
Technology Challenges for
Virtual Overlay Networks

Professor Kenneth P. Birman
Dept. of Computer Science, Cornell Univ.1

Abstract. An emerging generation of mission-critical
networked applications is placing demands on the
Internet protocol suite that go well beyond the
properties they were designed to guarantee. Although
the “Next Generation Internet” is intended to respond to
the need, when we review such applications in light of
the expected functionality of the NGI, it becomes
apparent that the NGI will be faster but not more robust.
We propose a new kind of virtual overlay network that
overcomes this deficiency and can be constructed using
only simple extensions of existing network technology.
In this paper, we use the restructured electric power grid
to illustrate the issues, and elaborate on the technical
implications of our proposal.

Keywords and phrases. Next Generation Internet,
distributed computing, fault-tolerance, quality of
service, virtual overlay networks, critical infrastructure.

I. Introduction
The basic premise of our work is that mission-critical
use of the Internet, for example in support of the
restructured electric power grid, emerging medical
computing applications, or advanced avionics, will
require functionality lacking in the “Next Generation
Internet” (NGI). All of these are examples of emerging
distributed computing systems being displaced onto
network architectures constructed from the same
hardware and software components and running the
same protocols employed in Internet settings. Each can
point to earlier successes with networked technologies,
but that depended upon special hardware, highly
specialized architectures and dedicated protocols. The
challenge is to repeat and surpass these
accomplishments with standard components.

1 ken@cs.cornell.edu. This work was supported under
DARPA/RADC grant F30602-99-1-0532 and
ARO/EPRI contract number WO8333-04. The views,
opinions and findings expressed herein are solely those
of the author, and do not reflect official positions of the
funding agencies. This paper is revised and extended
from a less technical treatment entitled “The Next
Generation Internet: Unsafe at Any Speed?” which
appeared in the August 2000 issue of IEEE Computer.

Today, faced with what can only be called a revolution
in networking connectivity and productivity, it has
become imperative to work with off-the-shelf
commercial products. Not only are older and less
standard approaches unacceptably expensive, in
selecting them a designer denies him or herself the best
available technology, such as tools associated with
building web interfaces, application-builders such as
one finds on PCs, management and monitoring
infrastructure, plug-and-play connectivity with
thousands of powerful software products, and access to
other commodity components that offer exciting
functionality and economies of scale. This trend,
however, is creating a daunting challenge for the
designer of a mission-critical system, who will need to
demonstrate the safety, reliability or stability of the
application in order to convince the end-user that it is
safe and appropriate to deploy the new solution.

Traditionally, critical networked applications have
exploited physical or logical separation to justify a style
of reasoning in which each application is developed
independently. For example, a medical computing
system might be divided into a medical monitoring
network, a medical database and records keeping
system, a billing and paperwork system, a medical
library and pharmacy system, and so forth. In hospitals
built during the 1980’s each of these subsystems might
well have had its own dedicated infrastructure: a real-
time network for the monitoring system, a more
conventional one for the clinical database system, and
so forth. This approach simplified the task confronting
the designers because each sub-problem was smaller
and any interactions between subsystems occurred
through well-defined interfaces.

When migrating such systems to a more standard shared
network infrastructure, supported by Internet routers
and protocols, applications are forced to compete for
network bandwidth and switching resources in
accordance with the end-to-end philosophy which
governs the Internet. Protocols such as TCP are
designed to be greedy, aggressively seeking the largest
possible share of resources, then backing off when
packet loss in the Internet signals that a saturation point
has been reached. Since other applications are generally
layered over TCP, they are subjected to this behavior.

TCP is a reasonable data transfer protocol for file
transfer, email, and even web pages – at least after the
web use becomes accustomed to the idiosyncrasies of
the web. But the unpredictable performance and
extended delays that the protocol can experience are at
odds with any type of “guarantee” that the application
might require. Moreover, this behavior of TCP is a
consequence of the connectionless, packet-oriented

philosophy of the Internet. Thus, to the extent that an
application implicitly depends upon isolation or other
network “guarantees” for correctness, migration to a
shared network – even one disconnected from the public
Internet but running standard Internet protocols – has
the potential to compromise safety.

Recognizing this problem, a series of reports and studies
have suggested that there is a crisis in the software
industry [Gibbs 1994]. A means for supporting and
validating NGI applications is urgently needed [PCCIP
1997]. Moreover, the lack of isolation presents serious
security concerns [Schneider 1998].

Application designers depend upon isolation to rule out
unanticipated interference. The interpretations of
“isolation” and “interference,” however, vary among
applications. For example, some critical applications
will require security from intrusion, a property offered
by virtual private networks (VPNs). We know how to
build VPNs on the Internet, and the NGI will offer even
stronger security because of the expected widespread
deployment of public key infrastructures (PKI) and the
use of security techniques to protect the Internet routing
and naming protocols. If this is all that an application
requires, it seems completely reasonable to talk about
migrating it to the NGI, because such a solution would
provide the necessary properties. But nothing in the
pipeline offers an easy answer when isolation involves
addressing other reliability goals – for example, when
the need is for “virtual private” bandwidth and latency,
or for network infrastructures capable of tolerating
failures. In particular, although there are a number of
quality-of-service proposals in the works, these prove to
be inadequate when carefully evaluated against the
requirements, as we will do here.

This paper considers a new networking isolation
capability, termed a Virtual Overlay Network (VON).
We suggest that VONs are well matched with the need,
but would be prohibitively costly to implement using
contemporary technologies. However, by expanding an
existing router feature and coupling it with well-
understood group communication techniques, VONs
could be supported at low cost, with good scalability.
In what follows, we start by examining a sample
application in Section II, then review the degree of
match between our VON concept and emerging NGI
technology in Sections III and IV. Section V presents
proposed VON implementation and the associated
technical challenges, and Section VI concludes the
paper with a summary and review of these technology
challenges. The paper leaves open as many questions as
it addresses, and hence should be seen as a technology
proposal emerging from a serious problem with the
current Internet and NGI, but not a definitive answer.

II. The Need for VONs in the
Restructured Power Grid

The restructuring of the electric power grid creates a
wide variety of technical challenges associated with
operation of the power grid, response to changing loads
or failures, protection and dissemination of information
within the grid both for management and also for
pricing and commerce. These highlight the broader
problem of interest to us here.

