Software Defined Networks and Gossip Protocols

Robert Soulé

University of Lugano

The performance of data-center applications are critically
dependent on the underlying network. However, given the
complexities associated with management, networks today
typically provide little more than best-effort packet deliv-
ery between hosts. The emergence of software-defined net-
working (SDN) has created an opportunity to build more dy-
namic networks that can be tailored precisely to the needs of
applications. Unfortunately, existing solutions for monitor-
ing within SDNs suffer from several short-comings. Either
they are inaccurate (due to eventual consistency of archi-
tecture [5]), imprecise (due to limitations of current hard-
ware [5]), or too costly to be practical at scale (due to re-
liance on switch forwarding rules and centralization [1]). We
argue that gossip protocols offer an ideal alternative for SDN
monitoring, due to their scalability and resiliency.

Merlin. In an SDN-enabled network, a control program
reacts to network events, and updates forwarding rules on
switches to manage packets. Building on this interface,
our work on Merlin [3] is novel among network program-
ming languages in that it determines allocations of limited
network-wide resources such as bandwidth and paths.

We have used Merlin to improve the latency of Hadoop
jobs running in the presence of UDP background traffic, or
prioritize classes of traffic used for state-machine replica-
tion in fault-tolerant services [4]. These experiments demon-
strate that an SDN framework, with the correct information
as input, can provide automated network management cus-
tomized to the needs of resident distributed applications.

While the Merlin compiler generates static network con-
figurations, Merlin uses a small, runtime component to allow
for dynamic adaptation. Merlin’s language-based approach
allows this adaptation to happen safely, by providing pol-
icy language constructs that can be automatically verified.
Implicit in the design of this runtime component (and SDN
networks in general) is the notion that network events are
generated in response to the situational status culled from
a wide range of sources, including: (i) network state (e.g.,
packet and drop rates, error counters); (ii) application state
(e.g., job priorities, security credentials); (iii) user state (e.g.,
user preferences for a particular network); and (iv) hardware
state (e.g., device names, hardware types, physical location).

Much of this information must be created and updated dy-
namically. However, existing SDN frameworks have largely

Ken Birman

Cornell University

Nate Foster

Cornell University

ignored the crucial monitoring component that aggregates
network and application state, and sends the events to
the controller. A complete system would have a closed
loop, continuously monitoring applications and the network,
building situational status, then adjusting SDN policies to
optimize the use of resources.

MiCA. Gossip protocols are an ideal choice for imple-
menting a wide range monitoring tasks. With a gossip pro-
tocol, each node exchanges information with a randomly
selected peer at periodic intervals. Because it is based on
periodic peer-to-peer communication, gossip’s network load
tends to be well-behaved, scaling linearly with system size
and not prone to reactive feedback. Moreover, because peers
are selected randomly, no single node is indispensable, so
tools built on gossip are extremely tolerant to disruptions and
able to rapidly recover from failures.

Although individual gossip protocols are typically very
simple, composing multiple protocols can lead to complex
interactions with unpredictable behavior. We designed the
MiCA [2] framework to address this problem. MiCA allows
programmers to describe gossip protocols with a small, well-
defined interface, and compose the protocols with a rich col-
lection of operators to create sophisticated protocols in a
modular style. MiCA ensures that the composed protocols
maintain strong (albeit probabilistic) robustness and conver-
gence guarantees. In our evaluation of MiCA, we have built
monitoring tasks that maintain a predictable performance,
even when hundreds of separate instances are deployed on
the same machines.

Closing the Loop. To accommodate the ever-growing de-
mands of cloud and data center application, networks will
need to become more flexible and dynamic. As networks
continue to grow in complexity, it will become increas-
ingly difficult for network operators to provide this flexi-
bility without the support of proper tools and infrastructure.

Merlin and MiCA, deployed together, provide both the
control and monitoring components necessary to automat-
ically adapt the network to the needs of the applications.
Because both systems use a language-based approach, they
have rigorous semantics that can be formally defined. More-
over, they provide predictable operational behavior. To-
gether, they allow for the rigorous expression of algorithms
for monitoring or managing SDN networks.

2014/9/18



Acknowledgments. This work was supported, in part, by a
grant from the DARPA MRC program.

References

[1] L. Jose, M. Yu, and J. Rexford. Online measurement of large
traffic aggregates on commodity switches. In HotICE, 2011.

[2] L. Princehouse, R. Chenchu, Z. Jiang, K. Birman, N. Foster,
and R. Soulé. MiCA: A Compositional Architecture for Gossip
Protocols. In ECOOP, pages 644-669, July 2014.

[3] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster.
Managing the Network with Merlin. In HotNets, Nov. 2013.

[4] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G.
Sirer, and N. Foster. Merlin: A Language for Provisioning
Network Resources. In CoNext, Dec. 2014. To appear.

[5] M. Yu, L. Jose, and R. Miao. Software defined traffic measure-
ment with opensketch. In NSDI, pages 29-42, 2013.

2014/9/18



