As a final example of the complexities of reasoning about typicality,
consider inheritance hierarchies, which form the backbone of almost all
semantic networks and knowledge-representation languages. The classes
in any such hierarchy are organized into a taxonomy via ISA links. These
classes normally also have attributes. Now, suppose one wants to find out
whether an individual in class C has attribute A. To do this, simply search
from the node C up the hierarchy via ISA links to find if there is a higher
node with attribute A. If so, then the individual inherits this attribute.
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Unfortunately, this simple graphical processing fails when exceptions to
attributes are allowed in the hierarchy. In a nice example of this, provided
by Fahlman et al (1981), we have an exception to an exception to 
exception:

A mollusc typically is a shell-bearer.
A cephalopod ISA mollusc except it typically is not a shell-bearer.
A nautilus ISA cephalopod except it typically is a shell-bearer.
A naked nautilus ISA nautilus except it typically is not a shell-bearer.

Here, the class mollusc has a default attribute shell-bearer. The class cepha-
lopod has a default attribute non-shell-bearer, and so on. Now, suppose
all we know of Fred is that he is a nautilus. Fred gets the default attribute
shell-bearer by virtue of being a nautilus. But Fred is also a cephalopod
via an ISA link, so at the same time he gets to be a non-shell-bearer by
default. To deal with this kind of problem, most implementations adopt
a shortest-path heuristic. A concept inherits the attribute nearest it in the
hierarchy. Unfortunately, this can be shown to fail (Reiter & Criscuolo
1983), so other criteria are necessary. Any formal theory of default reason-
ing must allow us to sort out inheritance problems like this.

4. CLASSICAL LOGIC IS INADEQUATE

There are two arguments against classical logic for formalizing the reason-
ing patterns we have been considering. The first simply notes that even if
we could enumerate all exceptions to flight with an axiom of the form

(Vx) BIRD(x) & -nEMU(x) & -nDEAD(x) &... 

we still could not derive FLY(Tweety) from BIRD(Tweety) alone. This 
so since ~we are not given that Tweety is not an emu, or dead, etc. The
antecedent of the implication cannot be derived, in which case there is no
way of deriving the consequent of the implication.

The second argument against classical logic is the so-called monotonicity
argument. Classical logics share a common property of being monotonic.
This means that whenever T is a set of sentences in such a logic and w is
a sentence, then T~ w implies TU N~ w for any set N of sentences. In
other words, new information N preserves old conclusions w.

Now suppose default reasoning could be represented in some classical
logic, and T are axioms entailing that Tweety flies--i.e. T ~ FLY(Tweety).
If later we learn that Tweety is an ostrich, we want the enlarged axiom set
not to entail that Tweety flies, i.e. we want

TU {OSTRICH(Tweety)} g FLY(Tweety).
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But this is impossible in a classical logic. So whatever the logical mechanism
that formalizes default reasoning, it must be nonmonotonic; its conclusions
must be retractable or defeasible.

5. PROCEDURAL NONMONOTONICITY IN AI

AI researchers have routinely been implementing nonmonotonic reasoning
systems for some time, usually without consciously focussing on the under-
lying reasoning patterns on which their programs rely. Typically these
patterns are implemented using the so-called negation-as-failure mechan-
ism, which occurs as an explicit operator in AI programming languages
like PROLOG, or in rule-based systems. In PROLOG, for example, the
goal not G succeeds iff G finitely fails. Since failing on G amounts to failing
to find a proof of G using the PROLOG program as axioms, the not
operator implements finite nonprovability. From this observation we can
see that PROLOG’s negation is a nonmonotonic operator. If G is non-
provable from some axioms, it needn’t remain nonprovable from an
enlarged axiom set.

Procedural negation is almost always identified with real--i.e, logical--
negation. The way procedural negation is actually used in AI programs
amounts to invoking the rule of inference "From failure of G, infer ~ G."
This is really the closed world assumption, which we encountered earlier
in the context of representing negative information in databases. Partly
because it is a nonmonotonic operator, procedural negation can often be
used to implement other forms of default reasoning. The following
example, a PROLOG program for reasoning about flying birds, illustrates
this.

fly (X) ~- bird (X) & not ab 
bird (X) ~- emu (X).
bird (X) ~- canary (X).
ab (X) ~- emu (X).
emu (fred).

canary ( tweety).

Goal: not fly (fred) succeeds.
Goal: fly ( tweety) succeeds.

Notice that the first rule uses a predicate ab, standing for abnormal. So
this rule says that X flies if X is not an abnormal bird, in other words if X
is a normal bird. The fourth rule describes a circumstance under which
something is abnormal, namely when it is an emu. This device of the ab
predicate for representing defaults is due to McCarthy, who introduced
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it in conjunction with his circumscription formalism for nonmonotonic
reasoning. We shall see it again in Section 6.3.1, where circumscription is
described. Continuing with the current example, we see that by identifying
procedural negation with real negation we can derive that the emu fred
doesn’t fly, while the bird tweety does.

For a nontrivial, formally precise application of procedural negation
for reasoning about time and events see Kowalski & Sergot (1986).

6. SOME FORMALIZATIONS OF
NONMONOTONIC REASONING

The need for nonmonotonic reasoning in AI had been recognized long
before formal theories were proposed. In support of his argument against
logic in AI, Minsky invoked the nonmonotonic nature of commonsense
reasoning in one version of his 1975 "frames" paper (reprinted in Haugland
1981). Partial formalizations for such reasoning were proposed by McCar-
thy & Hayes (1969), Sandewall (1972), and Hayes (1973). Several 
ledge-representation languages, most notably KRL (Bobrow & Winograd
1977), specifically provided for default reasoning. Hayes (1979) emphas-
ized the central role of defaults in Minsky’s notion of a frame and in KRL
in particular. Reiter (1978a) described various settings in AI where default
reasoning is prominent.

The rest of this section is devoted to a critical examination of several
formalizations of nonmonotonic inferences.

6.1 The Closed Worm Assumption
As we remarked earlier, the closed world assumption (CWA) arises most
prominently in the theory of databases, where it is assumed that all of the
relevant positive information has been specified. Any positive fact not so
specified is assumed false. In the case of deductive databases it is natural
to understand that a positive fact has been specified if it is entailed by the
database, and that any fact not so entailed is taken to be false. This is the
intuition behind Reiter’s (1978b) formalization of the CWA. Let DB be 
first-order database (i.e. any first-order theory). Reiter defines the closure
of DB by

CLOSURE(DB) = DB U {-~P(t)IDB ~P(t) where P is an n-ary 
cate symbol of DB and t is an n-tuple of ground
terms formed using the function symbols of DB}.2

2In this paper (Reiter 1978b) the database is taken to be function-free, so that t is an 
tuple of constant symbols; but this restriction is unnecessary in general.
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In other words, the implicit negative information of a database sanctioned
by the CWA are those negative ground literals whose (positive) ground
atoms are not entailed by the database. Under the CWA, queries are
evaluated with respect to CLOSURE(DB), rather than DB itself.

There are several problems with this view of the CWA. The most obvious
is that the database closure might be inconsistent, as would be the case for
DB = {P v Q}. [In the case &Horn databases, Reiter (1978b) shows that
closure preserves the consistency of DB.] Even for nondeductive relational
databases consisting only of ground atoms, Reiter’s notion yields incorrect
results in the presence of so-called null values. A null value is a constant
symbol meant to denote an existing individual whose identity is unknown.
For example, if SUPPLIES(s, p) denotes that supplier s supplies part 
then the following is a simple database DB, where co is meant to denote a
null value:

SUPPLIES(Acme, p~) SUPPLIES(Sears, p2) SUPPLIES(CO, 

So we know that some supplier, possibly the same as Acme or Sears,
possibly not, supplies p~. Since DB q SUPPLIES(co, P2), Reiter’s CWA
sanctions -~ SUPPLIES(w, p2) which, coupled with SUPPLIES(Sears, 
entails co ¢ Sears. But this violates the intended interpretation of the null
value co as a totally unknown supplier; we have inferred somethin9 about
o9, namely that it is not Sears.

