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Abstract.  An emerging generation of mission-critical 
networked applications is placing demands on the 
Internet protocol suite that go well beyond the 
properties they were designed to guarantee.  Although 
the “Next Generation Internet” is intended to respond to 
the need, when we review such applications in light of 
the expected functionality of the NGI, it becomes 
apparent that the NGI will be faster but not more robust.  
We propose a new kind of virtual overlay network that 
overcomes this deficiency and can be constructed using 
only simple extensions of existing network technology.  
In this paper, we use the restructured electric power grid 
to illustrate the issues, and elaborate on the technical 
implications of our proposal.   
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I. Introduction  
The basic premise of our work is that mission-critical 
use of the Internet, for example in support of the 
restructured electric power grid, emerging medical 
computing applications, or advanced avionics, will 
require functionality lacking in the “Next Generation 
Internet” (NGI).  All of these are examples of emerging 
distributed computing systems being displaced onto 
network architectures constructed from the same 
hardware and software components and running the 
same protocols employed in Internet settings. Each can 
point to earlier successes with networked technologies, 
but that depended upon special hardware, highly 
specialized architectures and dedicated protocols.  The 
challenge is to repeat and surpass these 
accomplishments with standard components. 
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Today, faced with what can only be called a revolution 
in networking connectivity and productivity, it has 
become imperative to work with off-the-shelf 
commercial products.  Not only are older and less 
standard approaches unacceptably expensive, in 
selecting them a designer denies him or herself the best 
available technology, such as tools associated with 
building web interfaces, application-builders such as 
one finds on PCs, management and monitoring 
infrastructure, plug-and-play connectivity with 
thousands of powerful software products, and access to 
other commodity components that offer exciting 
functionality and economies of scale.  This trend, 
however, is creating a daunting challenge for the 
designer of a mission-critical system, who will need to 
demonstrate the safety, reliability or stability of the 
application in order to convince the end-user that it is 
safe and appropriate to deploy the new solution.   
  
Traditionally, critical networked applications have 
exploited physical or logical separation to justify a style 
of reasoning in which each application is developed 
independently.   For example, a medical computing 
system might be divided into a medical monitoring 
network, a medical database and records keeping 
system, a billing and paperwork system, a medical 
library and pharmacy system, and so forth.  In hospitals 
built during the 1980’s each of these subsystems might 
well have had its own dedicated infrastructure: a real-
time network for the monitoring system, a more 
conventional one for the clinical database system, and 
so forth.  This approach simplified the task confronting 
the designers because each sub-problem was smaller 
and any interactions between subsystems occurred 
through well-defined interfaces.  
 
When migrating such systems to a more standard shared 
network infrastructure, supported by Internet routers 
and protocols, applications are forced to compete for 
network bandwidth and switching resources in 
accordance with the end-to-end philosophy which 
governs the Internet.  Protocols such as TCP are 
designed to be greedy, aggressively seeking the largest 
possible share of resources, then backing off when 
packet loss in the Internet signals that a saturation point 
has been reached. Since other applications are generally 
layered over TCP, they are subjected to this behavior.   
 
TCP is a reasonable data transfer protocol for file 
transfer, email, and even web pages – at least after the 
web use becomes accustomed to the idiosyncrasies of 
the web.  But the unpredictable performance and 
extended delays that the protocol can experience are at 
odds with any type of “guarantee” that the application 
might require.  Moreover, this behavior of TCP is a 
consequence of the connectionless, packet-oriented 

 



philosophy of the Internet.  Thus, to the extent that an 
application implicitly depends upon isolation or other 
network “guarantees” for correctness, migration to a 
shared network – even one disconnected from the public 
Internet but running standard Internet protocols – has 
the potential to compromise safety.   
 
Recognizing this problem, a series of reports and studies 
have suggested that there is a crisis in the software 
industry [Gibbs 1994].  A means for supporting and 
validating NGI applications is urgently needed [PCCIP 
1997].  Moreover, the lack of isolation presents serious 
security concerns [Schneider 1998]. 
 
Application designers depend upon isolation to rule out 
unanticipated interference.  The interpretations of  
“isolation” and “interference,” however, vary among 
applications.  For example, some critical applications 
will require security from intrusion, a property offered 
by virtual private networks (VPNs).  We know how to 
build VPNs on the Internet, and the NGI will offer even 
stronger security because of the expected widespread 
deployment of public key infrastructures (PKI) and the 
use of security techniques to protect the Internet routing 
and naming protocols.  If this is all that an application 
requires, it seems completely reasonable to talk about 
migrating it to the NGI, because such a solution would 
provide the necessary properties.  But nothing in the 
pipeline offers an easy answer when isolation involves 
addressing other reliability goals – for example, when 
the need is for “virtual private” bandwidth and latency, 
or for network infrastructures capable of tolerating 
failures.  In particular, although there are a number of 
quality-of-service proposals in the works, these prove to 
be inadequate when carefully evaluated against the 
requirements, as we will do here. 
 
