
1

Overcoming the “D” in CAP: Using Isis
2
 To Build Locally

Responsive Cloud Services
Kenneth P. Birman, Qi Huang, Dan Freedman

 Dept. of Computer Science; Cornell University, Ithaca NY 14850

{ken,qhuang,dfreedman}@cs.cornell.edu. +1-607-255-9199

ABSTRACT1

The CAP theorem establishes that a cloud service can only

guarantee two of {Consistency, Availability and Partition

Tolerance}, motivating developers to reject transactional ACID

properties. Instead, they use BASE: a methodology whereby one

transforms an application into a faster and more scalable version

by running it as a series of asynchronous steps that each use local

data replicas (even if potentially stale), eschew locking, and are

designed to tolerate unplanned failures and service launches.

Along the way, consistency is substantially weakened.

But CAP and BASE may not be the final word. The new Isis2

platform supports consistent, locally responsive cloud services.

The system is scalable, highly available, and fast. Responses to

client requests can be computed using purely local data, hence

delays are limited only by local computational costs. Updates

propagate asynchronously and map to a single IP multicast;

locking is usually avoided by employing primary-copy

replication, and otherwise is performed with an inexpensive

token-passing scheme. The approach relaxes durability for soft-

state updates: this yields an “ACI and mostly D” model.

Durability violations are concealed using a form of firewall.

1. INTRODUCTION
Cloud computing has been shaped by the CAP theorem [8][17],

which holds that a scalable service for the cloud can have just two

out of three of consistency, availability and partition tolerance.

BASE, the most important cloud development methodology

[26][32], offers a methodology for scalable service development.

One takes an application (perhaps, an ACID transaction) and

starts by mapping data and processing over the nodes using

partitioning and data sharding. The next step breaks sequences of

operations into pipelines of one-shot tasks linked by message

queues. Finally, these tasks are implemented without locks,

issuing replicated updates asynchronously and responding to the

user without waiting for them to complete.

The last steps abandon several classic consistency properties; if an

application needs strong guarantees, it must implement them on

the client side. Weak consistency also can entail weak security:

security logics justify decisions by deduction on rules and role

bindings; if the underlying data or rule base are stale or incorrect,

security violations can occur.

Our work starts with a reexamination of the “C” in CAP: we‟ll

show that CAP-style consistency is expensive not because of the

guarantee of consistency, per-se, but rather because of an implicit

1
 Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or

commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

durability guarantee: a rarely discussed “D” in CAP. This leads to

an insight: for uses that don‟t actually need durability we can offer

strong consistency without paying high scalability or performance

penalties. We obtain a form of state machine replication [28].

However, whereas standard state machine replication and ACID

solutions perform poorly in cloud-scale deployments, our very

similar model will turn out to scale well. The key is to relax

durability under conditions when it is safe to do so. But this safety

issue won‟t be obvious. Our solution requires several

mechanisms to ensure that if a partitioning fault ever triggers the

loss of a soft-state update, the impact is contained, then repaired.

Given that it won‟t turn out to be completely trivial, is such a

model really needed? Many cloud providers have argued that the

cloud is just not matched to high-assurance applications. We

believe that such views are shortsighted. Operators of critical

infrastructure applications are as motivated by cost as everyone

else. A recent white paper by the CTO of the United States

argued for shifting a range of healthcare, finance, transportation,

power grid control, and other systems to the cloud with the hope

of achieving vast savings [21]. Such a vision demands a scalable

consistency story of a kind currently lacking.

The contributions of this paper proceed from our reanalysis of

CAP and BASE. We uncover options beyond the ones normally

employed by developers using BASE, and this motivates a new

consistency model (ACI and mostly D), supported by our Isis2

system. Isis2 targets the same kinds of cloud settings, with the

same ambitious scalability and performance goals, as BASE. To

guide the Isis2 developer towards a safe solution, we extend

BASE by categorizing soft-state into three cases, then show how

to apply our methodology in each. Finally, we undertake a side by

side comparison of the resulting style of scalable service with one

implemented using only the standard Paxos-style of data

replication. Our proposed approach offers dramatic speedups, and

yet maintains a single all-encompassing order-based consistency

model that enables reasoning both about the correctness of the

services we build, and also about the properties of high-assurance

applications that use them.

Figure 1: In a high-assurance application, such as an ATC system,

every action might have safety implications. CAP and BASE

seems to rule out running such systems on the cloud because they

weaken consistency. But not all forms of consistency are subject

to the CAP theorem. Our work shows that one can adopt a BASE

methodology and still achieve a strong form of consistency.

Cloud Infrastructure

Delta 21 to Houston ATC:
Requesting permission for

final approach

Houston ATC to Delta 21:
Confirming permission for final

approach on runway 3-N

2

2. THE BASE APPROACH
Most readers will be familiar with BASE, an acronym that stands

for Basically Available, Soft-State, Eventual Consistency

[26][32]. BASE is a methodology; it guides developers to use

pipelined transactions, employ weak synchronization and to think

about simple fault-tolerance mechanisms, which might not fully

mask failures. These steps confer dramatic scalability and

performance gains, but they relax consistency.

BASE works for two distinct reasons. One is that for many

purposes we can engineer applications to use soft-state as a way

of reducing the frequency of accessing hard-state. As Brewer

explains, hard-state corresponds to durable data (i.e. files and

databases), while soft-state is derived from other sources. This is

an informal definition; in Section 7 we‟ll be a bit more specific,

breaking soft-state into three major subcategories defined by their

degree of interdependence on hard-state. Some applications can

run almost entirely on soft-state, others may still need hard-state,

but can avoid accessing it except when absolutely necessary. The

key insight is that by definition soft-state has weaker requirements

than hard-state, and this makes soft-state highly replicable. For

example, we can scale a cache to a massive number of nodes, and

yet if a cache record is stale, or is discarded during a failure/restart

event for some node, we can always retrieve the correct data from

the underlying hard-state backing store.

These benefits come with a catch, because BASE systems often

use surprisingly slow soft-state replication techniques. IP

multicast (IPMC) is the very fastest way to move high volumes of

updates to large numbers of receivers, but most cloud-scale data

centers severely restrict IPMC, fearing instabilities [29]. The

alternative is to update soft-state using techniques such as TCP

chains [30] or gossip protocols of the kind used in Amazon‟s

Dynamo [13] (soft-state replication with eventual consistency).

But such approaches are much slower than IPMC, with which an

update potentially reaches its targets after just a single network

packet latency. Thus BASE solutions often run on state that is

somewhat stale.

This creates a risk: in the effort to maximize soft-state and to

tolerate staleness, developers can easily arrive at buggy solutions.

Acknowledging the problem, BASE encourages developers to

consider redefining correct behavior to accommodate responses

that might normally be considered incorrect, for example by

masking inconsistencies so that the end-user won‟t notice the

issue. This makes sense, because rock-solid guarantees often

aren‟t needed: if a web page looks odd, the user refreshes the

page. But one would worry about an air traffic control system

that deliberately uses stale data when responding to queries from

pilots or controllers.

Today, these concerns suggest that high assurance applications

would either be denied the speedups associated with BASE, or if

they use a BASE methodology, would need to deploy

compensating mechanisms to detect and protect against

inconsistencies. Doing so requires application-specific solutions

and will often involve complex, ad-hoc, mechanisms. Such steps

invite bugs, and could add so much overhead that they end up

reintroducing the very same scaling and performance problems

that CAP and BASE set out to avoid. Our goal is to offer a

platform-level solution that scales as well as BASE but has better

performance (by leveraging fast multicast), and does this without

allowing buggy, inconsistent behavior.

3. CAP IS REALLY ABOUT DURABILITY
CAP is at the core of our work, yet one wonders why the theorem

even applies in the cloud. First, the “P” in CAP stands for

partition tolerance, yet data centers don‟t normally need to ride

out large-scale partitioning faults. Of course, individual machines

(and racks or even containers) do become disconnected from the

main system. But when this happens, we don‟t need to maintain

symmetric availability. Instead, cloud management systems shut

down the isolated machines, leaving the far larger main system

running. Later, when the impacted nodes are restarted, they do so

in a clean state. Thus “P”, in practice, is asymmetric: availability

matters only in the main part of the data center.