For example, the load following problem involves
dynamically adjusting power production to match
demand. Today, this is accomplished by monitoring
line frequency: if generation exceeds consumption, the
frequency will rise above 60 cycles, and if generation is
inadequate, frequency falls. Moreover, frequency is a
global property of the grid (within any well-connected
region). Thus, with little or no computer-to-computer
communication, the industry can exploit the grid itself
to dynamically match power production to demand:
load-following generators simply increase or decrease
power production, working to maintain line frequency at
60Hz. But the approach assumes that within any region,
a single company provides all the power and owns all
the load-following generators.

A major goal of restructuring is to support new ways of
buying and selling power. Suppose that a producer
enters into a load-following contract directly with a
consumer – an option restructuring will create. Imple-
mentation of this capability is not possible using the
traditional method, since changes in line frequency
occur throughout the grid, giving no information about
the specific sources of the loads. Needed is some form
of dedicated intranet within which the producer and
consumer can exchange information about load and
production. Utilities would use this both to implement
load following and for other purposes such as protection
and setting pricing. As noted before, we can assume
that this intranet would run Internet protocols, although
it would not be connected to the public network. The
question is to identify a way to implement a load-
following capability over a dedicated Internet-like
system.

Unfortunately, even a dedicated, isolated intranet would
behave much like the public Internet if used on a large
scale. Just as in the public Internet, a power-grid
network would presumably see a large volume of data
transfer traffic, file transfers, web activity, and so forth.
The underlying TCP rate control mechanisms would
presumably be the same ones used in standard network
settings, and the routers would be off the shelf. Thus,
just as one can usually access the New York Times on
the Web, but may be denied access from time to time,

any mechanism that the electric power industry might
build has the potential to encounter Internet-like
limitations. Worse still, the Internet infrastructure can
easily be attacked using methods like the denial of
service attacks seen in early 2000.

Congress expects the industry to solve this problem, but
doing so involves finding a way to superimpose a
better-behaved power systems network on the Internet,
with all its limitations. If we knew how to do this, the
technology would be popular! While it isn’t hard to
design a variety of mechanisms in support of load-
following contracts, were one to run such a protocol on
the Internet, it would be exposed to disruption in the
event of network overload, failures, mundane events
like routing table updates, or even terrorist attack. Yet
the application clearly requires a degree of robustness
commensurate with the critical role that electric power
plays in modern society and industry. In effect, while
the development of suitable load-following protocols for
isolated, dedicated networks is not necessarily all that
hard, running them in a shared off-the-shelf network
based on the technologies that underlie the public
Internet is problematic. Other similarly challenging
problems can be enumerated if one considers additional
aspects of the restructured grid: protection against load
surges or line failures, relay control, voltage control,
tracking the parameters used in setting power pricing,
and so forth.

What stands out in settings like this is the manner in
which the Internet itself makes an otherwise
straightforward problem difficult. One could easily
imagine designing a dedicated Internet for the power
grid with adequate redundancy, so that no two control
computers would ever be “disconnected” from each
other – there would always exist at least two disjoint
paths between any two points. Using state of the art
fiber optic channels and switches, such a network could
be designed to have vastly more capacity than control
applications could possibly desire. Naively, one might
easily believe that merely doing so would address the
problems just cited. Indeed, this seems to explain why
Congress believes that the industry can succeed.

Counterbalancing this observation, however, are the
pragmatic considerations that emerge from the protocols
that control and operate the Internet. Presumably, some
power applications will transfer large data files; others
will use bandwidth aggressively for monitoring and
control purposes. Faced with contention for limited
(even if not scarce) resources, the Internet’s bandwidth-
greedy protocols are designed to cause router overload
in such situations, since packet loss and delay are
precisely the mechanisms that trigger TCP flow control.
Moreover, redundancy won’t give us fault-tolerance.

Internet routing takes no advantage of dual routes and
changes in routing propagate slowly. While a router is
down or a link is down, continued attempts to use the
old route may result in periods of disconnection that
would last for many minutes – even if an alternative
route is available. And, we haven’t even touched on
protection from deliberate attacks. Thus, no matter how
the power grid network is designed and provisioned, the
requirement (apparently, unavoidable) that it be
constructed in a standard way using conventional
components denies the industry any chance to benefit
from this investment. In all likelihood, the dedicated
“powernet” will suffer from the same behavior, the
same lack of security, and the same flaws as does the
public Internet on which it will be based.

The power grid is just one of many kinds of critical
applications that are being deployed now, or will be in
the near future, and that share very critical requirements.
Some, like military command and control applications,
air traffic control, or distributed medical computing
systems, have life-critical implications. Others, like
financial systems or the electric power grid are critical
in nature even if the consequences of failures or
disruption may not be life-threatening. But the pattern
is similar: the problem is not so much that we cannot
build the necessary protocols, making assumptions that
would be valid in isolated, dedicated settings, but rather
than were we to build them, we could not run them with
confidence in a shared network populated not merely by
competing applications but even potentially malicious
intruders.

Our challenge is to enable coexistence between critical
kinds of applications that share a single, finite capacity
infrastructure. If we can solve this basic problem, we
make it possible for the application developer to address
each issues that arises in a complex application
separately, as if the associated protocol would run on a
dedicated, completely idle network. The protocol
would then deployed in a shared environment that
provides a virtual form of isolation, allowing us to
present the one physical network as multiple virtual
ones, and thereby enabling the application to run
without risk of interference. Our proposal, which we
call a “Virtual Overlay Network”, or VON, construes
isolation broadly – the objective is to provide whatever
aspects of a dedicated network may be important to the
correctness of the desired application. In contrast,
traditional virtual private networks provide isolation and
security, but at a high cost visible to the application, and
without guaranteeing any minimum level of
performance.

Underlying this approach is our belief that rigorous
solutions to complex distributed computing problems

typically revolve around assumptions about the behavior
of the network. Today, these underlying assumptions
are often implicit, and one often demonstrates the
adequacy of the solution by simply running it
experimentally and injecting faults. Such demon-
strations are only as good as the coverage of one’s
experiment. Needed is a way to make these implicit
requirements explicit, and then to enforce them. Our
virtual private network mechanisms assume that the
user knows what the protocol requires, but lacks a way
to ask for a network with the necessary behavior.