A different formalization of the CWA was proposed by Clark (1978) 
connection with his attempt to provide a formal semantics for negation in
PROLOG. Clark begins with the observation that PROLOG clauses,
being of the form ~ = P(t), provide sufficient but not necessary conditions

on, the predicate P. Such clauses are said to be about P. Clark’s intuition
is that the CWA is the assumption that these sufficient conditions are also
necessary. In other words, the implicit information in a PROLOG database
sanctioned by the CWA consists of the necessary conditions on all of the
predicates of the database. Clark provides a simple effective procedure for
transforming a set of clauses defining sufficient conditions on a predicate
P into a single formula representing its necessary conditions. We illustrate
this procedure with the following example:

P(a, b) 3.

P(a, c) 4.

(Vu, v, w) -~ Q(u, v) & R(v, w) & P(u, w) ~ P(y(u), 

(Vu) Q(u, f (u)) 6.
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Clauses 3-5 are the only ones in the database about P. These are logically
equivalent, respectively, to

(’v’x, y)x = a & y = b ~ P(x, 

(Vx, y)x = a & y = c ~ P(x, 

(Vx, y)((3u, v, w)x =- g(u) & y = w & ~ Q(u, v) & 

& P(u, w)) = P(x, 

and these three clauses are in turn logically equivalent to

(Vx, y)[(x = a & y = b) v (x = a & y = c) (( qu, v,w)x= g(u)

y = w & -~ Q(u, v) & R(v, w) & P(u, w))] P(x, y) . 7.

This is a single formula representing all the sufficient conditions on P given
by the original database. Similarly, clause 6 is logically equivalent to

(¥x, y)((~u)x = u & y = f (u)) = Q(x, 8.

and this represents Q’s sufficient conditions. Finally, we must determine
R’s sufficient conditions. No clause of the database is about R, so we take
R’s sufficient conditions to be

(¥x, y) false R(x, y) 9.

Formulas 7, 8 and 9 are logically equivalent to the original database
and represent that database’s sufficient conditions on, respectively, the
predicates P, Q, and R. To determine the implicit information about the
predicates P, Q, and R sanctioned by Clark’s CWA, assume that these
sufficient conditions are also necessary--i.e, simply reverse the impli-
cations of formulas 7, 8, and 9. The resulting completed database represents
the closure of the original database according to Clark. For the example
at hand, the completed database is:

~qx, y)P(x,y) [(x = a&y = b)v (x = a&y= c) v(( 3u,v,w)x = 

& y = w & ~ Q(u, v) & R(v, w) & P(u, w))]

(Vx, y)Q(x, y) =- (~u)x = u =f(u

(Vx, y)R(x, -- fal se.

On Clark’s view of the CWA, queries are evaluated with respect to the
completed database, rather than the original database.

As intuitively appealing as Clark’s notion is, it suffers from a number
of problems. To begin, it lacks generality. It is defined only for PROLOG-
like databases and hence is restricted to universally quantified formulas.

Annual Reviews
www.annualreviews.org/aronline
Annual Reviews
www.annualreviews.org/aronline

http://www.annualreviews.org/aronline/


NONMONOTONIC REASONING 161

Moreover, each clause must be about some predicate, so for example -a P,
which cannot be construed as being about P, cannot be accommodated.
The approach is also sensitive to the syntactic form of the database clauses.
Thus -a P ~ Q is about Q, while its logically equivalent form --~ Q ~ P is
about P. In particular, as Shepherdson (1984) observes, the completed
database corresponding to -~ P ~ P is P -- -a P, which is inconsistent.

6.2 Consistency-Based Approaches

Some of the early attempts at formalizing nonmonotonic reasoning ground
this notion in logical consistency. They interpret the pattern "In the
absence of information to the contrary, assume A" as something like "If
A can be consistently assumed, then assume it."

6.2.1 NONMONOTONIC LOGIC McDermott & Doyle’s nonmonotonic logic
(1980) appeals to a modal operator M in conjunction with the language
of first-order logic. MA is intended to mean "A is consistent," so the flying
birds example translates in their logic to

(Vx) BIRD(x) & M FLY(x) = FLY(x).

The technical problem is to make precise this notion of consistency, since
we want consistency with respect to the entire knowledge base. But this
means that a formula involving the M operator is in part referring to itself
since as a formula it is part of the very knowledge base with respect to
which it is claiming consistency. McDermott & Doyle capture this self-
referential property by a fixed-point construction, and they define the
theorems of a nonmonotonic knowledge base to be the intersection of all
its fixed points. Specifically, if A is a nonmonotonic theory, then T is a
fixedpoint of A if

T = Th(A U {Mw [ ~ w ¢ T}).3

The intuition behind this definition is to capture the notion that if --n w is
not derivable, then Mw (whose intended meaning is "w is consistent") is.

As a simple example, consider the nonmonotonic theory A -- {E &
MC ~ ~ D, F & MD ~ ~ C, E, E ~ F}. The first formula says that if E
is the case and if C is consistent then conclude ~ D, so we do conclude
-a D. Now -a D prevents D being consistent in the second formula, so this
blocks concluding -a C using the second formula. Thus one fixed point is
obtained by adding -a D to A. Similarly, adding -~ C to A gives a second
fixed point. Thus, A has two fixed points:

Th(A U {-an})

Here Th denotes closure under first-order logical consequence.

Annual Reviews
www.annualreviews.org/aronline
Annual Reviews
www.annualreviews.org/aronline

http://www.annualreviews.org/aronline/


162 REI~R

rh(a u c)).
The theorems of A are therefore the intersection of these two fixed points.

This formalism turns out to have several problems. Because of the
consistency requirement, neither the fixed points nor the theorems are
recursively enumerable. A proof theory is known only for the propositional
case. There are also serious difficulties with the semantics; the M operator
fails to adequately capture the intuitive concept of consistency. For exam-
ple, the nonmonotonic theory {MC, ~ C} is consistent.

In response to this latter difficulty, McDermott (1982a) attempted 
develop several stronger versions of the logic based on the entailment
relation of various standard modal logics (T, $4, and $5) instead of, as 
the 1980 version, first-order logic. Unfortunately, these attempts turned
out either to be too weak to adequately characterize the M operator (in
the case of T and $4), or to "collapse" the logic to (monotonic) $5 when
S5’s entailment relation was used.

6.2.2 DEFAULa" LOGIC The other most prominent consistency-based
approach to nonmonotonic reasoning is Reiter’s (1980) default logic. 
differs from the nonmonotonic logic of McDermott & Doyle in that default
statements are formally treated as rules of inference, not as formulas in a
theory. The flying birds default is represented by the rule of inference
(actually a rule schema because of the variable x)

BIRD(x) : FLY(x)

FLY(x)

This may be read as

"If x is a bird and it can be consistently assumed to fly, then you can
infer that x flies."

More generally, rule schemas of the following form are permitted:

This can be read as

"If ~(x) holds and/~(x) can be consistently assumed, then you can infer

The approach is to begin with a set of first-order sentences. These
are things known to be true of the world. This knowledge is normally
incomplete; we are not omniscient, so there are gaps in our world knowl-
edge. Default rules act as mappings from this incomplete theory to a more
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complete extension of the theory. They partly fill in the gaps with plausible
conclusions. So if such an incomplete first-order theory contains BIRD
(Tweety), and if FLY(Tweety) is consistent with the theory, then by 
above default schema for flying birds we can extend this theory by adding
FLY(Tweety) to it.