The CAP theorem employs a symmetric definition for partition

tolerance, and that definition plaus a role in the proof. But the

BASE papers acknowledge that such faults wouldn‟t occur in

cloud computing data centers [32]. Instead, they suggest a

slightly different goal: the creation of services that can maintain

availability even if some replicated system components are

running with just a subset of the full replica set [26]. There is no

need for isolated components to maintain any form of availability:

the data center management subsystem will reboot them in any

case, once the problem is corrected.

Similarly, there are many ways to define consistency. Brevity

precludes a detailed discussion, but these include:

• Atomicity with linearizability, meaning that if operation o‟ is

in the causal future of o, then any replica that executes o‟ will

have first executed o. This is the definition used by Gilbert

and Lynch in their proof of the CAP theorem.

• Database consistency and its “cousins”: ACID transactions

(atomicity, consistency, isolation and durability), or such

variants as -serializability, state machine replication (Paxos),

virtually synchronous process-groups, etc.

• Any of the above, but now qualified by the term “eventual:” if

the network is healthy the server guarantees the specified form

of consistency, but during network partitioning may respond

using a stale state. When the partition ends, consistency is

restored within some bounded delay.

• “t-eventual consistency” as defined by Gilbert and Lynch:

lineralizability and atomicity. Consistency can be violated

during network partitions but is restored within delay t after a

partition heals.

• Convergent consistency: Once quiescent, the state reflects all

updates (in order) with probability rapidly approaching 1.0 as

a function of time.

• Rollback consistency: the system tries to move forward, but

might back out a committed operation to correct an

inconsistency.

• Best-effort: the system strives to reach a consistent state, but

makes no promises.

So, we have a range of consistency options; the CAP theorem

applies directly to the first, and would also apply to systems that

use standard ACID transactional guarantees. But we there are

some forms of consistency for which the theorem simply doesn‟t

apply, and others for which the question is unresolved.

Next, let‟s think about scalable consistency in a purely practical

sense. Today‟s major cloud computing systems include all sorts

of components that offer strong guarantees and play key roles in

massively scaled settings. Consider the Google GFS file system

3

[16] and the systems running on it (BigTable, MapReduce, etc), or

Yahoo!‟s Zookeeper [18], or other recent systems like Gaios [6].

These offer strong guarantees by adopting some form of

hierarchical structure. For example, GFS contains an

implementation of Paxos [22] in its Chubby lock service [8]. This

is used by the GFS chunk-master, which in turn steers

applications to the appropriate chunk-server: a “chain of

consistency”.

Thus, one can definitely build scalable, strongly consistent

services. But none of these were simple to implement. On the

contrary, as the teams that built these services emphasize, they

needed extensive deployment experience to get their solutions to

work in a stable, scaled-out way. The adage is that each new

factor of 10 forces a major redesign.

Indeed, CAP is perhaps best understood as a warning to the

typical developer (and not addressed to major teams prepared to

invest whatever it may take). CAP alerts those “normal”

developers that strong consistency is a very costly property to

seek in a large-scale application. BASE shows those same

developers that for many kinds of services, strong consistency

isn‟t even needed.

Our belief is that CAP and BASE aren‟t really about consistency

or partition tolerance, per se. Rather, we see here an unstated and

entirely different goal: that of guiding typical developers towards

scalable, locally responsive, elastic services. By “locally

responsive” we mean that a service replica should be able to act,

and respond, without locks or accessing R/W quorums. By

“elastic” we mean that it should be possible to dramatically

rescale the service with little (or no) warning. If one rereads the

CAP and BASE papers with this in mind, it is immediately clear

that the authors are discussing local responsiveness. They know

how to achieve elastic local responsiveness with strong

consistency guarantees, but are also aware of just how hard it can

be. Not every application should take the toughest path.

Accordingly, they urge the developer to at least consider

weakening consistency, because local responsiveness and

elasticity are the properties by which the quality of the application

will be measured.

But now we arrive at a somewhat surprising insight. It turns out

that the crux of the BASE analysis revolves not around

consistency per-se, but rather durability.

4. WHY IS DURABILITY SO EXPENSIVE?
We‟re using the term local responsiveness for what we see as the

key property desired in a scaled-out cloud service: a locally

responsive service never needs to wait for anything, hence the

end-user is guaranteed the lowest feasible waiting times.

Durability, of course, is the property familiar from the ACID

model. Durability is also central to atomic multicast protocols

such as Paxos, in which a multicast is not delivered until

durability can be guaranteed.

A durable update is simply an operation that is guaranteed to be

retained: if an update is performed, and later we ask the system to

do something, the system will respond from a state that reflects

the update. But Brewer‟s soft/hard-state distinction introduces a

new twist, as we‟ll illustrate with a simple example. Suppose

we‟ve just told user A to send future requests to server S. Such

requests are often advisory in nature; if the user can‟t reach S it

may be permitted to send requests to some other server. If S fails

and then reboots, it might forget the cached state that made it such

a good choice for user A‟s requests. Yet nothing terrible will

happen. There are many situations in which the nature of the

underlying data makes durability unimportant for at least some

kinds of updates. If Amazon slightly bungles a book popularity

index, or omits something from a user‟s browsing history, or even

if it puts two copies of a book into the shopping cart, minor

annoyance results, but Amazon is still in business. Indeed, in

discussing Dynamo, the Amazon design team comments that they

made a decision to accept a small risk of such errors to achieve

dramatic scalability [32][13]. On the other hand, one would not

trust an air traffic control system or a medical care system that

sometimes forgets updates.

Our central argument will to be that the kinds of updates for

which durability can be lost involve soft-state, whereas one needs

durability for to hard-state. The Amazon examples were soft

state; the ATC example is talking about hard state. This takes on

a special importance when we consider BASE: a methodology

centered on soft-state replication, but one in which the assumption

is that the only way to make this kind of replication is to adopt a

weak consistency model. Our view, in contrast, is that

applications benefit from consistency guarantees even for soft-

state. Intuition can be drawn from other settings: ask yourself

why multi-core systems need coherent caching. Clearly, because

many concurrent data structures and algorithms are only correct

with coherent caching. In a similar sense, builders of high

assurance systems who know that all actions of the platform are

consistent are in a better position to reason about the correctness

of the application. We‟ll expand on this in Section 8.

This now leads back to our comment about durability: why should

guaranteeing durability pose such a threat to local responsiveness?

The CAP and BASE papers both define consistency as a

composite property: an order-based guarantee combined with a

durability guarantee. Then they point out that durability is costly

and at odds with local responsiveness; more specifically, they

assert that for durability, we will need to implement read/write

quorums. And then they conclude that consistency isn‟t scalable.

The detailed argument runs this way. Suppose that we replicate

data on some set of nodes that will run a cloud computing service,

perhaps, n of them. Failures do happen, so now suppose that at

some point in time f might be crashed or inaccessible. We‟ll want

our end-user operations to be locally responsive, hence any

actions required to perform those operations must advance if just

n-f copies are available. Updates will run on n-f replicas, and so

reads will need to check f+1 replicas. But now we‟re in trouble:

recall that our goal was to guarantee local responsiveness.

Accessing multiple replicas, whether to make sure that n-f copies

saw an update, or to perform a read on f+1 copies, is a costly

proposition, particularly when compared with a purely local

execution that reads whatever data it finds at the replica handling

a request, and fires off its updates purely asynchronously, without

waiting before responding to the end-user. Thus, durability limits

the scalability of “atomicity”.

One can now ask: is durability the only such limiting factor? In

CAP, consistency also involves locking and request ordering.

Won‟t the need to order conflicting updates also require

coordination among sets of replicas? Indeed, this could be an

issue, but there are ways to provide ordering without requiring

non-local actions. In particular, most large-scale systems favor

primary-copy replication scheme in which updates occur first at a

primary node, which then relays them to the replicas via a

multicast. Thus, in typical cloud settings, a FIFO ordering on

updates is all we need. The updates for a given piece of data

always come from a single source. It follows that durability, not

the ordering aspects of consistency, was the expensive step.