III. Overlay Networks and Virtual
Overlay Networks

We are using the term Overlay Network (ON) to
describe a configuration within which a base network is
used to support some second network, “layered” upon
the underlying infrastructure. Each ON has associated
with it:
• A globally unique identifier, with which traffic

within that ON can be tagged. Routers use the
identifier to associate traffic on different ONs with
the resources reserved for use by that ON.

• Some set of access points. One can imagine the
ON as a sort of virtual Ethernet, in the sense that it
offers service at multiple locations, and the
resulting applications share what is logically a
single infrastructure.

• Some set of guaranteed properties. Notice that
these properties will usually relate to the aggregated
traffic on the ON, not to point-to-point paths within
the ON.

An ON is intended to offer a minimal set of very basic
guarantees, which may be very simple compared to the
desired application-level properties. Given an
underlying ON with a sufficient set of raw or base
properties, it will often be possible to build layers of
software that extend the ON properties into new,
stronger ones. We will call such a network a Virtual
Overlay Network (VON) because it refines the base
properties of an ON with new properties that appear to
hold for the underlying network, but are actually
implemented on behalf of the user by means of some
sort of protocol or algorithm. In general, our goal
should be to employ the simplest (“weakest”) ON that
would still support the widest range of VONs, although
this paper will not actually solve the problem of
identifying such a minimal ON. Instead, we simply
observe that given an ON with “sufficiently strong”
guarantees of minimum bandwidth and packet loss,
which secures its own infrastructure against failure and
attack, it should be possible to build almost any desired
property over this, provided only that the basic speed of

the ON is adequate to support the desired speed of the
VON even with this intermediary software in use.

Notice that VON is somewhat like an abstract data type.
In this perspective, the ON can be imagined as the base
type from which other types are derived by refinement.
A VON is created by instantiating an ON or VON but
replacing some of its methods with modified ones that
change the behavior of existing methods, or extend the
interface with additional operations. Were our VON
proposal ever widely adopted, we believe that a natural
way to present VONs to the application developer
would be through ADTs available in the runtime
environment of the application, much as Java treats
aspects of the Java runtime environment. The author is
not aware of programming language research in which
the network itself is treated as an ADT, but the step
seems like a small and natural one.

IV. The Next Generation Internet
The NGI is a work in progress, and there is much debate
about the best way to achieve even the widely accepted
goals. Nonetheless, most of the technologies that will
be widely available within the next few years already
exist. Accordingly, this section speculates about the
most probable evolution of the network. Our goal is to
understand the adequacy of the NGI for hosting
applications needing VON capabilities: could one build
an ON, and use it to build VONs, over the NGI? We
focus on performance, security and quality of service.

IV.1 Achieving Higher Performance
It is certain that the NGI will be faster. Widespread
deployment of broadband technologies and optical fiber
is expected to yield a 10- to 100-fold improvement in
the performance of the Internet. However, performance
alone says nothing at all about isolation from undesired
interference. In particular, the contemporary Internet is
much faster than the Internet of a decade past, yet
interference problems are, if anything, much more in
evidence. The popular press routinely conflates speed
with safety, but while speed is often necessary for
safety, it rarely suffices.

IV.2 Improving Security
The NGI will also have much better security properties
than does the current public Internet. At the level of the
network infrastructure, a security architecture is already
being deployed. At the application level, the NGI will
see widespread availability of virtual private networks
(VPNs). A VPN is a software abstraction overlaid on a
shared network, in which communication between end-
points belonging to the VPN is signed (for
authentication), encrypted (for secrecy), or both. Given

a key infrastructure, a VPN offers a way to implement
one form of VON – but only one form, and only one at a
time: a given machine can only belong to a single VPN.
Indeed, a VPN is similar to a firewall, except that
whereas a firewall acts only at the periphery (where
packets are filtered), a VPN acts at the network interface
of each attached computer.

In our own work, we have explored the extension of
VPNs into a form of VON focused exclusively on
security issues [Rodeh et. al. 1988]. Called a Dynamic
Virtual Private Network (DVPN), our solution permits a
single machine to belong to multiple VPNs, and
provides fault-tolerance. We also provide protocols for
rapidly changing security keys when the set of
participating computers or applications changes.
DVPNs are limited in some respects. For example, our
work does not allow services like file systems or
databases to reside in multiple DVPNs, and has no
support for inter-DVPN communication; any serious
DVPN implementation would need to reexamine such
design decisions. Nonetheless, it seems reasonable to
assert that by extending the DVPN concept one could
solve the infrastructure security needs of ONs and
VONs.

IV.4 Options for Supporting Isolation
Although expressed in terms of isolation, one can also
understand an ON or a VON as offering forms of many-
to-many quality of service. This creates an apparent
match between trends in the Internet QoS domain and
the needs of critical applications such as the ones we
surveyed. Internet QoS research seeks to overcome the
erratic performance of the current Internet, which
represents an obstacle to migration of telephony from
the current dedicated infrastructure onto a packet-based
one.

Quite a few approaches to supporting quality of service
have been advanced. Among the most prominent are
RSVP, RED and RIO, and a family of approaches called
Diffserv [Zhang 1993, Floyd and Jacobson 1993, Clark
and Fang 1997, Clark 1995]. All of these focus on
providing guarantees of a type needed in telephony, and
all are oriented towards one-to-one communication
paths (some work has been done on one-to-many and
many-to-many extensions of these methods, but
consensus has yet to emerge).

QoS solutions can be partitioned into two categories.
The first category, exemplified by RSVP, operates by
reserving resources along the route from source to
sender for a period of time. The second category
operates by marking packets at the time they enter the
network; the idea is that any resource reservation is

done abstractly, by a service that tracks overall
commitments and only accepts new requests if routers
should have the capacity needed to accommodate them.
Incoming packets are tagged as “in profile” or “out of
profile,” and routers preferentially target out of profile
packets when overload occurs. Clark and others have
shown that this approach yields excellent statistical
guarantees while avoiding a costly traffic classification
problem within the network. Specifically, when using
RSVP or similar schemes, if there are n endpoints in the
network, a typical router may be asked to manage O(n2)
connections. The lookup needed to classify each packet
passing through the router (so as to provide it with the
appropriate form of service) becomes expensive,
perhaps prohibitively so, and the use of resources may
be inefficient. Diffserv, while offering slightly weaker
guarantees, avoids this costly lookup – a packet is
classified at the edge of the network and the router need
only concern itself with a single bit.