As in McDermott & Doyle’s approach, the extensions are defined by a
fixed-point construction. For simplicity, we consider only closed default
rules, namely rules of the form ~ : fl/~ for first-order sentences ~, fl, and ~.
A default theory is a pair (D, W) where D is a set of closed default rules
and W a set of first-order sentences. For any set of first-order sentences S,
define F(S) to be the smallest set satisfying the following three properties:

1. W c F(S).
2. F(S) is closed under first-order logical consequence.
3. If~ :/3/V is a default rule olD and ~e F(S) and ~/56S, then V e F(S).

Then E is defined to be an extension of the default theory (D, I40 iff
F(E) = E, i.e. iff E is a fixed point of the operator 

The following example corresponds closely to that used to illustrate
McDermott & Doyle’s logic.

E:C F:D
Defaults: --

-~D -~C"

Here E and E ~ F are the two things we know about a world W. The
first default can be invoked since C is consistent with W, so we infer -q D.
~ D prevents the second default from applying, so no further inferences
are possible. This yields an extension Th( W U {-~ D}). A second (and only
other) extension Th(WO {-~ C}) is obtained similarly.

As we have just seen, multiple extensions are possible. The perspective
adopted on these (Reiter 1980) is that any such extension is a possible
belief set for an agent, although one could, as do McDermott & Doyle,
insist that an agent’s beliefs are defined by the intersection of all extensions.

One advantage of default logic is that there is a "proof theory" in the
case that all default rules are normal, namely, of the form

.(x) :/~(x)
/~(x)

for arbitrary first-order formulas ~z and ]~ with free variables x. This turns
out to be an extremely common default pattern; all of the examples of
Section 2 conform to it. The sense in which normal defaults have a "proof
theory" is the following: Given a set of first-order sentences W, a set of
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normal defaults D, and a first-order sentence fl, then fl is in some extension
of Wwrt the defaults D iffthe "proof theory" sanctions this. The quotation
marks indicate that in general the consistency condition prevents the
default rules from being effectively computable. So one problem with
default logic is that its extensions are not recursively enumerable. Another
is that as yet there is no consensus on its semantics (see Etherington
1987; Sandewall 1985; Shoham 1986). Moreover, because the defaults are
represented as inference rules rather than object language formulas as in
McDermott & Doyle (1980), defaults cannot be reasoned about within the
logic. For example, from "Normally canaries are yellow" and "Yellow
things are never green" we cannot conclude "Normally canaries are never
green." Notice that whether McDermott & Doyle’s nonmonotonic logic
can support such reasoning is debatable. From

(Vx) CANARY(x) & M YELLOW(x) ~ YELLOW(x)

(Vx) YELLOW(x) ~ -~ GREEN(x)

we can indeed infer

(~’x) CANARY(x) & M YELLOW(x) ~ -~ GREEN(x).

However, it is unclear whether this last formula can legitimately be inter-
preted to mean "Normally canaries are not gree/L"

Despite these shortcomings of default logic, analyses using the logic
have been applied to several settings in AI: Inheritance hierarchies with
exceptions, as described in Section 3 (Etherington & Reiter 1983), pre-
suppositions in natural language (Mercer & Reiter 1982), Diagnostic
reasoning (Poole 1986; Reiter 1987), and the theory of speech acts (Perrault
1987).

Etherington (1986) provides a number of properties of default logic,
together with various results on its relationship to other nonmonotonic
formalisms. Lukaszewicz (1984) proposes a modification of default logic
with several desirable properties.

¯ 6.3 Approaches Based Upon Minimal Models

A promising way of achieving nonmonotonicity is to treat as theorems
those sentences true in all suitably distinguished models of a logical theory.
Provided that enlarging the theory can lead to new distinguished models,
then what was once a theorem may no longer remain so; it may be falsified
by one of the new models. Approaches that adopt this perspective on
nonmonotonicity require that these preferred models respect some mini-
mality property.

6.3.1 CIRCUMSCRIPTION McCarthy 0980, 1986) has proposed basing
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nonmonotonic reasoning on the notion of truth in all minimal models of
a first-order theory: Since his 1986 approach generalizes that of his 1980
paper, we shall focus on his more recent theory. The notion of minimality
to which McCarthy appeals is as follows (Lifschitz 1985b):

Assume L is a first-order language. Suppose P and Z arc tuples of
distinct predicate symbols of L. For any two structures X~ and Z2 for L,
define Xt < ~’;zz2 if

i. domain(Z0 = domain(5",2);
ii. Xl and X;2 interpret all function symbols and predicate symbols other

than those of P and Z identically; and
iii. for each predicate symbol P of P, P’s extension in E1 is a subset (not

necessarily proper) of its extension in E2.

Notice that the relation _<v;z places no restrictions on how El and ~’2

interpret the predicates of Z.
Suppose now that A(P; Z) is a sentence of L that mentions the predicate

symbols of P and Z. A(P; Z) may mention predicate symbols other than
those of P and Z. In McCarthy’s circumscription theory, the distinguished
models of interest are those models of A(P; Z) that are minimal wrt
_<P;z. The sentences true in all such minimal models are taken to be the
nonmonotonic entailments of A(P; Z) of interest.

The above focus on minimal models and their entailments is not the
approach emphasized by McCarthy (1986). McCarthy actually focussed
on a syntactic approach, as follows:

The circumscription of P in A(P; Z) with variable Z is defined to be the
(second-order) sentence

A(P; Z) & [VP’, Z’) ~ [A(P’; Z’) & P’ 10.

Here, for predicates Q and R of the same arity, Q < R is defined to be

(Vx)(Q(x) = R(x)) & -~ (Vx)(R(x) 

If we define Q _< R to be the formula (Vx)Q(x) ~ R(x), then Q 
logically equivalent to the formula Q < R & ~ (R _< Q). When (Q~ ..... 
and (R~,..., R~) are tuples of predicate symbols with correspondingly
equal arities, (Q~ ..... Q,) < (R~ ..... R,) is defined to be the formula

Qt .~ RI & ... & Q,, < R,,& -fIRI _< Q, & "" & Rn <.~ Qn].

4 McCarthy (1986) actually treats second-order theories. For simplicity of exposition, 

shall restrict ourselves to first-order theories. The more general case is elaborated by Lifsehitz
(1985b, 1986a).

5 We adopt here the equivalent formulation of Lifschitz (1985b).
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,The second conjunct in sentence l0 is called the circumscription axiom of
A(P; Z). It says that the extensions in A(P; Z) of the predicates P cannot
be made smaller, even when the Z predicates are allowed to vary; or more
succinctly, P is minimal in A with Z varying. Sentence 10 thus expresses
the original sentence A further constrained by the requirement that P be
minimized with Z variable.

In McCarthy’s formulation, the nonmonotonic consequences of A(P;
Z) of interest are those sentences entailed by 10. Because of what the
circumscription axiom actually says, it is not surprising that the semantic
and syntactic accounts of circumscription coincide. In other words, as
proved independently by Lifschitz (1985b) and Etherington (1986), 
sentences true in all models of A(P; Z) minimal wrt _< P~z are precisely the
sentences entailed by 10.

The circumscription axiom has the character of a second-order induction
axiom in mathematics. In fact, McCarthy (1980) shows that, when sentence
A defines a fragment of number theory, the circumscription axiom reduces
to conventional Peano induction on the natural numbers. In deriving
entailments of sentence 10, the circumscription axiom is used precisely the
way induction axioms are used to prove theorems in mathematics. Since
the predicate variables P’ and Z’ are universally quantified, we can sub-
stitute for them arbitrary formulas (provided they have suitable numbers
of free individual variables). The entailments of any such instantiated
version of sentence 10 will be some of the consequences of 10 itself.