4

Many cloud-computing runtime environments exacerbate this

problem by concealing information about virtual node placement:

an application running on 5 virtual nodes could easily be

scheduled to run on just 1 or 2 physical nodes. Few platforms

offer ways to request desired layouts; those that accept such

requests often treat them as advisory. The bias runs towards

concealing information about placement, and virtual-to-physical

node mappings can change without warning. This matters because

one could imagine situations in which n is very large, and where

simply knowing that an update was on 2 or 3 failure-independent

nodes would suffice. But in practice, there is often no way to be

sure, other than to wait for all n-f to acknowledge receipt.

The foregoing analysis is far from comprehensive: it only

considers a certain style of state-machine replication. There are

many ways to replicate services, and some of them (such as

Byzantine Fault Tolerance protocols) have stronger goals than we

do here. But we‟ve paralleled the CAP and BASE analysis in

order to build the case that one can accept the premises of that

work and yet reach a different conclusion.

5. “ACI” AND MOSTLY, “D”
Brevity now forces a choice. Within the length limits of this

paper we could offer our detailed model, which is a variation of

virtual synchrony in which the virtual synchrony process-group

model [1][4] is fused with the Paxos-style of state machine

replication model. However, we‟ve described this new model

elsewhere as part of a joint effort undertaken with Malkhi and

Van Renesse [5]. Repeating the formal treatment here would

consume most of the space remaining in this paper. Moreover,

our goals here are rather practical, focused on building up to the

experiments in Section 9, where we put durable and weakly

durable updates side by side and compare their relative scalability

and latency.

So we‟ll just summarize the salient aspects of the model. The

model starts by pinning down the assumptions we make about

failures (crashes), the precise definition of consistency we use (a

form of linearizability linked to a weaker notion of atomicity than

the one employed in CAP and BASE), and the precise meaning of

durability in this context (durable updates are those that can‟t be

lost after a failure). Then the model shows that a state-machine

style of replication protocol can exist side by side with virtual

synchrony view protocols. Doing so offers some advantages over

both the earlier work that used Paxos to implement state machine

replication, and the prior work with virtual synchrony.

The key step in our model is concerned with membership change,

which requires a somewhat elaborate consensus decision. This

achieves a strong form of agreement both on the next view, and

on messages in the old view, and is performed in such a way that

any message received by all members of the old view is included

in the state used by the new view (is durable). Any messages not

included will either not have been delivered at all or, if they did

get to some members, only reached ones that promptly failed.

For our purposes here, the most interesting feature of this merged

model is that it eliminates the need for quorums. In our new

model, execution of a service runs as a series of epochs. Each

epoch is defined by the set of members (replicas). The epoch

starts in a well defined state (namely the final state of the prior

epoch) and ends at a well-defined point (namely, when the next

epoch starts). If members fail, an epoch becomes wedged and this

triggers a request for membership reconfiguration. The update

waits. We stress this because it represents a point of departure

relative to the kind of system that BASE presumes: in those

systems, such an update proceeds, if it reaches n-f replicas.

How does the service become unwedged? Our membership

protocol runs. The reconfiguration request just mentioned

activates our membership service, which interacts with group

members. It wedges the remaining members, terminates the

current epoch and starts the next one, reporting a view in which

the failed nodes have been removed. State is transferred to any

joining members. By the time the new epoch starts, we have a

new value of n and a clean starting state, from which the system

advances.

So what happens with our wedged update? The membership-

changing protocol steps in to complete it. Thus it actually does

run at n-f members, but in doing so we also terminate the prior

epoch, start the new one, and treat the f unreachable members as

faulty. Indeed, the membership service drops them from every

group to which they belonged, and sets up a kind of software

firewall that will prevent them from sending future messages into

the system, should they be operational but temporarily

inaccessible.

The effect is that a read can now be performed on any replica,

because every replica has the full update history, up to the point in

time when the read is scheduled. This is in contrast to a quorum

scheme, where a read might access a replica that lacks some

updates. In our world, such a replica is permanently inaccessible.

We see an illustration of this in (Figure 2). The figure doesn‟t

show the membership service itself: we run it off the critical path

in the background, on a small set of nodes, much as in the cloud

computing services mentioned in Section 2. The membership

service runs a consensus protocol to agree on each membership

change, and is designed to never partition: if a network failure

occurs, the membership service can only make progress in one of

the subpartitions that result. We run the membership service on a

set of nodes picked to ensure that it will always remain

operational in the main body of the data center.

What is life like in the isolated set of nodes seen in the upper right

in Figure 2? They were running normally until the partitioning

event occurred. At that point they can briefly become inconsistent

Figure 2: Replicated soft-state in our model. The execution looks

like a state machine (hard-state) replication run until a network

partition isolates nodes P and Q. The isolated nodes might still do

some extra updates, but are prevented from talking to the other

nodes (firewalled) and eventually shut down. Meanwhile, the

main system reconfigures and resumes execution. A transient

inconsistency arises (top right) but the firewall isolates P and Q

until the reboot and rejoin.… but this means that some soft-state

updates may have been dropped.

5

with the rest of the system, but will rapidly (within seconds)

realize that they are out of touch with the membership service.

They then wedge themselves and, when the problem is repaired,

reboot into clean states.

6. The Isis
2
 System

The basic construct supported by the Isis2 system is the group.

The system is object oriented and just as there might be many

objects, there will often be many groups. The system itself and

the primary APIs (Figure 3) employ C# on .NET. We run on both

Windows and on Linux, and there are cross-language APIs from a

wide range of other languages. The assumption is that many user

applications would be accessed by cloud-computing clients using

the Web Services remote-invocation technology (the handler

might run in a purely locally responsive manner in that receiving

server, or might then trigger a more elaborate parallel query in

which multiple servers collaborate to respond; we‟ll focus mostly

on the former case). Thus Isis2 applications might run in the

outward-facing first tier of a cloud computing data center, or

might implement tier-two services within the data center.

To join a group, the application must define the same type

signature as do the other members, and if the group has a

persistent checkpoint, the application must have file access

permissions for the file storing that checkpoint. An optional

security scheme associates a unique key with each group (256-bit

AES). During periods when a group is inactive, the group key is

stored with the checkpoint in the persistent backing store file.

This allows us to leverage the file system access control

mechanisms as the basis of secure-group access control: to join, a

process must be able to obtain the key from this file. The same

mechanisms are also employed for initialization of a joining

member if a group is already live. We pick some existing

member, and ask it to generate a checkpoint, which we then copy

to the new member; it loads that checkpoint as its initial state.

There are two ways of performing reads. One is to just read the

local state at any replica. The other option is to perform a parallel

request in which all the group members participate to perform the

requested action. This form of parallel query is done by

multicasting to the group and having all the members send replies.

Locking, if needed, is typically implemented by token passing.

The membership of the group is available through a data structure

we call the group view, and updates are reported through upcalls

that are synchronized with respect to lock movement and update

events. This allows the members to maintain consistent states

(same data, updated in the same order, using the same updates), to

tolerate failures, and to split work up, for example by by splitting

a single request into n parts, with the rth group member in the

view handling part r out of n of the operation.

We could say a great deal more about the system, which is quite

extensive and innovates in several ways relative to earlier virtual

synchrony implementations, including our own Isis Toolkit.

However, many of these are based on prior papers in which the

specific mechanisms in question were first proposed. For

example, Isis2 uses IP multicast “safely”, employing a technique

from the Dr. Multicast [29] system to avoid overloading data

center routers and NICs. The basic idea is to use allocate IPMC

addresses to those groups with the largest membership and highest

data rate, merging similar groups if the software filtering cost of

doing so will be small enough. This often yields a 10:1 and

sometimes a 100:1 “compression” of the number of IPMC

addresses needed to support a given system. This gets us within

range of a good story. As a next step, we limit the number of

IPMC addresses to whatever the router can support without

becoming overloaded. Groups that aren‟t assigned an IPMC

address use point to point UDP messages to communicate (thus to

send one multicast they send n copies). Some cloud computing

systems prohibit both UDP and IPMC; to run on those platforms,

Isis2 employs a TCP overlay, much like SplitStream [10].