It should be stressed that the properties offered by this
approach are probabilistic. For example, if network
load or routing fluctuations cause network latencies to
change suddenly, messages that were admitted at a
steady rate (and within the sender’s profile) might arrive
in a burst, perhaps exceeding the profile of the sender
and overloading a router on the path. In fact, one can
identify any number of cases in which Diffserv would
violate its guarantees. The argument advanced by the
Diffserv research community is that best-effort quality
of service is often adequate. Moreover, they see the
approach as being more philosophically attuned to the
prevailing style of the Internet community: it has an
end-to-end feel to it, whereas RSVP appears to
superimpose virtual circuits over the Internet’s basic
packet structure.

But rather than debate such issues, we should be asking
ourselves whether either category of QoS mechanism is
suitable for implementing ONs. It seems that the
answer is negative, in consequence of the need for an
ON to emulate a dedicated network resource that may
have many users. Imagine a power monitoring system
configured to use a 10Mbit network accessible at 100
endpoints, for example. We now wish to run on an ON
implemented using a QoS mechanism as the underlying
building-block.

It is quite possible that the burst load associated with
any particular pair of endpoints (a source sending to
some destination) could reach the performance limit of
the ON. Thus, in our example, the ON must guarantee
an aggregated bandwidth of 10Mbits/second, but be
capable of providing peak bandwidth to any pair of
users that happen to generate the full load at a time
when the ON is otherwise idle. A connection-based

resource reservation protocol might therefore be forced
to reserve O(1002*10Mbits), or 100Gbits, of capacity at
a central router. Clearly, such a naïve implementation
of resource reservation would be unsatisfactory.

One can `speculate about various options for improving
our naïve solution. For example, we could dynamically
allocate resources to endpoint-pairs, so that at any point
in time, the aggregated allocation doesn’t exceed
10Mbits/second, but with the allocation shifting around
as needed. Thus, if at time t0 process a sends
5Mbits/second to process b, the remaining 5Mbits
would be allocated to other uses. At time t1 perhaps
process a would stop sending and process b would
attempt to consume the full 10Mbits, triggering a
reallocation of resources. But this would clearly entail a
very sophisticated mechanism. Shifting the allocation
of bandwidth will take time, and requires a form of
distributed coordination protocol that is hard to support
with fault-tolerance guarantees. We rule out this
solution as overly complex.

Similarly, one can imagine periodically multicasting the
activity profile of the endpoints so that all endpoints
have a reasonably current picture of the pattern of usage
within the ON as a whole. But this solution suffers
from an n2 growth in overhead messages: as we scale
the size of the ON up, the number of such messages will
grow at least linearly in the number of endpoints, and
each is a 1-n multicast. Here, the multicast could be
implemented using a simple scheme because reliability
is probably not critical, but the background load looks
intolerable. Moreover, the higher the quality of data
needed, the more overhead we pay. With any lower
quality of data, the quality of profile marking or
prioritization may become unacceptably poor.

Rather than continue on this line of speculation,
however, we advance a stronger conjecture: that any
VON solution based on a point-to-point reservation
model or quality of service mechanisms will be
intrinsically costly and scale poorly. Furthermore,
notice that both of the QoS mechanisms that seem most
popular as candidates for the NGI are basically
probabilistic: neither works well if the network itself
comes under stress, changing routes or experiencing a
failure. Using these mechanisms to implement an ON is
obviously going to be a very difficult problem, at best.
If our hypothesis is correct, the NGI is unlikely to
represent a very friendly environment for applications
seeking ON mechanisms.

V. Alternatives for ON and VON
Support

The considerations just cited suggest that the NGI will
be faster and more secure, but not “safer”, if the safety
of critical applications requires VON-like functionality.
However, such an outcome could be avoided. We now
present an informal proposal for an alternative way of
building VONs that seems to be within the reach of
current technology, and responsive to the need.

V.1 Using Router Partitioning to
Implement ONs
Existing routers support router partitioning, whereby
one ISP can supply networking connectivity to another,
with guarantees of minimum throughput and priority.
To use router partitioning, a provider configures the
router to set aside some percentage of its resources
(Figure 1), dedicating these to a particular flow. Each
incoming packet is classified by means of a flow
identifier and treated as if it resides entirely within a
virtual router defined by the resource subset allocated
on behalf of that flow. For example, if Global
Domination Networks leases one-half the capacity of
some router to Gotham Network Solutions, then each
GNS packet would be labeled with the same flow
identifier and the GNS routers on the network routes
associated with the lease would set aside half of their
resources on behalf of GNS. This is done in a way that
virtualizes the router on behalf of GNS: one can even
imagine a scenario in which GNS packets are dropped
(due to congestion) although the GDN “side” of the
same routers is idle.

It may seem that if GDN has excess resources available,
it should in general offer them to GNS, but upon further
reflection, it becomes clear that dropping packets when
GNS reaches its contracted-for traffic level is necessary
if the solution is to work correctly. The problem is that
protocols such as TCP are designed to back off as
congestion starts to occur. Suppose, hypothetically, that
GNS was allowed to expend 20% more bandwidth than
it had contracted for simply because GDN has excess
capacity. TCP will now be operating at a rate that
represents a substantial overload. Now, imagine that
traffic surges on the GDN side, forcing GDN to cut
GNS back to its contracted-for profile of resources. The
TCP protocol, rather than seeing “early warning” of

Figure 1: Router Flow Partitioning

Looks like
this Acts like

this

Flow 1

Flow 2

Flow 3

Everything else

impending congestion will suddenly experience high
rates of packet loss and a brief period of disruption is
very likely – one that would have been avoided if GNS
was limited to the profile of services it paid for, in the
first place. We see, then, that for an virtualized network
to operate correctly, it needs to provide a faithful
imitation of a dedicated network even with respect to
the limitations of such networks!