Because of the extreme generality of sentence 10 (for example, which
predicates P, Z of A do we focus on?), McCarthy (1986) proposes 
uniform principle for representing knowledge by sentences A in order to
capture the pattern "Normally, such and such is the case." His approach
appeals to a distinguished unary predicate AB (or often several such
predicates AB~ ..... ABe) standing for "abnormal." In circumscribing the
sentence A, it is these unary predicates that are minimized. The following
example illustrates this use of the AB predicates, together with how the
circumscription axiom is used as an induction axiom for deriving conse-
quences of sentence 10.

(Vx) THING(x) -nABI(x) ~ -nFLY(x) 11.

(Vx) BIRD(x) = THING(x) ABI(X) 12.

(~’x) BIRD(x) AB2(x) ~ FLY(x) 13.

(Vx) EMU(x) ~ BIRD(x) & -n 14.

Formula 11 is intended to express that normal (i.e. not AB1 normal) things
don’t fly. Thus -n A B1 restricts THINGs to being normal wrt not flying.
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Formula 12 states that birds are abnormal things wrt not flying and 13
has the intent of describing birds that are normal wrt being able to fly.
Finally, axiom 14 distinguishes a subclass of nonflying birds.

Denote the conjunction of sentences 11-14 by A(AB1, AB2; FLY] so
that we shall minimize AB1 and AB2 with FLY variable using the cir-
cumscription axiom for A(AB1, AB2; FLY). The point of minimizing AB~
and AB2 is to allow as few abnormal individuals as possible, namely those
forced by the theory A to be abnormal. The circumscription axiom is:

(’qAB’b AB’2, FLY’) ~[A(AB], AB’2; FLY’) & AB’I <_ AB~

& AB’~ <_ AB2 & -~(AB1 <_ AB’I & AB2 <_ AB’~)] 15.

In this axiom, we have three universally quantified predicate variables AB’b
AB’2, and FLY’, so we can choose these to be any fixed predicates we like.
Suppose we cunningly choose

ABe(x) =- BIRD(x)

AB’z(x) = EMU(x)

FLY’(x) -- BIRD(x) & -n EMU(x).

If we make this substitution for the universally quantified predicate vari-
ables of the circumscription axiom 15, then from this instance of 15
together with A(AB~, AB2; FLY) we can derive, in first-order logic alone,
the following:6

(Vx)AB~(x) BIRD(x)

(Vx)AB2(x) EMU(x)

i.e., the only abnormal things wrt flightlessness are birds, and the only
abnormal birds wrt flight are emus. From this it follows easily that

(Vx) THING(x) & -n BIRD(x) = -n 

(Vx) BIRD(x) & -n EMU(x) ~ 

neither of which is entailed by the original (uncircumscribed) theory.
As one can see from the example, it is not obvious in general how to

instantiate the circumscribed theory. Lifschitz (1985b) provides some
results about computing circumscription for various interesting special
cases. Another formal problem is that, because circumscribed theories are
second order, their valid formulas are not in general recursively enumer-
able. Note that this is also the case for nonmonotonic and default logic.

6 The derivation itself is straightforward but tedious so we omit the details.
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In addition, it can happen that a satisfiable theory has an unsatisfiable
circumscription, although this cannot be in the case of theories all of whose
sentences are Universal in their prenex normal form (Etherington et al
1985). Lifschitz (1986a) generalizes this result on when circumscription
preserves satisfiability.

Of all the formalisms proposed for nonmonotonic reasoning, cir-
cumscription appears to be the richest. It is certainly the most amenable
to mathematical analysis. As a result, its formal properties have been
extensively studied. Some completeness results are known (Perlis & Minker
1986). Its relationship to Reiter’s notion of the closed world assumption
of Section 6.1 has been analyzed by Lifschitz (1985a) and Gelfond et 
(1986). Reiter (1982) shows that for a certain class of first-order theories,
Clark’s notion of theory completion (Section 6.1) is a consequence 
circumscribing the theory. Lifschitz (1985b) provides the same result for
a different class of first-order theories. A modification of McCarthy’s
circumscription, called pointwise circumscription (Lifschitz 1986b),
together with priority orderings on the predicates to be minimized
(McCarthy 1986), has been used to provide a semantics for negation
for a large class of PROLOG programs (Lifschitz 1986c). All of this
suggests that circumscription is a rich formalism whose full potential is
far from being realized.

Independently of McCarthy, Bossu & Siegel (1985) have provided 
semantic account of nonmonotomic reasoning for a special class of mini-
mal models of a first-order theory. In the notation introduced above, their
notion of minimality turns out to be based on the ordering _< P; t~, where
P is the set of all predicate symbols mentioned by the theory. In other
words, they minimize all predicates, with no variable predicates. Their
analysis is strictly semantic, which is to say they provide nothing cor-
responding to McCarthy’s circumscription axiom. Most significantly,
Bossu & Siegel provide a decision procedure for first-order theories and
queries of a certain kind. More specifically, suppose

1. the only function symbols are constants (the normal state of affairs
in database theory),

2. the prenex form of each formula ofthe theory is universally quantified
and satisfies a further natural syntactic constraint (which turns out
to be a reasonable assumption for a database), and

3. the prenex form of the query is universally quantified (a reasonable
assumption for some but far from all database queries) and satisfies
a further simple syntactic constraint.

Under these conditions it is decidable whether the query is true in all
minimal models of the theory (and hence is circumscriptively entailed by
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the theory). The decision procedure is based upon a particular resolution
theorem-proving strategy.

Minker (1982) provides a closely related minimal model analysis of the
closed world assumption for database theory.

6.3.2 MINIMALITY AND THE FRAME PROBLEM The frame problem
(McCarthy & Hayes 1969) concerns the representation of those aspects of 
dynamically changing world that remain invariant under state changes.For
example, walking to your front door or starting your automobile will not
change the colors of any objects in the world. In a first-order representation
of such worlds, it is necessary to explicitly represent all of these invariants
under all state changes by so-called frame axioms. Thus, to represent the
fact that turning on a light switch does not alter the colors of objects
requires, in the situational calculus of McCarthy & Hayes (1969), a frame
axiom of the form

(Vx, c, s, l) COLOR(x, c, s) ~ COLOR(x, c, result(turn-on, 

where s is a state variable, x an object, c a color, and l a light switch.
The problem is that in general a vast number of such axioms will be

required; object colors also remain invariant when lights are switched off,
when someone speaks, etc, so there is a major difficulty even articulating
a complete set of frame axioms for a given world, not to mention the
computational problems associated with deduction in the presence of so
many axioms.

A solution to the frame problem is a representation of the world that
provides correct conclusions to be drawn about the dynamics of that world
without explicitly representing, or reasoning with, the frame axioms. One
of the principal motivations for the study of nonmonotonic reasoning was
the belief that it would provide a solution to the frame problem (McCarthy
1977; Reiter 1978a); we required some way of saying that in the absence
of information to the contrary, a state-changing event preserves the truth
of an assertion.