IPMC isn‟t totally reliable, hence we need a scalable reliability

mechanism. For this we use a structured gossip protocol, drawing

on ideas from Bimodal Multicast [3] and Quicksilver Scalable

Multicast [25]. The resulting protocol can handle large groups,

large numbers of groups, and allows individual processes to

employ whatever mixture of groups makes sense.

Of central importance for this paper are the mechanisms

associated with non-durable soft-state updates and durable hard-

state ones (and also with the corresponding forms of parallel

queries, since these are initiated by a multicast to which the

recipients respond in parallel). Here, state is whatever part of the

state of a replicated object would be included into checkpoints and

updated using multicasts. Isis2 offers two flavors of multicast and

parallel multi-query primitives. The non-durable FIFO-ordered

versions are Send and Query. Variants we call OrderedSend and

OrderedQuery can be used when concurrent multicasts will

originate at multiple sources and a totally-ordered delivery is

desired. The durable primitives are called SafeSend and

SafeQuery; they offer precisely the same semantics as Paxos.

All of these primitives respect our extended virtual synchrony

model: any object instance is consistent with any other replica of

the same object, seeing the same updates in the same order.

Locking is a user-specific matter: as noted earlier, some

applications don‟t need locking at all; others use tokens to

implement locking. The non-durable protocols are really bare-

bones mechanisms. In a manner synchronized with the group

membership, Send transmits a multicast using a single,

unacknowledged (hence unreliable) IPMC, tunneling over TCP if

IPMC is off limits or if the group just didn‟t get an IPMC address

from Dr. Multicast. A decentralized background repair

mechanism patches any gaps, and we use sender ordering to put

messages into FIFO order by group and by sender, delivering

them immediately upon receipt via upcall to the application.

Send is completely asynchronous (the upcall at the sender occurs

instantly, even before data is transmitted) and pipelined. And yet

all of this is able to conform to the virtual synchrony model,

because we coordinate membership changes using our

membership service, and “flush” traffic in our groups prior to

installing a new membership view.

If a failure does occur, durability is not guaranteed for Send and

Query. The issue is as follows: for these cases, the sender

transmits an update and applies it instantly, as do any receivers.

But suppose this sequence were to occur within an isolated rack

disconnected from the main data center. The main system will

assume that these nodes are faulty, and will run its membership

protocol, dropping the isolated nodes from any groups to which

they belong. There was thus a brief window during which the

isolated nodes saw and acted upon a soft-state update that the

main system did not see. The effect is to “erase” the update

(Figure 2, upper right), but only under this (unlikely) scenario.

But the situation could get worse: if the network fault heals

quickly, inconsistency could “leak” from our isolated nodes when

the network recovers and permits them to send messages into the

main system. To see how we solve this, recall that when Isis2

updates system membership, a consensus protocol runs. This

membership service is designed to remain live in the main part of

the data center and will not be accessible in the isolated partition.

6

Thus, any nodes in the small partition, if they survived the switch

outage, will quickly discover that they are isolated (within

seconds) and shut down. We‟re working with soft-state, so when

they restart after the problem that isolated them has been resolved,

they do so in clean states. The only risk of a leak arises during the

brief after the membership service in the main system has dropped

these nodes as faulty, but before they notice the condition

themselves and wedge, preparing for some future reboot. During

this period, if communication suddenly were restored, the isolated

nodes might get a chance to send messages to the main system,

which would perceive these as coming from the dead.

One can see this in Figure 2. The isolated nodes and the main

system diverge starting when the main system declares the

isolated nodes as faulty, as evident on the upper right: some

messages are exchanged within the isolated pair of nodes (P and

Q). The figure illustrates our solution to the risk this creates: we

activate a software firewall; it blocks messages from a node that

has been dropped by our membership service. Thus, an

inconsistent node can‟t talk to the main system during the brief

period before it discovers its isolated and inconsistent state and

reboots.There is a second case to consider, because our firewall

only applies to messages sent using the Isis2 primitives. Thus, one

could imagine situations in which the isolated, inconsistent nodes

manage to talk not to other Isis2 nodes, but to an outside user. In

Section 7 we‟ll introduce an additional primitive, Flush, targeted

to resolving this specific scenario. The application invokes Flush

before communicating to the external user, and this delays the

caller until any pending Sends have become durable.

In effect, the Isis2 developer is offered a choice. One option is to

use Send, a protocol designed for soft-state updates. Doing so

poses the risk that certain sequences of events associated with

partitioning might deliver an update but then lose it. This should

be rare, and we limit the risk of inconsistency leaking to the main

system with our software firewall. As a further protection, the

developer can call Flush prior to interacting with external users.

Alternatively, the developer just treats the state as hard and uses

SafeSend, a protocol that has the same properties as Paxos.

Claims that a protocol is like Paxos requires qualification, because

Paxos has several versions. The variant most like SafeSend is

“general” Paxos with a leader and with dynamic membership. In

our implementation, a parameter tells Isis2 how many members

of the group should acknowledge receipt before delivery occurs

using Isis;

namespace ExampleIsisApplication

{

 // Type signatures. C# really ought to infer these from the context, but doesn’t
 delegate void myLhandler(string who);

 class Program

 {

 int LOOKUP = 0;

 int UPDATE = 1;

 static void Main(string[] args)

 {

 // First create a group that includes just a single handler
 Group myGroup = new Group("some name");

 myGroup.ViewHandlers += (Isis.ViewHandler)delegate(View v) {

 Console.WriteLine("myGroup got a new view event: ", +v);

 };

 myGroup.Handlers[UPDATE] += (intArgs)delegate(string someStr, int val) {

 Console.WriteLine("My UPDATE handler got called with string {0}, new value {1}", someStr, val);

 };

 myGroup.Handlers[LOOKUP] += (myLhandler)delegate(string who) {

 Console.WriteLine("My LOOKUP handler was asked to look up {0}", who);

 myGroup.Reply(myGroup.GetView().GetMyRank());

 };

 myGroup.Join();

 // Now send some multicasts
 for(int n = 0; n < 10; n++)

 myGroup.Send(UPDATE, "User number=" + n, n*100);

 // Finally, send a query
 List<int> ranksList = new List<int>();

 int nr = myGroup.Query(Group.ALL, LOOKUP, "John Smith", EOLMarker, ranksList);

 string reps = "";

 foreach (int rep in ranksList)

 reps += " " + rep;

 Console.WriteLine("Got {0} replies and they are {1}", nr, reps);

 }

 }

}

Figure 3: A sample of the code style supported by Isis2. This nonsense example creates a group that implements an update handler and a

multi-RPC handler, and reports new membership views, all by printing to the console. The coding style is similar to the way one builds a

GUI with handlers for events like mouse clicks. The C# delegate() { … } construct is used to declare an event handler inline.

7

(how many are acceptors). All group members deliver all

messages (hence, all are learners). The value of must be large

enough to guarantee durability; on platforms that don‟t provide

physical layout information, we use =n. Readers interested in

learning more about “virtually synchronous Paxos” will find

details in [5].

How will all of this scale? Hopefully, the reader will easily see

why the non-durable Send scales well: a user-initiated multicast

translates directly to an IPMC, and because we use Dr. Multicast,

IPMC should be nearly lossless and extremely fast. A little

background chit-chat over a gossip protocol deals with any loss

that still occurs, but normally, no action is needed: multicasts are

almost always received successfully and delivered via upcall to

the application instantly. Reads are purely local, so those

introduce no delays at all. Most locking can be avoided. Add this

up, and we have an extremely scalable, locally responsive service

with strong consistency. Moreover, while Send (without a Flush)

doesn‟t guarantee durability, the sequence of events needed to

violate durability should be very rare.