Notice that router partitioning yields a kind of Overlay
Network, implemented by one ISP on behalf of another
ISP. All of the traffic flowing through GDN on behalf
of GNS seems to live within a single shared ON,
competing with other traffic in the same ON, but not
influenced in any way at all by traffic originating in
other flows.

Our proposal starts by imagining that we extend this
existing mechanism into one that can support perhaps
thousands or tens of thousands of flows, but otherwise
behaves in the same matter. In general, each ON will
serve some large number of endpoints. For example,
power systems applications for a large region could
include several hundred monitoring devices, all sharing
a single ON, with a single ON flow identifier. This is in
distinction to the connection-oriented perspective that
one sees in existing quality of service proposals, such as
the ones reviewed earlier.

V.2 Building VONs over ONs
Power applications and similar critical networked
applications will want more than dedicated bandwidth
from its ONs. A network used to control devices such
as protection relays within the power grid should be
reliable even if links or routers crash, suggesting that the
physical configuration of the resources used to construct
the ON may need to be carefully controlled (for
example, we might require redundant routes between all
pairs of endpoints).

Broadly, we should imagine a world within which the
core properties of the ON can be strengthened by
layering network management and control software over
the endpoints of the ON, for example:

• A VON might require specialized routing
• We may wish to authenticate the connection of

a computer to the VON, and assign it a
specialized session key for use while
communicating in the VON

• We may need to refresh these session keys
periodically, or in cases where a computer
leaves the VON and is no longer trusted

• We may wish to coordinate the signing or
encryption of data

• We may need to monitor loads and adapt to
overload

• The VON may require some special protocol to
ensure reliability, such as the duplicate
transmission rule outlined above

Abstracting, we can say that a VON resembles what the
distributed computing community call a “process
group.” The desired group communication properties
would depend upon the needs of the application, and (in
distinction to classical work on distributed computing)
the network itself (the ON) would itself offer a basic
level of guarantees, reflecting the dedication of
resources on its behalf. This last point is important,
because it offers a foundation over which much stronger
properties can be guaranteed.

For example, consider the TCP protocol. In a
conventional network, one cannot really assert that a
TCP connection is “reliable”, since such a connection
can potentially break in the event of an infrastructure
disruption, even if neither endpoint has failed. With a
TCP connection within a VON, the identical TCP
protocol might be able to offer a stronger guarantee,
such as the guarantee that if no more than one network
link or router fails, the TCP connection will never break
unless one of its endpoints crashes. This specific
guarantee would require a degree of redundancy within
the ON, but one can imagine all sorts of low level
guarantees, translating to all sorts of higher level
properties visible through TCP and other protocols.

Generalizing from this example, we can see that one
builds a VON up from an ON by successively
abstracting – layering one or more software-
implemented abstractions over the ON, so that each
layer extends or strengthens the properties of the stack
of layers and ON below it. This is a way of building
distributed protocols that has become popular over the
past decade: it was introduced as the “streams”
architecture of the Unix system then generalized by the
x-Kernel [Peterson 1989], and adapted to group-
structured applications in our work on the Horus [Van
Renesse 1996] and Ensemble [Hayden 1998] systems.
Recent work has shown how to use formal methods to
reason about, optimize, and prove properties of systems
structured in this manner [Liu 1999][Birman 2000].
Figure 2 illustrates the idea. In 2a, we see the endpoints
of a VON treating the ON as an abstract type. Figure 2b
illustrates the idea of stacking new subtypes
(microprotocols) to produce new VONs with the same
interface but transformed properties. Figure 2c shows
the result; in this case, with two VONs in use.

Notice that we’ve made a leap here from talking about
TCP, which is a point to point protocol, to talking about

groups of endpoints representing the virtual access
points to a VON, and finally to calling these set of
endpoints a form of process group. The idea is that
even if the applications are unaware that we view them
as participating in a process group, we might still station
some small chunk of code next to the application to
manage some aspects of the network connection it uses.
For example, in implementing the DVPN architecture
mentioned earlier, we placed a small key management
application close to each DVPN participant; it was
responsible for obtaining and tracking the DVPN key,
which changed dynamically, and then rekeying the
DVPN network driver using each new key as that key
became available. Similarly, these code stubs might
take messages sent by the application and send more
than one copy – perhaps one copy on each of two
independent network routes. In general, any form of
control involving replicated data, replicated security
keys, or coordinated actions can be implemented by an

appropriate process group sitting next to the application
and managing some aspects of its environment.

Figure 3: Failure-independent routes in a network

Of course, we also have the option of making group
communication more directly visible to the application.
One could do so by replacing the standard IP multicast
implementation with one that uses the identical interface
but sending multicasts using the group communication
tool. Indeed, once one has this adopted this basic
approach, it becomes clear that there are a great many
things we might do on behalf of an application, so as to
actually guarantee the properties that might traditionally
have been implicit but critical.

ONON ONON ONONONON ONON ONON

Figure 2a: ON viewed as an abstract type

Given this perspective, it becomes possible to import a
substantial body of knowledge about group
communication into the VON arena. The author, for
example, has worked on four styles of group
communication system:

• Traditional best-effort group communication
environments

Interface to Ensemble is extremely flexible

Ensemble manages group abstraction
group semantics (membership, actions,
events) defined by stack of modules

encryptencryptfilterfilter signsign

ftolftolEnsemble stacks
plug-and-play
modules to give
design flexibility
to developer

vsyncvsync

Figure 2b: Stacking microprotocols in Ensemble

• Virtually synchronous group communication,
with carefully managed group membership and
multicast facilities (in addition to traditional
point to point mechanisms of the sort normally
seen in the Internet)

• Secured group communication systems,
providing authenticated join and keying both
for the group as a whole and for point-to-point
connections, as needed.