Hanks & McDermott (1986) have investigated various nonmonotonic
proposals for solving the frame problem and conclude that the apparently
natural approaches fail. Specifically, they consider the simple setting where,
in initial state so, a person is alive, then a gun is loaded, some time passes,
and then the gun is fired at the person. They ask whether the person’s
resulting death can be deduced nonmonotonically, i.e. without explicit use
of frame axioms. The axiomatization used appeals to McCarthy’s AB
predicate. It also appeals to a binary predicate T (for true) where T(f, 
denotes that fact f is true in world state s. Syntactically, facts are first-
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order sentences and so are treated as terms. Their axioms for the shooting
scenario are simple and seemingly natural:

T(alive, So)

(¥s) T(loaded, result (load, 

(¥s) T(loaded, s) = AB(alive, shoot, s) & T(dead, result(shoot, 

(% e, s) T(f, s) & -nAB(f, e, s) = T(f, result(e, 

Here AB(f, e, s) means that fact f is abnormal when event e occurs in
world state s. The last axiom, intended to circumvent the need for frame
axioms, says that normally a fact f, true in state s, will remain true in the
state that results from event e occurring in state s.

Hanks & McDermott consider circumscribing the above axioms, mini-
mizing AB with Tvarying and ask us to consider the following situations:

So, s~ = result(load, so), s2 = result(wait, s~), s3 = result(shoot, 

Intuitively, we want T(dead, s3) to be circumscriptively derivable. Some-
what surprisingly, it is not. The reason is that the circumscribed theory
has two models minimal in AB, In one, AB(alive, shoot, s2) is the only true
AB atom, and it is easy to see that T(dead, s3) is true in this model, 
required. But there is another model minimal in AB, namely that in
which AB(loaded, wait, s~) is the only true AB atom, and in this model,
corresponding to the gun mysteriously being unloaded during the wait
event, T(alive, s3) is true. It follows that T(dead, s3) is not circumscriptively
derivable from the above theory. Hanks & McDermott also show that
default logic leads to an analogous result, in the sense that the above
axioms, together with the default rule schema

:-n AB(f, e, s)
~ A~(U, e, s)

has two extensions, one containing T(dead, s3), the other containing
T(alive, s3).

One might argue that this failure to solve the frame problem stems from
an inappropriate set of axioms. Indeed, Lifschitz (1986d) has proposed 
axiomatization that circumscriptively does yield the correct conclusions.
Others, e.g. Kowalski & Sergot (1986), have argued that time plays 
distinguished role in the frame problem, and that any nonmonotonic
approach must respect this special status of time. It is towards this per-
spective that we now turn.

By explicitly providing for time, we obtain a finer-grained representation
of dynamically changing worlds than with the situational calculus. We
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can, for example, represent overlapping events, event durations, etc (Allen
1984; Kowalski & Sergot 1986; McDermott 1982b). In such temporal
representations the frame problem becomes the persistence problem--
determining that a fact known to be true at time t remains true over a
future time interval provided no event is known to occur during that time
interval to change the fact’s truth value. In the case of the shooting
scenario, assuming discrete time, we have that at t -- 0 the person is alive
and the gun is loaded and at t = 2 the gun is fired.7 The problem is to infer
that at t--2 the person is still alive and the gun still loaded, i.e. that
the truth of the facts "alive" and "loaded" persists from t -- 0 to t = 2.
Intuitively, since we were not informed of an unloading event occurring
at t = 1, we want to infer that at t = 2 the gun is still loaded. This, of
course, must be a defeasible inference since it could have been the case that
the gun was unloaded at t = 1.s

Kautz (1986) proposes a minimal model solution to the persistence
problem, and shows that there is a second-order circumscription-like
axiom corresponding to this semantics. Shoham (1986) adopts an $5 modal
logic for representing an agent’s knowledge, and proposes a minimal
knowledge semantics for the persistence problem. Kowalski & Sergot
(1986) propose a PROLOG-based temporal calculus of events that
addresses the nonmonotonic character of the persistence problem using
PROLOG’s negation-as-failure mechanism. This is currently perhaps the
most sophisticated approach to the persistence problem and the rep-
resentation of events. It suffers primarily from its reliance on negation-as-
failure, whose semantics is far from clear, so that it is somewhat closer to
an implementation than a specification.

Shoham (1986) speculates on foundations for nonmonotonic reasoning
for general settings, not just the temporal domain. He argues two per-
spectives.

1. There should be a shift in emphasis away from syntactic char-
acterizations [as in default and nonmonotonic logic, or autoepistemic
logic (Section 6.4. I, below)] in favor of semantic ones. This means
that, having first fixed upon a logical language (not necessarily first
order) one next provides a semantics for this language appropriate
to the intended entailment relation for the application in mind.9

2. This entailment relation will be defined in terms of truth in all those
models of a given axiomatization minimal with respect to some

7 Recall that in the scenario we wait some time before firing the gun.
8 Recall that in Hanks & McDermott’s situational calculus version, the undesired model

was one in which the gun was mysteriously unloaded during the wait event.
~ Such an approach to knowledge representation was earlier provided by Levesque (1984).
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application dependent criterion. The ability to characterize such mini-
mality criteria axiomatically (as is the ease for example with a cir-
cumscription axiom in McCarthy’s theory), while perhaps desirable,
is not essential. In effect, on Shoham’s view, an axiomatizafion of an
application domain coupled with a characterization of its preferred
minimal models is a sufficient specification of the required entail-
ments.

In support of his conclusion that nonmonotonicity necessarily involves
minimality of one kind or another, Shoham offers his own theory of
temporal minimization, as well as McCarthy’s minimal semantics of cir-
cumscription. In addition, he proposes a minimal model semantics for a
modification of Reiter’s default logic.

Shoham’s thesis--that nonmonotonic reasoning can be identified with
truth in minimal models of one kind or another--is attractive. It provides
a unifying perspective. Moreover, it suggests a methodology with which
one can approach novel applications by considering which notion of mini-
mality is to be preferred. The considerable successes of different forms of
circumscription is strong evidence in its favor. Nevertheless, the fact that
so few applications have been thoroughly explored, coupled with the
unexpected difficulty of the frame problem, should caution us against
overly hasty generalizations when it comes to nonmonotonic reasoning.

6.4 Epistemic Approaches

A number of approaches to nonmonotonic reasoning appeal to logics of
belief or knowledge. The intuitive idea behind these is that a possible
paraphrase of our favorite "Typically, birds fly" is something like "If x is
a bird and if you don’t believe (know) that x cannot fly, then x can fly."
Since the standard epistemic logics ($4, $5 etc) are all monotonic, direct
appeals to these cannot work. However, nonmonotonicity can be achieved
by a logic that sanctions -~ B~1° whenever ~ is absent from an agent’s belief
set, a property possessed by none of the standard epistemic logics. Under
these circumstances, if an agent’s belief set contains BIRD(Tweety)
together with the default sentence

(Vx) BIRD(x) & ~ B-~ FLY(x) ~ 

but not -~FLY(Tweety), then the belief set will contain -~B-~FLY
(Tweety) whence, by modus ponens, the belief set will contain FLY
(Tweety).

This, then, is the basic intuition behind epistemic approaches to non-

~°We use Bet to denote that an agent believes
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monotonicity. Notice that nonmonotonicity is achieved by virtue of
endowing an agent with the ability to reflect on its own beliefs in order to
infer sentences expressing what it doesn’t believe. The sentences contained
in such a belief set depend on the entire belief set and hence are indexical.

We now consider several proposals for nonmonotonic epistemic logics.

6.4.1 AUTOEPISTEMIC LOGIC In response to the semantic deficiencies of
McDermott & Doyle’s nonmonotonic logic, Moore (1984, 1985) provides
a reconstruction of their logic based upon belief rather than consistency,
which he calls autoepistemic logic. Recall that the former logic appeals to a
modal operator M with consistency as its intended meaning. Autoepistemic
logic invokes a dual operator B~ corresponding (roughly) to -~M-~.
Moore’s is a propositional logic only with the usual formulas formed from
a propositional language augmented with the modal operator B. Given
some set of premises A, a set T of formulas is a stable expansion of A just
in case

T = Th(A U{Bw I w~ T} U{-~Bw I w¢ T}).’2

Notice that this is a fixed-point definition much like that of McDermott
& Doyle. In fact, under the dual correspondence of B with ~ M-~ Moore’s
definition of a stable expansion differs from the fixed points of McDermott
& Doyle (Section 6.2.1) only by the inclusion of {Bwlw ~ T} in his fixed-
point construction. This set provides for an agent’s perfect positive intro-
spection; if w is in its belief set, then it believes w so that Bw is also in its
belief set. The second set in the definition provides for perfect negative
introspection; if w is n6t in an agent’s belief set, the agent does not believe
W.