In contrast, SafeSend scales less well. As we increase the number

of “acceptors” (and especially if we are forced to treat all

members as acceptors) the delay before we can confirm that an

update is safely deliverable grows steadily. In practice, developers

who are certain about the application layout would limit the

number of acceptors to some small number, perhaps 3 or 5.

However, even so, SafeSend will be sharply slower than Send,

and for developers who lack the needed layout information, the

only choice will be to keep hard-state groups small.

We believe that applications that need to support what Vogels

calls “ambitious” scalability would thus be driven towards the

faster yet weakly-durable Send: the degree of performance

difference we‟ll see in Section 9 is compelling. In contrast, for

any genuinely hard state the developer will be forced to employ

small replication factors: just enough copies to avoid loss in the

event of a failure. These observations echo Brewer: one scales

soft-state, and this eases the load on hard-state services, which is

good because hard-state services can‟t scale nearly as well.

7. CATEGORIES OF SOFT-STATE
We now encounter a subtle concern, relating to the question of

when one needs to use Flush. To explain the issue, it may be

useful to think of soft-state in terms of three subcategories:

1. Pure soft-state without hard-state dependencies. Examples

include queue-lengths in a replicated load-balancing

subsystem. Such state has no direct connection to hard-state.

2. Soft-state that caches or otherwise mirrors underlying hard-

state. Any value the soft-state exhibits is one the hard-state

took “first”. This kind of soft-state depends on hard-state.

3. State that has no hard backing storage and yet for which the

user expects that updates not be lost. A related case arises if

hard-state somehow has values that are dependent upon (and

that should be consistent with) a prior soft-state update.

We‟re proposing to use SafeSend (Paxos) when updating hard-

state and Send for the first two kinds of soft-state. For the first

case, the mapping to Send is evident. For the second, it is still

easy to see why durability isn‟t needed: if a cache is cold after a

node restarts, we‟ll just reload it from the hard-state. In effect,

soft-state only takes on states that hard-state took on first, so our

only issue here is one of fault-tolerance2.

But think about case 3: suppose that a service that did a series of

soft-state updates is about to send a result to an external user, and

in some sense, the reply only makes sense if those soft-state

updates are retained. For performance and scalability reasons, we

would prefer that the developer to treat the state in question as

soft-state and update it with Send. Yet if these updates were lost

the end-user would perceive the system as inconsistent.

Accordingly, as mentioned earlier, Isis2 includes an additional

primitive, Flush, which the application should invoke after

updating this kind of soft-state and before interacting with the

external user or updating hard-state. Flush delays the end user

response so that it won‟t be sent until stability for any prior non-

durable multicasts has been achieved. Thus, by the time the

external user sees anything, all updates on which that reply

depended have become durable.

As seen in Figure 4, flush applies to the updates known at the time

the primitive is invoked. New incoming soft-state updates will

still be delivered, and can be applied. This poses no difficulties

because by the time Flush is invoked, the application has already

computed the value that it wants to transmit to the external user.

Flush breaks local responsiveness, and Send+Flush are slower

than SafeSend. However, applications that do a series of Sends

and only then call Flush will still be mostly locally responsive.

This is encouraging because such patterns will be common. The

BASE methodology specifically encourages the developer to

create pipelined operations that execute as a series of steps: a

series of Sends. The effect is that any single call to Flush will

have its cost amortized over a potentially large number of soft-

state updates.

Figure 4: Use of Flush, after a series of weakly-durable Send

operations, prior to responding to an end-user. The extent to

which the system is locally responsive will be a major

contributor to the perceived response delay of the service.

In summary, our mostly-durable soft-state update primitive can be

used “as is” in many settings. If an application might be at risk

replying to an end-user on the basis of non-durable updates, by

using Flush the application can delay the reply until any soft-state

updates on which it depends become durable. But one wouldn‟t

call Flush after each and every soft-state update: by doing so at

the last instant, we achieve a highly amortized, parallel execution

2 The platform makes it very easy to ensure that a role, such as

forwarding hard-state updates into a soft-state cache, will be

performed fault-tolerantly. Thus while this isn‟t an automated

function, it is straightforward to implement.

8

that has most of the advantages of local responsiveness, but offers

absolute safety. For hard state we offer SafeSend, our version of

Paxos, which won‟t deliver an update anywhere until durability is

certain. The model is identical to Paxos, but our implementation

has an important advantage over other ways of implementing the

protocol: the virtual synchrony group membership property allows

us to eliminate quorum reads. Thus, when Send is employed we

support massive scalability and a big speedup., but even with

SafeSend, we achieve improved performance compared to prior

state machine replication solutions.

8. APPLYING THE METHODOLOGY
Our model brings benefits both for soft-state and hard-state: for

soft-state, we get correct, locally responsive (or almost entirely

locally responsive) behavior and are also able to scale out with

very high performance; for hard-state the scalability story isn‟t

quite as good, because each update must be acknowledged by an

adequate set of receivers before any process can apply the update.

To have a successful high-assurance cloud story, we‟ll need to

find lots of soft-state and lots of read-only operations. If a typical

high assurance application were to be write-intensive with mostly

hard-state, there might not be enough opportunities to benefit

from our fast but non-durable update primitives.

With this in mind, let‟s ask how much state is likely to be soft in a

high-assurance application, and how consistency would benefit

the developer who works with soft-state. We‟ll use an air traffic

control scenario, but a similar analysis would be possible for

financial, health care, or power grid control scenarios, and we

believe that conclusions would be similar.

An air traffic control system is a very large infrastructure with a

safety critical role, and this extreme concern about safety tends to

have a shadow effect, forcing a safety analysis even for

subsystems that might not have obviously critical roles. Clearly,

any instructions given by the ATC system (whether by human

controllers or automated services) must be safe. But to get these

decisions right it becomes important to know which controllers

will handle each stage of a flight, so that if one controller needs to

coordinate a decision with another controller, they can easily

contact one-another. That leads to the question about whether we

need to provide consistency for mundane details about which

controllers are on duty in each flight center, which in turn might

lead to questions about who is taking coffee breaks, and who the

temporary backup sector assignment was given to, etc.

In fact, we clearly do need consistency even for these kinds of

obscure aspects of ATC system state. For example, suppose that

an ATC system prioritizes flights having many passengers with

tight connections over flights that have ample fuel and are early or

on time. Which parts of this information are safety-critical hard

state and which are soft-state? Clearly, the actual decision to

allow a plane to start its final approach and landing sequence is a

safety critical action, as is any other decision that routes a plane

into a contended-for portion of air space. The “tight deadlines”

data looks non-critical. But one might not want to jump to the

conclusion that such data can safely be handled in inconsistent

ways. Even if doing so didn‟t put lives at risk, it could easily lead

to angry disputes (e.g. if priority is given to the wrong flight).

Seen this way, many kinds of very minor information could take

on roles that require consistency. In today‟s interpretation of CAP

and BASE we would probably view all of this state as hard-state

and conclude that we probably can‟t build a scaled-out cloud-

hosted ATC system because we won‟t be able to replicate the

underlying sate in a safe and high-performance manner.

By bringing consistency to soft-state, we can potentially tackle

that performance-limited scaling step. True, we shouldn‟t pretend

that soft-state is somehow hard-state, and we need to be careful of

the implications of mostly-durable updates; errors here could

compromise safety. Many of the state examples just listed would

fall into case 3 in our dichotomy from Section 7: a call to Flush

will be required before interactions with the external world. Yet

with that extra step, treating them as soft-state permits us

substantially improved scalability and performance.

Given a consistent way to replicate soft-state, one can suddenly

see many forms of soft-state here. The data about tight

correspondences, for example, starts to look like soft-state, as

would a great variety of other state. And some of this other state

might be surprising. Consider the GPS readings showing the

current locations of planes. While the plane itself and the primary

radio that tracks it will need to maintain a durable record of this

data (a small hard-state record), the rest of the ATC center may be

able to work with aggressively replicated soft-state, very much

along the lines of case 2 in Section 7: coherently cached data

backed by a durable hard-state record.