• Probabilistic group communication, offering
bimodal multicast and probabilistic
membership tracking, for use in settings where
scalability and stable throughput even when
failures occur take precedence over absolute
logical guarantees.

encryptencrypt
vsyncvsync
ftolftol

encryptencrypt
vsyncvsync
ftolftol

encryptencrypt
vsyncvsync
ftolftol

encryptencrypt
vsyncvsync
ftolftol

encryptencrypt
vsyncvsync
ftolftol

encryptencrypt
vsyncvsync
ftolftol

RealReal--time group for video communicationtime group for video communication

Virtual Synchrony forVirtual Synchrony for
control andcontrol and
coordinationcoordination

Figure 2c: Multiple VONs used in single system

Each of these could be understood as the infrastructure
one might use in supporting some class of VONs.
Moreover, this list illustrates just a few options within a
spectrum of possible VONs. Others include support for
partition tolerance or mobility, specialized realtime
guarantees, other types of security architectures,
specialized protocols for video or other media
tranmission, infrastructures which integrate

management of the VON into application-level
mechanisms such as automated restart facilities, and so
forth.

The key to our proposal is the idea of successively
strengthening core properties by layering software over
more basic VONs and ultimately over the underlying
ON, with its strong isolation and resource allocation
guarantees. Lacking these basic guarantees, one could
run the same sorts of protocols over the Internet, but
would generally not arrive at the desired outcome,
because the base case for proving many sorts of
properties revolves around the properties of the
underlying ON, and the isolation of the ON from
external interference. Given an ON with even weak
isolation properties, however, one can often find ways
to strengthen them. In general, one should expect
tradeoffs, such as paying communication overhead to
gain higher reliability.

But notice that not every form of ON can be used to
support every possible VON. An ON lacking a secured
infrastructure may be intrinsically insecure and hence
fundamentally inadequate for supporting certain types
of secured VONs. An ON that can be severely
disrupted by a single router failure would be unable to
support a VON requiring continuous throughput even
when routers crash. Among the many open questions
about VONs, issues such as these stand out as requiring
further study to determine the ultimate feasibility of
responding to the apparent need.

V.3 Building better ONs
This observation motivates us to ask what properties
ONs will need to have, and to what degree the
underlying Internet mechanisms are adequate to provide
them.

Were we merely to support the extended router
partitioning scheme described above, and to combine
this with IPSec mechanisms to secure the routing and
DNS infrastructure, the resulting ONs would support
bandwidth isolation, but the degree of fault-tolerance
against router failure and link failure would be limited.
Specifically, while a router or link failure will
eventually trigger a change in route (assuming that the
network remains connected), the temporal properties of
Internet routing protocols limit the speed of adaptation.
It is likely that an extended period of disrupted
communication would ensure, lasting for many seconds
or even minutes. Accordingly, our basic proposal is
inadequate to support applications for which stronger
guarantees are needed.

It can be seen that for certain classes of applications,
namely those needing stability even while a router or
link failure is being detected and the necessary
adaptations are still being performed, it will be
necessary to provide redundancy. At the time of this
writing, one would normally do so using what is called
a dual-IP naming architecture. In this approach, each
computer is assigned two IP addresses, and the physical
network infrastructure is duplicated so that each
machine has two or more network interfaces. The intent
of such designs is that even if machine A becomes
unreachable for a period of time on one network, it may
remain reachable on the second network under some
other name, A’ (Figure 3). A difficulty with dual-IP
architectures, however, is that the existing Internet
routing protocols lack provision for creating multiple,
independent routes. Thus, even if the capability of
doing so exists, existing network routing protocols could
easily chose to route messages from A to B and from A’
to B’ along the identical path, defeating the intentions of
the dual IP configuration. Additionally, even if one had
some form of guarantee that dual IP addressing results
in disjoint and failure independent paths between the
respective address pairs, one could question whether
this is the best way for the endpoints to take advantage
of the dual network. It is awkward to deal with
processes using multiple names; more natural would be
a networking infrastructure within which process A is
always called A, and the infrastructure itself deals with
dual addressing, redundant router paths, and the
necessary mechanism.

Such a vision leads to the following proposal. Suppose
that there were a way to deploy hardware redundantly,
and that given an adequately redundant network, a way
to obtain multiple disjoint paths between each pair of
endpoints (and, for multicast applications, a way to
obtain multiple, failure-independent routing trees).
Then an ON might take advantage of this infrastructure
by automatically duplicating packets, sending each
packet once on each route (and similarly, for multicast
routing). The potential for packet duplication is a
property of the current Internet, so one can dispute the
value of duplicate suppression within the ON, but if
desired, this too would be a possibility.

The idea of supporting disjoint redundant routes
represents, we believe, an exciting direction for further
study. Existing Internet protocols suffer because both
NAK packets and retransmissions typically follow the
same routes that are followed by the initial data packet
that was lost. When a router becomes overloaded and
begins to drop packets, this means that recovery
mechanisms subject that router to additional stress,
unless the protocol does some form of flow control, as
in the case of TCP. The Internet, then, is designed to

suffer degraded performance during overload in part as
a consequence of routing.

But with redundant edge- and router-disjoint paths
betweens source and destination, when a packet is lost
on one path, one can imagine doing recovery on the
other, potentially non-congested path. Indeed, a
protocol could potentially switch from a congested to a
non-congested route dynamically as an alternative to
choking back in the manner of current congestion-
control algorithms. Such options are especially
appealing when one considers reliability in multicast
protocols, where large-numbers of receivers may
depend upon steady data delivery: forward-error-
correction methods, for example, used on disjoint paths
could be of great power and might tremendously
improve the reliability of even the existing unreliable
UDP and IP multicast protocols.

Space constraints on this paper prevent us from
exploring the options for building routing protocols with
the desired structure. This would not be a trivial
undertaking: current protocols are designed to track
shortest paths rather than independent paths, and any
solution would also need to be dynamic, adapting to
failures and recoveries. Yet so much is known about
routing that it would be surprising if such a problem
were to prove intractable.

VI. Technology Summary
Table I summarizes the VON proposal. In this section
we briefly recap the various aspects of the proposal with
an emphasis on aspects that would go beyond what
existing technologies currently do.

Packet marking and classification. Our proposal
requires that routers be capable of identifying packets
belonging to ON flows and of matching the packet to
the associated resource reservation. For this purpose,
we envision a single bit, per-packet, marking it as an
ON packet (the IP header has room, although there are
competing proposals that would use the remaining bits),
a 4-byte identifier drawn from a global space of ON
identifiers (this could be placed behind the IP header
since it would be needed only if the bit is set), and of
course the mechanisms needed for the router to do the
necessary classification.