Levesque (1987) generalizes Moore’s notion of a stable expansion to the
full first-order case (which includes quantification into modal contexts).
He also provides a semantic account of stable expansions in terms of a
second modal operator O, where Ow is read as "w is all that is believed."
Levesque then goes on to characterize stable expansions as follows: Ow is
true exactly when all the formulas that are believed form a stable expansion
of {w}.

As observed by Konolige (1987), stable expansions have some unde-
sirable properties. Konolige notes that there are two stable expansions of
{Bp ~ p}, one containing -q Bp but not p, the other containing both Bp
and p. The first expansion is intuitively appropriate; an agent whose only
initial belief is Bp ~ p has no grounds for entering p into her belief set and

We use B here for belief. In his papers, Moore uses the symbol L.
Here Th denotes closure under the entailment relation of propositional logic.
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should therefore enter ~ Bp. The second expansion, containing both Bp
and p, is intuitively unacceptable. It corresponds to an agent arbitrarily
entering p, hence also Bp, into her belief set.

To eliminate this undesirable property of Moore’s autoepistemic logic,
Konolige proposes the notion of a strongly grounded expansion of a set
of premises A.13 For any set E of formulas of our modal propositional
language, denote by E0 those formulas of Z with no occurrence of the
modal operator B, i.e. Y~0 is the purely propositional part orE. Call a stable
expansion T of A minimal iff there is no stable expansion S of A such that
So is a proper subset of To. Finally, call a set of formulas a strongly
grounded expansion of A iffit is a minimal stable expansion of A. Konolige
(1987) proposes strongly grounded expansions "as candidates for ideal
introspective belief sets, because they limit the assumptions an agent makes
about the world." Notice that the premise set {Bp ~ p}, which was prob-
lematic under Moore’s account, has just one strongly grounded expansion,
namely, the intuitively appropriate expansion containing -~ Bp but not p.

Konolige provides several characterizations of strongly grounded
expansions of A, all appealing to fixed-point constructions. Perhaps the
most interesting characterization is in terms of the modal logic KU45,
which is axiomatic $5, with S5’s axiom schema Bq~ z ~b replaced by the
weaker B(Bdp ~ (a). Denote KU45’s provability relation by kxv4s. Konolige
shows that Tis a strongly grounded expansion ofA iff Tsatisfies the fixed
point equation

T = {w I A U {B~ I ~,~A} U {~B~ l a~ To}l-~,,.sw}.

Suppose (D, W) is a default theory (Section 6.2.2). Define auto-
epistemic transform to be

WU{B~&’~B’~fl~7 ~D}.

Thus, tke transform translates default rules to sentences of autoepistemic
logic. Konolige proves that autoepistemic logic is at least as expressive as
default logic in the following sense:

Let A be the autoepistemie transform of a default theory. Then E is an

13 Konolige (1987) calls these "strongly grounded autoepistemic extensions of A." He also
deals with a first-order modal language, generalizing Moore’s (1984, 1985) propositional
language, but without quantifying into modal contexts. Here I continue to use a propositional
modal language since the differences are inessential when quantification into modal contexts
is forbidden.
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extension of this default theory iff E = S0la for some strongly grounded
expansion S of A.

The question remains whether autoepistemic logic is strictly more
expressive than default logic. Is there a set A of sentences with a strongly
grounded expansion S for which So is not an extension of any default
theory? Surprisingly, the answer is no; Konolige shows:

For any set A of sentences there is an effectively constructable default
theory such that E is an extension of this theory iff E = So for some
strongly grounded expansion S of A.

The above two results yield the unexpected conclusion that there is an
exact correspondence between the extensions of default logic and strongly
grounded expansions of autoepistemic logic.

6.4.2 SELF-KNOWLEDGE AND IGNORANCE Levesque (1982, 1984) is con-
cerned with the following question: What is an appropriate notion of
knowledge that would endow with self-knowledge a database KB of infor-
mation about a worM? Levesque’s concept of self-knowledge includes
knowledge about lack of knowledge; not only should KB know the infor-
mation (and the entailments thereof) it contains, it should also know that
it doesn’t know a fact when indeed that fact is unknown to it.

To simplify the discussion, we shall consider a knowledge language
called KFOPCE by Levesque (1982) which, though elementary, is sufficient
to convey how nonmonotonicity and default reasoning can be achieved.
In a subsequent paper Levesque (1984) treats a much richer such language.

KFOPCE is a first-order modal language with equality and with a single
modal operator K (for "know"), constructed in the usual way from a set
of predicate and variable symbols and a countably infinite set of symbols
called parameters. Predicate symbols take variables and parameters as
their arguments. Parameters can be thought of as constants. Their dis-
tinguishing feature is that they are pairwise distinct and they define the
domain over which quantifiers range, i.e. the parameters represent a single
universal domain of discourse.

A database KB of information about a world is a first-order sentence,
i.e. a sentence of KFOPCE with no occurrence of the K operator. We
consider how Levesque defines the result of querying KB with a sentence
of KFOPCE. This requires first specifying a semantics for KFOPCE. A
primitive sentence (of KFOPCE) is any atom of the form P(fl~ .... ,Pn),
where P is an n-ary predicate symbol and Pl,-..,Pn are parameters. A
worm structure is any set of primitive sentences that includes p = p for

14 Recall that So is the purely propositional part of S.
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each parameterp, and that does not include Pl = P2 for different parameters
p~ and p2. The effect of this requirement on the equality predicate is that
semantically the parameters are all pairwise distinct. A world structure is
understood to be a set of true atomic facts. A structure is any set of world
structures. The truth value of a sentence of KFOPCE with respect to a
world structure W and a structure Y, is defined as follows:

1. Ifp is a primitive sentence, p is true wrt W and Z iffp e W.
2. -~ w is true wrt W and E iff w is false wrt W and E.
3. w~ v w2 is true wrt W and E iff w~ or w2 is true wrt W and E.
4. (Vx)w(x) is true wrt W and E iff for every parameter p, w(p) is true

wrt W and Z.
5. Kw is true wrt W and Y, iff for every S e Y,, w is true wrt S and E.

Notice that condition 4 implies that, insofar as KFOPCE is concerned,
the parameters constitute a single universal domain of discourse. The
parameters are used to identify the known individuals. Notice also that
whenfis a first-order sentence (so that condition 5 need never be invoked
in the truth recursion for f) then the truth value off wrt W and E is
independent of Y~, and we can speak of the truth value offwrt W alone.

Given this semantics, Levesque defines the result of querying KB with
an arbitrary sentence of KFOPCE as follows:

Let M(KB) be the set of the world structures W for which KB is true
wrt W. M(KB) is thus the set of models of KB. The result of querying
KB with a sentence k of KFOPCE is defined to be
ASK(KB, k) yes if for all We M(KB) k is tr ue wrt Wand M(KB).

= no if for all We M(KB) is fal se wrtW and M(KB).
= unknown otherwise.

Notice that this is an $5 semantics with M(KB) the equivalence class
of mutually accessible possible worlds. It is this semantics that justifies
interpreting the modal operator K of KFOPCE as a knowledge operator.