Within complex systems, many kinds of information have this

same character. For example, consider internal status data: which

controller is currently seated at which console? Which nodes are

running the main ATC system services, and what IP port numbers

are they listening on? Which services are currently online? If we

can “trust” soft-state, then all of these kinds of data are soft.

Notice that we‟re doing just what Brewer first urged when he

introduced the idea of a soft-state / hard-state distinction in his

first talks on this subject. We‟re using hard-state to record the

permanent record of key data, but then creating a much more

scalable soft-state front-end to that data. Yet whereas BASE takes

that last step of giving up on consistency, we don‟t need to do so.

Without dragging out this analysis, the reader will see that we‟re

identifying quite a bit of potential soft-state, and that we wouldn‟t

have been able to do so had we not been in a position to guarantee

consistency for soft-state replication. And while we‟re planning

to use a relaxed update durability guarantee for this state, doing so

won‟t introduce risks because we are able to offer a single, all-

encompassing consistency model that spans both soft-state and

hard-state, permitting the developer to reason carefully about

application correctness.

9. EVALUATION
We undertook a series of experiments aimed at comparing the

scalability and raw performance of Send, Send followed by Flush,

and SafeSend, using 100-byte payloads. Our experiments ran on a

lightly loaded 78 machine cluster, each with dual-socket Intel

Xeon X5650 Nehalem processors having a combined 12 cores and

running a Linux 2.6.18 kernel, giving a total of 936 cores. These

machines are connected through a 1Gbps (Intel 82574L) Ethernet.

Any data center built with multicore servers will run multiple

application instances on each machine, hence we started by asking

how this form of application stacking impacts performance of the

core mechanisms used in our protocols. To evaluate this, it makes

sense to look at a simple multicast, and at a simple request-reply

protocol. Figure 5 evaluates first the latency from when a Send is

initiated to when it is delivered, and then the total cost for a

request/reply “phase”, first for an application with 1 copy per

node, and then again with 12 copies per node. Throughout, each

individual data point reflects a run that performed 20 of the

indicated operations, and we repeated each experiment 10 times.

We omit the standard deviation for reasons that will become clear.

9

N Delivery latency

1/node

Delivery latency

12/node

Multi-RPC

1/node

Multi-RPC

12/node

24 1.89 ms 2.15 ms 21.88 ms 7.59 ms

36 2.22 ms 2.01 ms 31.52 ms 8.38 ms

48 2.28 ms 2.07 ms 34.07 ms 11.65 ms

60 2.21 ms 2.63 ms 33.63 ms 14.76 ms

Figure 5: Impact of stacking several application copies / node.

Our smaller experiments, below, used one copy of our application

per node, but the N=800 experiments stack 12 copies per node.

From Figure 5 we can see that stacking is having both positive

and negative impacts: stacked latency figures are comparable to

the unstacked ones, but the stacked multi-RPC experiments

exhibit reduced time-per-phase, presumably because intra-node

communication is faster than inter-node communication and less

prone to packet loss. As a result, we recommend caution in

comparing Figure 9 with our other graphs: Figures 6-8 all use one

copy of the application per-node, while Figure 9 was run with 12

stacked copies per node. As a side remark, we should perhaps

mention that we‟ve experimented with more than 12 copies per

node. Variance rises, and we solid evidence of overload and

contention. For brevity, we omit that data here.

Figure 5 is also interesting because it gives some sense of the

actual cost of request/multi-response “phase”, in which an IP

multicast elicits replies from all receivers. This pattern has an

important role in both Flush and SafeSend. In the case of Send

followed by Flush, a Flush waits for termination of the out-of-

band acknowledgement protocol used by Send to confirm

reliability: an instance, then, of the scenario measured in Figure 5.

In SafeSend, that same pattern arises during the initial send phase

of the protocol, which must complete before SafeSend‟s second-

phase message, in which delivery occurs.

Our next experiment explored the impact of varying the value of

 in SafeSend as a function of group size. On deployments of up

to 65 nodes, we ran SafeSend with =1, =3, =N/2 (H), and

=N. Curves plot average latency as a function of number of

members in the group. The figures show both these average

latency curves, as well as scatterplots of the underlying latency

measurements (across 10 runs with 20 request / replies each).

Recall that without knowing how applications were deployed

(stacked), an application seeking real safety must use =N.

We included the =H case as an optimistic midpoint for

developers who run with large N, and yet have little control over

stacking, reasoning that the “odds” of durability violations would

be low, and that the last members to acknowledge receipt might

be delayed by a scheduling event, such as garbage collection.

Figure 6 shows that if one looks only at its average delivery

latency, SafeSend scales fairly well for small values of . Note,

however, that variance is high throughout all our runs, especially

when we work with =H or =N (this is also why we omitted the

standard deviation in the table for Figure 5). =N gives the worst

performance, by a substantial margin, but high variation in latency

is seen for all deployment sizes and all choices of >1 (and there

is even one long delay with =1, N=32). Thus we reach two

initial conclusions. First, developers working with SafeSend, or

with Paxos, would have a strong interest in using a small value of

 (a small “acceptor” set) even if N, the number of receivers (the

number of “learners”) is large. We informally surveyed prior

papers on Paxos performance and confirmed that indeed, all

published results seem to do this; safe or not, =3 is typical. But

we also see that large variance is a concern on the cloud.

Figure 6: SafeSend for various values of .

These large delays would have a substantial impact on application

responsiveness (e.g. in a scenario like the one from Figure 4, but

with Send and Flush replaced by SafeSend). The problem here is

that unlike with Send, where an update can be applied by the

sender as soon as it is initiated, without any wait for remote

processes to respond, SafeSend can‟t even apply an update at the

sender until -1 remote members have acknowledged the

message. Thus, just as with a quorum read, the sender won‟t

know the “state” of the data being updated and incurs this full

delay. In contrast, an application using Send would see this delay

as purely “background” cost: for Send, the sender does a local

update instantly, hence the delivery latency is entirely a question

of how long it will take before the other group members catch up

with the state at the update sender.

Overall, Send has remarkably low delays in comparison to

SafeSend. Yet notice that even Send has a slow delivery now and

then, for example in the 8 and 32-member cases, where we see

isolated instances of Send latencies running at around 60ms. Thus

long delays can occur with both protocols (just much more often

for SafeSend), and require some explanation.

In discussions with our colleagues, many jump to the conclusion

that the choice of C# as the implementation environment (here,

under Mono on Linux) would trigger performance issues. Now

that we‟re in a position to study the real system and its

performance, those easy explanations are turning out to be mostly

wrong. On the one hand, C# is a fast, compiled language. We

chose it because we found that its type-safety, reflection features

and utilities matched to our needs; many developers would do so

as well. Obviously, C# does extensive memory management (and

hence requires garbage collection), and its reflection features are

slow in some situations. Yet to assume that these language

features cause the extreme performance variance seen with

SafeSend, yet not for Send, misses a deeper insight.

First, we have evidence that the issues are elsewhere. C# has

several options for controlling garbage collection, and we use

them. Triggering the collector very frequently (or very rarely)

had no impact on the performance variation observed here. More

serious and harder to control for is the scheduling of threads: Isis2

makes extensive use of multithreading, with several background

tasks that run in threads of their own, 2 threads per process group

created by the user (one for asynchronous sends, one for

asynchronous receives), and 2 more threads per physical IPMC

address in use (same roles). We can and do use thread priorities,

10

but that represents is a coarse-grained control knob: mostly, it lets

us prioritize receiving incoming packets over sending new ones.

Finally, C# (like any language) has profilers. Our bottleneck is

communication; Isis2 itself isn‟t doing much computation.

In fact, the performance-limiting factor, and the source of high

latency “runs” of SafeSend, seems to be packet loss, triggered

when a burst of messages arrives at some single process faster

than it can receive them off its incoming sockets, or when the

process is asleep because of O/S and .NET scheduling delays,

with the latter perhaps being the “main” issue. Notice that with

Send, high-latency events are rare: we see the occasional single

packet loss, and incur a 50ms or so retransmission delay when that

occurs. SafeSend, in contrast, is at risk of multiple “chained”

losses because of its multi-phase structure, yielding a broad spread

of latencies that correspond to loss in the first phase, in the reply

phase, in the second phase, etc. Our data thus supports the view

that delays triggered by packet loss explain the high variance.