As seen previously, the major criticism of most router
classification mechanisms is associated with their cost,
both in terms of the compute time expended within the
router, and also the manner in which resource
reservations scale as a network grows larger. Unlike
RSVP, which is the most widely criticized in this
respect, our proposal would require modest numbers of

ONs, because the number of ON configurations needed
by an application tends to be small even if the size of
the application is large: an ON is like an entire network,
not like a point-to-point circuit. Moreover, existing
routers already do a similar classification on a small
scale. Accordingly, while recognizing this as the most
challenging aspect of our proposal, we consider it quite
feasible.

Finally, we note that our VON concept offers ISPs a
cost-effective way to respond to the QoS needs of
customers and to bill for the associated services. Just as
large common carriers have little difficulty billing one-
another for leased resources and accounting for them,
our proposal (which works in the same manner) simply
scales a working facility up, in a relatively
straightforward manner.

Resource reservations and management. Like Diffserv
and RSVP, we do require some degree of resource
management to track reservations and grant requests.
Diffserv does this entirely abstractly, using centralized
servers that maintain a theoretical model of resource use
and grant or deny requests based on their theoretical
impact on the router. Earlier, we saw that this works in
a statistical sense, although network dynamics can cause
the guarantees to break down when a fault occurs or a
transient overload significantly changes packet latencies
in ways that could cause a burst load on a router. The
RSVP approach is more mechanical: each router on a
given point-to-point path is asked to set aside resources,
and the resulting lease must be renewed periodically to
ensure that the router won’t release the associated
resources for other uses.

Our proposal combines elements of both of these. Like
Diffserv, we envision certain global resource
management tasks, such as management of the pool of
ON flow identifiers, which must be globally unique. On
the other hand, the routers themselves must set the
resources associated with each ON to the side, which
would require a leasing mechanism similar to the one in
RSVP. We presume an ON management service that
would operate somewhat like the one for Diffserv, first
checking the request against an approximation of the
network state, then for apparently acceptable requests,
but then performing a 2-phase commit to actually
allocate the desired router resources. It would seem that
such a mechanism can be distributed using a form of
loose consistency that is easily implement (somewhat
like the DNS), hence we see no difficulty associated
with this functionality, nor does it pose any major
scaling challenges. Like RSVP reservations, ours
should probably be implemented as leases which need
to be refreshed periodically.

Pack
ON t
* ON

* Ro
tion t
reser

Man
reser

*ON

Auth

Basic

* Ex

* VO

Table
the NG

Feature Extends…
(Existing Technology)

Observations

et marked as
raffic

In or out of profile bit Internet packet header has available bits, although many
proposals are competing for them

 flow id RSVP connection ID While the IP header lacks an appropriate 4-byte field, the
flow id is needed only when the ON traffic bit is set, hence
this can be accommodated as the first 4 bytes of the payload
for ON packets

uter classifica-
ask, resource
vations

RSVP resource leases,
router flow partitioning

The form of router flow partitioning we propose is similar
to an existing router feature, but would need to support far
more flows. Routers would genuinely set-aside resources
on behalf of these flows.

age
vations

Diffserv reservation
manager service

As in Diffserv and RSVP, a new flow must establish a lease
on router resources needed, and renew that lease
periodically.

 fault-tolerance Dual-IP networks, but these
are inadequately supported
in the existing Internet

Unlike existing Internet routing, a fault-tolerant VON
would require fault-tolerant ON infrastructure support: the
ability to create router- and link-disjoint independent paths
between each pair of senders, and a mechanism for sending
duplicate packets down those paths.

entication Public Key Infrastructure Emerging PKIs have rich feature sets and can be used to
implement any desired authentication mechanism

 services IP, TCP, IP multicast A VON supports the normal Internet protocols, so these
would run without change. Even so, these standard
protocols might offer stronger guarantees emerging from
the properties of the underlying VON, such as real-time
properties or the guarantee that a TCP channel won’t break
unless an endpoint crashes.

tended services New A VON would often offer additional “new” communication
protocols, such as scalable reliable multicast. The protocols
supporting these new services would be implemented and
proved correct by drawing on the guarantees of the
underlying ON. They can be seen as offering a contract to
the application: “if you run this protocol on such-and-such a
VON, you will be guaranteed the property that…”

N management New As a well-defined subnetwork residing within a shared

Internet, a VON offers the possibility of sophisticated
management, such as monitoring services, security policy
enforcement, intrusion detection and response, load
monitoring and overload management, etc.

1: Technologies Required in Support of ONs and VONs. Extensions that substantially exceed what
I is already expected to include are marked with an asterix; these raise substantial research issues.

ON fault-tolerance issues. We’ve seen that a fault-
tolerant ON would need to offer path-disjoint routes
between pairs of sources or, in the case of multicast,
path-disjoint multicast routing trees. Although non-
trivial, such a vision accords with what one builds when
configuring a traditional LAN to support dual IP
routing. Indeed, as discussed previously, one could
argue that the handling of dual IP addressing is
currently defective, since even if multiple IP addresses
are used, one has no guarantee that routes between
disjoint addresses will have independent reliability or
latency properties. Our approach would yield
substantial new options for reliability even when using
traditional Internet protocols such as TCP and IP
multicast, while also creating a building block of great
power for use in higher-level protocols.

Authentication. Although our approach assumes that
one could authenticate membership in VONs, we see
nothing about this that couldn’t be solved using
emerging public key infrastructures and certification
authorities. Even group keying, which involves
maintaining a key shared among the endpoints of the
VON and refreshing that key as membership changes, is
a well understood and largely “solved” problem.

Basic services. A VON would support the same basic
services as a normal Internet: DNS, routing, IP, UDP,
TCP, IP multicast, etc.

Extended services. Here, we would draw heavily on the
group communication mechanisms cited earlier both to
offer the end-user access to new kinds of multicast and
communication protocols, and also to manage the
periphery of the VON in such a manner as to
“precondition” traffic where the VON properties require
it (for example, if an application must be forced to
respect a real-time property for which it has contracted).

Earlier, we noted that it would be appealing to think of a
VON as a new form of abstract data type, instantiated
from a class within which the ON is the base element,
and with each VON extending the ON or VON from
which it was derived.