As an example, suppose KB is the conjunction of the following formulas:

ENROLLED(Bill, csl00)
TEACH(Mary, csl00) v TEACH(Susan, csl00)
(3x) TEACH(x, mathl00)

Here, Bill, Mary, csl00 ..... are among the parameters. The following are
some sample queries, together with the answers sanctioned by the above
definition:

1. Is anyone known to be enrolled in csl00?
"~(qx)K ENROLLED(x, csl00): yes
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2. Does anyone teach csl00?
(3x) TEACH(x, csl00): 

3. Is anyone known to teach csl00?
(3x)K TEACH(x, csl00): 

4. Is anyone known to teach mathl00?
(3x)K TEACH(x, mathl00): 

5. Is there a course in which Bill is enrolled and in which he is not
known to be enrolled?
(~x) ENROLLED(Bill, x) & ~ K ENROLLED(Bill, x): unknown.

Notice that ASK is nonmonotonic. For example, updating KB with
TEACH(Sam, mathl00) would change the answer to question 4 from 
to yes.

Levesque provides a noneffective way, requiring only an oracle for first-
order theoremhood, of determining the result of ASKing KB an arbitrary
sentence of KFOPCE.

In order to represent defaults like flying birds Levesque proposes

(Vx) BIRD(x) & -~ K-~ FLY(x) = FLY(x). 16.

This creates a technical problem; we must be able to update KB with non-
first-order formulas like this, which requires first specifying the semantics
of such updates. Levesque provides such a semantics, whose details we
omit here. He then shows how to (noneffectively) determine,a first-order
formula I~IKB such that the result of updating KB with ~ is KB & I~KBI.
Thus, updating KB with a default like statement 16 has the effect of
conjoining with KB a certain first-order formula.

Levesque’s approach to (nonmonotonically) querying a first-order data-
base has several advantages. It is semantically precise and well motivated.
It allows one to ASK a database about its" states of knowledge (witness
the above simple example of an educational database), thus providing 
far more expressive query language than conventional approaches using
first-order logic (Green 1969). Moreover, the ASK operator can be realized
in terms of first-order theoremhood, albeit by appealing to an oracle.

On the other hand, Levesque’s treatment of default reasoning is prob-
lematic. Because defaults like statement 16 are assimilated into KB as
suitable first-order formulas, they lose their character as defaults and hence
cannot be reasoned about within the logic. In this respect they are akin to
the default rules of default logic (Section 6.2.2). Moreover, inconsistencies
can arise when intuitively they should not. For example, using the default
sentence 16 to update the following KB leads to an inconsistent database:

BIRD(Tweety) BIRD(Opus) "~ FLY(Tweety) v ~ FLY(Opus).

Intuitively, this is so since KB does not know -~ FLY(Tweety), and it does
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not know -~ FLY(Opus), so by sentence 16 it deduces both FLY(Tweety)
and FLY(Opus). Most other formalisms for handling defaults--e.g, cir-
cumscription, nonmonotonic logic, and default logic--do not lead to
inconsistencies like this.

Despite such problems, Levesque (1982) provides a variety of interesting
ideas for representing and structuring default information, including a
proposal that, in many respects, anticipates McCarthy’s (1986) use of the
AB predicate for representing typicality. In its simplest form, Levesque’s
proposal is to introduce the concept of a typical-P, written VP, understood
to be a new predicate. Thus VBIRD denotes a typical bird, and we can
write a first-order axiom

(¥x) VBIRD(x) ~ FLY(x).

Certain birds are not typical:

(Vx) OSTRICH(x) ~ -~ VBIRD(x).

Defaults now state conditions under which instances of typical-birds may
be inferred.

(¥x) BIRD(x) & -~ K-~ VBIRD(x) ~ VBIRD(x).

Using such representations for typicality, Levesque (1982) shows how 
structure these to deal with many problems involving interacting defaults
(Reiter & Criscuolo 1983) like the Quaker-Republican and shell-bearing
examples of Section 3.

There have been a few other theories of knowledge in which an agent’s
ability to introspect on his ignorance leads to nonmonotonicity. Halpern
& Moses (1984) propose a propositional approach very like Moore’s
autoepistemic logic (Section 6.4.1) but based upon an agent’s knowledge
rather than (as in Moore’s case) belief. Unfortunately, as Halpern & Moses
observe, their formalism cannot accommodate default reasoning. Konolige
(1982) proposes a multi-agent logic of knowledge grounded in the prop-
ositional modal logic $4. This achieves nonmonotonicity by means of a
closed world rule of inference based upon $4 nonprovability. Using this
logic, Konolige solves the Wise Man Puzzle, which requires a wise man to
reason about the states of knowledge of two other wise men. However,
the logic does not allow an agent to conclude that he does not know some
fact, and hence it cannot provide a theory for default reasoning.

6.5 Conditional Logics

A few recent attempts to formalize nonmonotonic reasoning have been
based upon conditional logics, which have been studied by several philo-
sophical logicians, e.g. Lewis (1973) and Stalnaker (1968).
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We shall focus here on subjunctive conditionals, i.e. statements of the
form "If A were the case, then B would be the case," which we denote by
A => B. The classic example from the philosophical literature is "If a
match were to be struck, then it would light," which intuitively we all take
to be true. But we also take to be true that "If a wet match were to be
struck, then it would not light," and there is nothing peculiar about these
two statements in the presence of a wet match. This means that the
subjunctive if-then, ~, is not the same as ~, material implication, for
otherwise the match example would have the form A ~ C and A & B ~ ~ C
which, in the presence of A & B, a wet match, leads to a contradiction.

Now all of this certainly feels nonmonotonic. We can rephrase our bird
example by subjunctive conditionals like "If x were a bird then x would
fly," whereas "If x were a featherless bird then x would not fly." It is this
intuition that suggests appealing to a suitable logic of conditionals to
formalize nonmonotonic reasoning.

Such logics do exist (e.g. Delgrande 1986). Typically, these are based
upon a possible-worlds semantics in which the truth value of a conditional
A =~ B in a world depends on a subset of those worlds in which A is true.
Conditional logics differ primarily in how these worlds-in-which-A-is-true
are distinguished. Axiomatizations of conditional logics correspond to
these differing semantics--e.g. Delgrande’s (1986).

As Delgrande (1986) observes, one motivation for considering con-
ditional logics is that they allow us to reason about typicality within the
logic. For example, "Typical canaries are not green" should be derivable
(see Section 6.2.2). The logic should mandate the inconsistency of "All
ravens are birds" with "Typical ravens are not birds," provided some
raven exists. Indeed, Delgrande’s logic has these properties.

Unfortunately, for our purposes, these logics have a fatal flaw; they are
monotonic. Moreover, they are extremely weak. For example, modus
ponens cannot be a rule of inference for conditional statements. This is so
since otherwise, in our wet match example, from A =:, C, A & B =~ -~ C,
and A & B we could derive both C and -n C. This failure of modus ponens
means that we cannot infer default conclusions. BIRD(Tweety) and (Vx)
BIRD(x) => FLY(x) does not entail FLY(Tweety) in any conditional 

Despite these shortcomings, a few researchers (Delgrande 1986;
Ginsberg 1986; Nute 1984) have proposed basing nonmonotonic reasoning
systems on such logics. In all cases, nonmonotonicity is achieved by prag-
matic considerations affecting how the logic is used. Unfortunately, this
destroys the principled semantics on which these logics were originally
based, so it is unclear what the advantages are of pursuing this approach
to nonmonotonic reasoning.
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7. SOME OBJECTIONS

Formalisms for nonmonotonic reasoning, grounded as they are in more
or less conventional logics, have often been criticized. The most common
objection is that probability theory is more appropriate (e.g. Cheeseman
1985). Numerically inclined nonprobabilists argue in favor of fuzzy reason-
ing (Zadeh 1985) or likelihood reasoning (Rich 1983), etc. In effect, 
such proposals identify statements like "Typically birds fly" with "Most
birds fly." In other words, they identify prototypical properties with stat-
istical properties. Now, in certain settings a statistical reading is warranted.
Regardless of my concept of a prototypical bird, if I find myself lost and
hungry in a remote part of the world, my design of a bird-catching trap
will depend upon my observation of the frequency with which the local
birds fly. But to appeal exclusively to a statistical reading for plausible
inference is to misunderstand the intended purpose of nonmonotonic
reasoning.