In the cloud, a constellation of factors conspire against steady

real-time behavior, and events such as O/S packet loss are

astonishing hard to prevent. We experimented with very small

retransmission delays and larger socket receive buffers; both

increased loss rates. Quick retransmissions just send duplicates to

the stalled process, crowding out real data. Increasing the socket

buffering puts stress on kernel memory resources, increasing

kernel-level packet drops. Thus, the sharing of resources at the

center of cloud-scale efficiency is also an obstacle to predictable,

steady performance and fast replicated data updates.

We now arrive at the first of the central questions posed by our

work. In Figure 7, we place SafeSend and Send side by side, using

the “very safe” =N case for SafeSend. As is evident, the

decision to work with a durable update has substantial

performance impact, and the scalability of the resulting solution is

relatively poor in comparison with that for Send. Indeed, one can

barely see the latencies for Send: they are flat and run at roughly

2-4ms irrespective of group size, while SafeSend latencies rise to

50ms but also vary wildly, reaching as much as 120ms for quite a

few of our runs. Once again, this variance is almost certainly a

sign that SafeSend was triggering packet loss at the node that

leads the protocol, which is be flooded by N responses to each

multicast in near synchrony (with IPMC in use, as was the case

here, the receivers receive each packet within a spread of at most

a few tens of microseconds). Thus, our hypothesis is that as group

sizes group, the sender is overwhelmed, drops packets, and since

delivery occurs in phase 2, latencies soar.

Figure 7: Comparison of Latency to Delivery for Send and for

SafeSend in the =N (all members) case.

In Figure 8, we look at the bottom line impact of these choices for

response delay of the kind shown in Figure 4. Recall that our

fundamental goal is to support locally responsive services that are

elastic. In this experiment, we measured response delays in an

application that sends a series of updates using Send or SafeSend,

then calls Flush in the case of Send, precisely as in Figure 4.

Then, the application responds to whatever externally generated

request initiated the computation (note that for forms of soft-state

that don‟t require a Flush, the response delay would be near 0).

The measured response delays are shown on a log scale because

the range varies so widely.

Figure 8: Delay before end-user response can be sent for

various update options (log scale)

Send, even with a Flush, outperforms all SafeSend configurations:

Send is fast, and scaling extremely well. Looking just at average

response delays (ignoring variance, to which we‟ll return

momentarily), SafeSend is fairly fast for small values of , less so

for =N/2 (shown as “H”) and scales poorly for =N. From this

is seems clear that Send achieves our basic objective: elasticity

and locally responsive behavior. From Figure 8 alone, one might

also conclude that SafeSend also scales “relatively” well with

small . But variance lurks as an issue under the surface here: we

didn‟t graph standard deviation in Figure 8 because variance was

so wide that the distribution really isn‟t one that can appropriately

be characterized by a mean/s.d. value of the sort so common in

systems experiments. The usual alternative is to show the actual

distribution of data points, but for Figure 8, with so many cases,

that would create a confused jumble. But look at Figure 9, where

we include a scatter plot, showing delivery latency in a much

larger configuration.

Figure 9: Latency before an update can be applied in very

large groups using Send (red) and SafeSend with =3 (blue).

11

To create Figure 9 we tackled much more more aggressive

scenarios (and we‟re not done: later in 2011 we hope to report on

experiments at ten to fifty times this scale). Here we‟ve gone with

=3 for SafeSend: the value that seemed most plausible in Figure

7, despite its implicit assumption that the designer would need to

control application mapping to hardware on the cluster. Now we

measure delay before delivery occurs (the metric employed in

Figures 5 and 6) but with as many as 800 group members, stacked

10 per node on a total of 80 machines.

Two aspects are notable: first, Send is scaling with essentially flat

latency even in these larger groups, and second that SafeSend is

not only slowing down, but continues to have very high delivery

variance, often exceeding 100ms. There are also a few cases in

which we see these kinds of delays with Send As noted earlier,

these are apparently associated with packet loss associated with

the cloud-computing “model”, not by our use of C# or by its

occasional need for garbage collection. Heavy communication

loads burden the kernels on the target systems, which apparently

drop packets more frequently, and there is little that we (or any

application) can do to control such problems on the current

generation of cloud operating systems and runtime environments.

Send seems less prone to this problem: it runs with a leaner

footprint, messages linger in the system for less time, and fewer

messages are required to complete each run.

In summary, our experiments confirm that for soft state updated

using Send, we achieve striking scalability: the sender itself is

able to be locally responsive even if it pauses to do a Flush prior

to replying to the external user, and the soft state replicas at other

nodes will be far more current than in current soft-state update

schemes, where updates may require many seconds or even

minutes to reach replicas. With our implementation, though, even

hard state updates scale better than one might have expected

purely from reading the data center literature. While hard-state

updates are sharply slower than soft-state updates and exhibit high

variance, it would not be out of the question to consider using

hard-state even in a scaled-out service. Moreover, although not

measured in these experiments, recall that because our system

reconfigures when a member crashes, SafeSend is able to update

every replica of a replicated object, eliminating the need for

quorum reads or quorum writes.

The main negative story in our data reflects the extremely

complex execution scenarios that we‟re working with and their

somewhat mysterious interactions with response delay. In the

most aggressively-scaled cases, we had 10 copies of our

application running on each multicore machine, perhaps as many

as 200 threads per machine, and all sorts of things going on,

including (but not dominated by) C# garbage collection. The

effect of this was to create enough scheduling delays that socket

overflows occurred, significantly delaying response.

It is interesting to realize that even though cloud computing

systems are aimed at supporting locally responsive services, the

long-delay events for Send in Figure 9 are in part caused by the

way that cloud systems map application to nodes so as to promote

efficiencies of scale. In particular, notice that long-delay events

seem to be less common in Figure 7, where we ran just one

instance of our Send application on each node, and more common

in Figure 9, with 10 Send instances per node. Thus, the kinds of

things cluster managers do to keep the cloud busy, such as

application stacking, are also contributing to erratic scheduling,

which in turn increases the risk of socket overflows that result in

loss. With SafeSend at larger (safer) values of , the issue

becomes extreme.

All of this suggests that if cloud management systems were to

expose more information about the application-to-node mapping,

and to permit a bit more user control over that mapping, users

focused on responsiveness would gain much better performance.

Moreover, since the cloud platform will end up running the same

number of application instances, the cost to the cloud operator of

offering such options wouldn‟t be particularly high (the main

effect is that when many VM instances are stacked on one

machine, the VMM can sometimes share pages between the

instances and the file system can sometimes share file system

caches across the instances: useful features, but here we‟re seeing

their downside).

As a final comment, we note that prior work with virtual

synchrony generally failed to scale beyond 50-100 members per

group. Our data suggests that the new Isis2 system isn‟t having

any trouble scaling far beyond this: we‟re already exploring

scenarios ten times larger than that, and see absolutely no

evidence at all that our 800 member scenario is approaching any

kind of limit. Brevity prevents a detailed exploration of precisely

why Isis2 scales so much better than the older Isis Toolkit or other

prior virtual synchrony systems of which we‟re aware, but the

main difference may simply be that Isis2 was designed with

scalability as a main goal, and includes batch-style APIs to add

many members to a group in one operation, or to remove many, or

to delete a group when the application using it shuts down. The

main uses of past versions of virtual synchrony systems involved

modest levels of server replication. Lacking an incentive to

support batch APIs, they did everything one member at a time.

10. RELATED WORK
We believe that we are the first to suggest that the “real” point of

BASE [26][32] is to achieve local responsiveness. We are not

aware of any prior work that traces the costs of consistency as

used in CAP [8][17] to durability, or that shows how durability

can be relaxed for strongly consistent soft-state updates.