VON management. The fact that a VON has a well-
defined set of endpoints and mimics some form of
dedicated network makes it appealing to think about
new kinds of network management tools, similar to the
ones used in modern LANs, but extended for
management of the VON. These might include load and
other performance monitoring mechanisms, intrusion
detection services, facilities for reconfiguring the VON
when conditions change or an attack is detected, and so
forth. Network management is, today, a costly problem
that grows difficult as a network grows to include

Internet links; with our VON proposal, each VON has
predictable behavior, making it far more reasonable to
talk about detecting deviations from intended profiles of
use or load, and hence much more reasonable to talk
about managing the network in a pro-active manner.

VII. Conclusions
We have sketched an ambitious proposal to redesign the
Internet through a series of relatively modest
interventions, but with significant implications. As seen
in Table I, our proposal is constructed from existing
mechanisms, although extended in non-trivial ways, and
with significant new properties that result from the
extensions.

 Fleshing out this proposal into a full-fledged
technology would be a major undertaking. However,
the primary intention of the author is to identify an
unrecognized requirement upon the NGI. We do wish
to argue that the problem is tractable, but not that we
solved the problem, and far more work would be
required to do so. The contribution of our study is to
suggest that critical applications often depend on a form
of isolation, and that, as things stand, the NGI will not
support. While we do suggest that VONs could be
constructed and would respond to the need, we also
identified a number of technical challenges which
would need to be overcome before a working VON
could be deployed. These include support for a router
resource partitioning mechanism, implementation of a
service to manage router bandwidth and other resources
in support of reservations, new routing mechanisms
supporting redundancy, and the associated management
infrastructure. Our proposal, then, would require a
considerable research and implementation effort.

As things stand, developers of critical applications will
be challenged by insurmountable barriers. Yet it is
within our technical reach to solve this problem, and
this can be done in a way respectful of standards that
builds on existing Internet router capabilities using
services similar to ones already in the pipeline. It would
be a great shame if the NGI fails to do seize this oppor-
tunity to create a better communications infrastructure.

VIII. Acknowledgements
This paper was based on a colloquium talk presented at
various locations over the period 1998-1999. The
author is grateful to the members of the audience at
these talks, who gave extremely helpful feedback.

IX. References
[Gibbs 1994] Wayt Gibbs. Software’s Chronic Crisis.

Scientific American 276:3 (Sept. 1994).

[PCCIP 1997] Robert Marsh (ed). Critical
Foundations: Protecting America’s Infrastructure.
 The report of the Presidential Commission on
Critical Infrastructure Protection. Oct. 1997

[Schneider 1998] Fred Schneider (ed). Trust in
Cyberspace. National Academy of Sciences Press
(Washington), 1998.

[Birman 2000] Kenneth P. Birman. The Next
Generation Internet: Unsafe at any Speed? To
appear, IEEE Computer, Special issue on Critical
Infrastructure Protection (Sept. 2000).

[Rodeh et. al. 1998] Ohad Rodeh, Ken Birman, Mark
Hayden and Danny Dolev. Dynamic Virtual Private
Networks. Dept. of Computer Science, Cornell
University, Technical Report TR98-1695 (August
1998).

[Zhang 1993] Lixia Zhang, Stephen Deering, Deborah
Estrin, Scott Shenker, and Daniel Zappala . RSVP:
A New Resource Reservation Protocol. IEEE
Network. 7:9, pp. 8-18, Sept. 1993

[Floyd and Jacobson 1993] Sally Floyd and Van
Jacobson, "Random Early Detection Gateways for
Congestion Avoidance", IEEE/ACM Transactions
on Networking, V.1 N.4, August 1993, 397-413

[Clark and Fang 1997] David Clark and Wenjia Fang,
Explicit Allocation of Best Effort Packet Delivery
Service. MIT Lab for Computer Science Technical
Report, 1997.

[Clark 1995] David Clark and John Wroclawski. An
Approach to Service Allocation in the Internet,
Internet Engineering Task Force Report, July 1995.

[Van Renesse 1996] Robbert van Renesse, Kenneth P.
Birman and Silvano Maffeis. Horus: A Flexible
Group Communication System. Commun. of the
ACM 39:4, 76-83, April 1996.

[Hayden 1998] Mark Hayden. The Ensemble System.
Ph.D. dissertation, Cornell University Dept. of
Computer Science, Dec. 1998.

[Liu 1999] Xiaoming Liu, Christoph Kreitz, Robbert
van Renesse, Jason Hicky, Mark Hayden, Kenneth
Birman, and Robert Constable. "Building Reliable,
High-Performance Communication Systems from
Components". To appear, Proc. 17th ACM SOSP,
Dec. 1999.

[Birman 2000] Ken Birman, Robert Constable, Mark
Hayden, Christoph Kreitz, Ohad Rodeh, Robbert
van Renesse, Werner Vogels. The Horus and
Ensemble Projects: Accomplishments and
Limitations. Proceedings of the DARPA
Information Survivability Conference & Exposition
(DISCEX'00), Jan. 2000 (Hilton Head, South
Carolina).

The author: Professor Kenneth P. Birman is a Fellow
of the ACM and a faculty member in the Department of
Computer Science at Cornell University, which he
joined after receiving his PhD in Computer Science
from the University of California, Berkeley, in 1981.
His research is focused on security, reliability and fault-
tolerance of distributed computing systems. The Isis
Toolkit, which his group developed during the period
1985-1995, is used today in the New York Stock
Exchange, Swiss Exchange and French air traffic
control systems. In addition to his position at Cornell,
Professor Birman is CEO of Reliable Network Solutions
Inc. (http://www.rnets.com). Professor Birman’s email
is ken@cs.cornell.edu.

http://www.rnets.com/
mailto:ken@cs.cornell.edu

	Introduction
	The Need for VONs in the Restructured Power Grid
	Overlay Networks and Virtual Overlay Networks
	The Next Generation Internet
	IV.1 Achieving Higher Performance
	IV.2 Improving Security
	IV.4 Options for Supporting Isolation

	Alternatives for ON and VON Support
	V.1 Using Router Partitioning to Implement ONs
	V.2 Building VONs over ONs
	V.3 Building better ONs

	Technology Summary
	Conclusions
	Acknowledgements
	References