In a wide variety of settings, nonmonotonic reasoning is necessary
precisely because the information associated with such settings requires
that certain conventions be respected. Such conventions may be explicit,
as in the closed world assumption for the representation of negative infor-
mation in databases. More commonly, these conventions are implicit, as
in various principles of cooperative communication of information where
it is understood by all participants that the informant is conveying all of the
relevant information. Any relevant item of information not so conveyed is
justifiably (and nonmonotonically) assumed false. For example, if someone
were to tell you that John has not stopped beating the rug, you would
justifiably infer that John was beating the rug despite the fact that the
original statement might be true precisely because John never was beating
the rug to begin with. 15 The point is that if this were the case, your
informant should have told you. Since she didn’t, convention dictates the
appropriateness of your conclusion, despite its defeasibility.

Pictures and diagrams provide another interesting example. There is a
kind of closed world convention to the effect that if an entity is not depicted
in a picture or diagram, then it is not present in the world or the device
the diagram represents.

It would seem that with respect to such conventions, statistical reasoning
has no role to play whatsoever. It is difficult to imagine, for example, what
it could mean to assign a probability to the failure of a circuit diagram to

’~ In linguistics, the original statement is said to presuppose the conclusion that John was
beating the rug. Presupposition is well known to involve defeasible inferences (Levinson
1983, Ch. 4).
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depict a device’s power supply, or what advantage there could possibly be
in doing so. McCarthy (1980) makes a similar point in discussing the
missionaries-and-cannibals problem; he observes that the situation
described by the puzzle is so wildly implausible that it would be meaningless
to try to assign a conditional probability to the proposition that the boat
is not leaky. In this connection, notice that puzzle solving is perhaps the
clearest example of how convention sanctions nonmonotonic reasoning
independently of any probabilistic interpretation. In fact, the preceding
discussion suggests that much of what passes for human commonsense
reasoning may at heart be puzzle solving.

The above argument from convention does not address all objections
to logically based formalizations of nonmonotonic reasoning. Many non-
monotonic inferences are abductive in nature, which is to say they provide
plausible explanations for some state of affairs. In this setting, an expla-
nation can be taken to be a set of formulas that, together with the available
background knowledge, entails the given state of affairs. The problem, of
course, is that not just any explanation will do; it must, in some sense, be
a "best" explanation. An explanation might be judged "best" because it
is simplest, most general, or most probable, or because it is the outcome
of weighing explicit evidence pro and con, etc. No such criteria are
embodied in any current formalisms for nonmonotonic reasoning.

Israel (1980) criticizes nonmonotonic formalisms on similar, though
more general grounds. He objects to the centrality of deductive logic in
these formalisms as a mechanism for justifying an agent’s beliefs. For
Israel, "a heuristic treatment [of nonmonotonic reasoning], that is a treat-
ment in terms of rational epistemic policies, is not just the best we could
hope for. It is the only thing that makes sense." Abductively reasoning to
a best explanation would, in Israel’s view, require rational epistemic poli-
cies that necessarily lie outside the province of nonmonotonic logics.
McDermott (1986) levies a similar criticism (among others) but is pessi-
mistic about the very existence, currently, of formal theories of such
rational epistemic policies for abductive reasoning. Nevertheless, as he
observes:

This state of affairs does not stop us from writing medical diagnosis programs. But it
does keep us from understanding them. There is no independent theory to appeal to
that can justify the inferences a program makes .... these programs embody tacit theories
of abduction; these theories would be the first nontrivial formal theories of abduction,
if only one could make them explicit.

We shall pursue McDermott’s example of diagnostic reasoning because
it will allow us to draw an important distinction. This, in turn, will reveal
a significant role for nonmonotonic logics in situations requiring Israel’s
rational epistemic policies.
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The proper way of viewing diagnosis is as a process of theory formation
(Poole 1986): What is the best theory that accounts for the given evidence?
But if there is a best theory, there must be poor ones; so diagnostic
reasoning really consists of two problems: (a) What is the space of possible
theories that account for the given evidence? (b) What are the best theories
in this space? Most rule-based diagnostic systems conflate these two ques-
tions, attempting to converge on a best theory (usually by statistical means)
without explicitly accounting for the space of possible theories through
which they are searching. However, once this distinction is made, the
proper role of nonmonotonic logics in diagnosis is revealed: They can
characterize the space of possible theories that explain the evidence. This
is seen most clearly in papers by Poole (1986) and Reiter (1987). 
example, Reiter shows that the space of possible theories is precisely the
set of extensions of a suitable formalization in default logic (Section 6.2.2)
of the diagnostic setting. Poole’s characterization, while somewhat differ-
ent, is also based on default logic. Other approaches to diagnosis that
emphasize characterizing the space of all theories are given by de Kleer &
Williams (1986) and Reggia et al (1985).

The second problem--choosing a best theory from the space of possible
theories--is currently beyond the province of nonmonotonic logics. In
this respect, Israel’s criticism is correct. However, given the space of
possible theories as provided by nonmonotonic logics, we can at least begin
a principled study of the rational epistemic policies for theory selection that
Israel rightly emphasizes. This is the approach of de Kleer & Williams
(1986) and Peng & Reggia (1986), who provide probabilistic grounds 
diagnostic theory preference. In a different setting Poole (1985) proposes
a preference ordering on theories that favors the most specific theories.

In brief, a proper analysis of diagnostic reasoning, and more generally
abductive reasoning, must address two distinct problems. The first--that
of characterizing the space of possible explanatory theories--is an appro-
priate role for nonmonotonic logics. The second--that of determining
theory preference--requires rational epistemic policies that appear to have
little to do with current approaches to nonmonotonic reasoning.

8. CONCLUSIONS

Nonmonotonicity appears to be the rule, rather than the exception, in
much of what passes for human commonsense reasoning. The formal study
of such reasoning patterns and their applications has made impressive, and
rapidly accelerating progress. Nevertheless, much remains to be done.

The unexpected complexity of the frame problem suggests that many
more non-toy examples need to be thoroughly explored in order for us to
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gain a deeper understanding of the essential nature of nonmonotonic
reasoning. In this connection, note that most potential applications have
barely been touched, if at all. Apart from those discussed in this paper,
examples include implicatures and presuppositions in natural language,
high-level vision, qualitative physics, and learning.

With the possible exception of PROLOG’s negation-as-failure mech-
anism, we know almost nothing about reasonable ways to compute
nonmonotonic inferences. Truth maintenance systems must be integrated
components of nonmonotonic reasoners, yet we have no adequate formal
account of such systems. All current nonmonotonic formalisms deal with
single agent reasoners. However, it is clear that agents must frequently
ascribe nonmonotonic inferences to other agents, for example in coop-
erative planning or speech acts.16 Such multi-agent settings require appro-
priate formal theories, which currently we lack.

The ultimate quest, of course, is to discover a single theory embracing
all the seemingly disparate settings in AI where nonmonotonic reasoning

arises. Undoubtedly, there will be surprises en route, but AI will profit

from the journey, in the process becoming much more the science we all

wish it to be.
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