There has been debate around CAP and the possible tradeoffs

(CA/CP/AP). Relevant analyses include Wada‟s study of NoSQL

consistency options and costs[33], Kossman‟s [19] [20] [7], and

Abadi‟s [1] discussions of this topic. Database research that

relaxes consistency to improve scalability includes PNUTS [11],

the Escrow transaction model [26] and Sagas [15]. At the other

end of the spectrum, notable cloud services that scale well and yet

offer strong consistency include GFS [16], and Zookeeper [18].

Roy Friedman explored relaxations of virtual synchrony in

support of highly scalable real-time telecommunication switches

[14]. Relaxations of consistency to improve scalability of

Byzantine Agreement were studied in [31]. Of course, this is just

a partial list; a comprehensive survey would require a paper in

itself. Papers focused on performance of Paxos include the Ring-

Paxos protocol of [23][24] and the Gaios storage system [6].

The work presented here employs a model that unifies Paxos

(state-machine replication) with virtual synchrony [5]. Other

mechanisms that we‟ve exploited in Isis2 include the IPMC

allocation scheme from Dr. Multicast [29], the gossip-style

multicast reliability idea from Bimodal Multicast [3], and a tree-

structured aggregation mechanism first used in QuickSilver

Scalable Multicast [25].

11. CONCLUSIONS
An “ACI and mostly D” model offers a way to accept the CAP

theorem and the premises of the BASE methodology and yet

obtain solutions that are scalable, strongly consistent, and fast.

Indeed, if IPMC is available, our new approach may offer far

12

better performance and scalability for update-intensive uses that

today‟s cloud-computing solutions. This is not to say that the

existing BASE approach, with eventual consistency achieved

through a variety of convergence techniques, won‟t continue to

play an important role. But we believe that a genuinely strong

and yet scalable consistency option could eliminate much of the

need for the more extreme steps in the BASE process. Moreover,

for applications where high assurance is a requirement, our

approach allows the developer to scale out in a BASE-like manner

without needing to implement potentially costly or complex repair

mechanisms to overcome inconsistencies that might arise in a

standard BASE development approach.

Our approach isn‟t the whole story. Some high assurance

applications will need enhancements to the Internet, others may

require completely new security standards, and there will also

need to be work on ways of protecting against errors that occur on

the client side. Moreover, our consistency model may not suit all

uses (for example, we don‟t address the needs of applications that

require Byzantine fault tolerance). But we believe that Isis2

targets an important and large class of applications that are

already migrating to the cloud, and that these represent just the tip

of a coming wave.

12. SOFTWARE AVAILABILITY
The Isis2 platform will be available for download from our web

site by mid 2011, under FreeBSD licensing.

13. ACKNOWLEDGEMENTS
The authors are grateful to Robbert van Renesse, Dahlia Malkhi,

and to the students in Cornell‟s CS7412 class (spring 2011).

14. REFERENCES
[1] M. Abadi. Problems with CAP, and Yahoo‟s little known

NoSQL system. http://dbmsmusings.blogspot.com/2010/04/

problems-with-cap-and-yahoos-little.html

[2] K. Birman and T. Joseph. Exploiting Virtual Synchrony in

Distributed Systems. 11th ACM Symposium on Operating

Systems Principles, Dec 1987.

[3] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu

and Y. Minsky. Bimodal Multicast. ACM TOCS, Vol. 17,

No. 2, pp 41-88, May, 1999.

[4] K.P. Birman. History of the Virtual Synchrony Replication

Model. In Replication:Theory and Practice. B. Charron-

Bost, F. Pedone, A. Schiper (Eds) Springer Verlag, 2010.

Replication, LNCS 5959, pp. 91–120, 2010.

[5] K.P. Birman, D. Malkhi, R. van Renesse. Virtually

Synchronous Methodology for Dynamic Service Replication.

Submitted for publication. November 18, 2010. Also

available as Microsoft Research TechReport MSR-2010-151.

[6] W.J. Bolosky, D. Bradshaw, R.B. Haagens, N.P. Kusters and

P. Li. Paxos Replicated State Machines as the Basis of a

High-Performance Data Store. NSDI 2011.

[7] M. Brantner, D. Florescu, D. Graf, D. Kossmann and T.

Kraska. Building a Database on S3. ACM SIGMOD 2008,

251-264,

[8] E. Brewer. Towards Robust Distributed Systems. Keynote

presentation, ACM PODC 2000.

[9] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. In Proceedings of the 7th symposium on

Operating systems design and implementation (OSDI '06).

USENIX Association, Berkeley, CA, USA, 335-350.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A.

Rowstron, and A. Singh. SplitStream: high-bandwidth

multicast in cooperative environments. SIGOPS Oper. Syst.

Rev. 37, 5 (October 2003), 298-313.

[11] B. Cooper, et. al. PNUTS: Yahoo!'s hosted data serving

platform, Proc. VLDB 2008, 1277-1288.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. ACM OSDI 2004.

[13] G. DeCandia, G., et. al. Dynamo: Amazon's highly

available key-value store. In Proceedings of the 21st ACM

SOSP (Stevenson, Washington, October 2007).

[14] R. Friedman, K. Birman. Using Group Communication

Technology to Implement a Reliable and Scalable

Distributed IN Coprocessor. Proc. TINA 2008.

[15] H. Garcia-Molina and K. Salem. SAGAS. SIGMOD 1987,

249-259.

[16] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google file

system. 19th ACM SOSP (Oct. 2003), 29-43.

[17] S. Gilbert, N. Lynch. Brewer's conjecture and the feasibility

of consistent, available, partition-tolerant web services.

SIGACT News, Volume 33 Issue 2. June 2002

[18] F. Junqueira; B. Reed. The life and times of a ZooKeeper.

Proc. ACM Symposium on Parallel Algorithms and

Architectures (SPAA),Aug. 2009

[19] D. Kossman. Keynote talk, Eurosys 2011 (April 2011).

[20] T. Kraska, M. Hentschel, G. Alonso and D. Kossmann,

Consistency Rationing in the Cloud: Pay only when it

matters. VLDB 2009, 253-264.

[21] V. Kundra. Federal Cloud Computing Strategy.

http://www.cio.gov/documents/Federal-Cloud-Computing-

Strategy.pdf. February 2011.

[22] L. Lamport. The part-time parliament. ACM TOCS, 16:2.

May 1998.

[23] P. J. Marandi, M. Primi, N. Schiper F. Pedone. Ring-Paxos:

A High Throughput Atomic Broadcast Protocol. 40th

ICDSN, 2010.

[24] P. J. Marandi, M. Primi and F. Pedone. High Performance

State-Machine Replication, 41st ICDSN, 2011.

[25] K. Ostrowski, K. Birman, D. Dolev. QuickSilver Scalable

Multicast (QSM). IEEE NCA. Cambridge, MA. (July 08).

[26] P.E. O'Neil. The Escrow transactional methology. ACM

Trans. Database Systems 11:4 (Dec. 86), 405-430.

[27] D. Pritchett. BASE: An Acid Alternative. ACM Queue,

July 28, 2008. http://queue.acm.org.

[28] F. Schneider. Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial Computing Surveys,

22:4, Dec. 1990

[29] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan, K. Birman,

R. Burgess, H. Li, G. Chockler, Y. Tock. Dr. Multicast: Rx

for Data Center Communication Scalability. Eurosys, April

2010 (Paris, France). ACM SIGOPS 2010, pp. 349-362.

[30] R. van Renesse, F. B. Schneider. Chain Replication for

Supporting High Throughput and Availability. OSDI 04.

[31] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, P.

Maniatis. 2008. Defining weakly consistent Byzantine fault-

tolerant services. In Proc. 2nd Workshop on Large-Scale

Distributed Systems and Middleware (LADIS), 2008.

[32] W. Vogels. Eventually Consistent - Revisited. Dec 2008.

http://www.allthingsdistributed.com

[33] H. Wada, A. Fekete, A. Liu. Data Consistency Properties

and the Tradeoffs in Commercial Cloud Storages: the

Consumers‟ Perspective. CIDR 2011, Asilomar, Jan. „11