This paper considers a new networking isolation 
capability, termed a Virtual Overlay Network (VON).  
We suggest that VONs are well matched with the need, 
but would be prohibitively costly to implement using 
contemporary technologies.  However, by expanding an 
existing router feature and coupling it with well-
understood group communication techniques, VONs 
could be supported at low cost, with good scalability.   
In what follows, we start by examining a sample 
application in Section II, then review the degree of 
match between our VON concept and emerging NGI 
technology in Sections III and IV.  Section V presents 
proposed VON implementation and the associated 
technical challenges, and Section VI concludes the 
paper with a summary and review of these technology 
challenges.  The paper leaves open as many questions as 
it addresses, and hence should be seen as a technology 
proposal emerging from a serious problem with the 
current Internet and NGI, but not a definitive answer. 

II. The Need for VONs in the 
Restructured Power Grid 

The restructuring of the electric power grid creates a 
wide variety of technical challenges associated with 
operation of the power grid, response to changing loads 
or failures, protection and dissemination of information 
within the grid both for management and also for 
pricing and commerce.  These highlight the broader 
problem of interest to us here. 
 
For example, the load following problem involves 
dynamically adjusting power production to match 
demand.  Today, this is accomplished by monitoring 
line frequency: if generation exceeds consumption, the 
frequency will rise above 60 cycles, and if generation is 
inadequate, frequency falls. Moreover, frequency is a 
global property of the grid (within any well-connected 
region).  Thus, with little or no computer-to-computer 
communication, the industry can exploit the grid itself 
to dynamically match power production to demand: 
load-following generators simply increase or decrease 
power production, working to maintain line frequency at 
60Hz. But the approach assumes that within any region, 
a single company provides all the power and owns all 
the load-following generators. 
 
A major goal of restructuring is to support new ways of 
buying and selling power.  Suppose that a producer 
enters into a load-following contract directly with a 
consumer – an option restructuring will create.  Imple-
mentation of this capability is not possible using the 
traditional method, since changes in line frequency 
occur throughout the grid, giving no information about 
the specific sources of the loads.  Needed is some form 
of dedicated intranet within which the producer and 
consumer can exchange information about load and 
production.  Utilities would use this both to implement 
load following and for other purposes such as protection 
and setting pricing.  As noted before, we can assume 
that this intranet would run Internet protocols, although 
it would not be connected to the public network.  The 
question is to identify a way to implement a load-
following capability over a dedicated Internet-like 
system.  
 
Unfortunately, even a dedicated, isolated intranet would 
behave much like the public Internet if used on a large 
scale.  Just as in the public Internet, a power-grid 
network would presumably see a large volume of data 
transfer traffic, file transfers, web activity, and so forth.  
The underlying TCP rate control mechanisms would 
presumably be the same ones used in standard network 
settings, and the routers would be off the shelf.  Thus, 
just as one can usually access the New York Times on 
the Web, but may be denied access from time to time, 

 



any mechanism that the electric power industry might 
build has the potential to encounter Internet-like 
limitations.  Worse still, the Internet infrastructure can 
easily be attacked using methods like the denial of 
service attacks seen in early 2000.   
 
Congress expects the industry to solve this problem, but 
doing so involves finding a way to superimpose a 
better-behaved power systems network on the Internet, 
with all its limitations.   If we knew how to do this, the 
technology would be popular!  While it isn’t hard to 
design a variety of mechanisms in support of load-
following contracts, were one to run such a protocol on 
the Internet, it would be exposed to disruption in the 
event of network overload, failures, mundane events 
like routing table updates, or even terrorist attack.  Yet 
the application clearly requires a degree of robustness 
commensurate with the critical role that electric power 
plays in modern society and industry.  In effect, while 
the development of suitable load-following protocols for 
isolated, dedicated networks is not necessarily all that 
hard, running them in a shared off-the-shelf network 
based on the technologies that underlie the public 
Internet is problematic.  Other similarly challenging 
problems can be enumerated if one considers additional 
aspects of the restructured grid: protection against load 
surges or line failures, relay control, voltage control, 
tracking the parameters used in setting power pricing, 
and so forth. 
 
What stands out in settings like this is the manner in 
which the Internet itself makes an otherwise 
straightforward problem difficult.  One could easily 
imagine designing a dedicated Internet for the power 
grid with adequate redundancy, so that no two control 
computers would ever be “disconnected” from each 
other – there would always exist at least two disjoint 
paths between any two points.  Using state of the art 
fiber optic channels and switches, such a network could 
be designed to have vastly more capacity than control 
applications could possibly desire.  Naively, one might 
easily believe that merely doing so would address the 
problems just cited.   Indeed, this seems to explain why 
Congress believes that the industry can succeed. 
 
Counterbalancing this observation, however, are the 
pragmatic considerations that emerge from the protocols 
that control and operate the Internet.  Presumably, some 
power applications will transfer large data files; others 
will use bandwidth aggressively for monitoring and 
control purposes.  Faced with contention for limited 
(even if not scarce) resources, the Internet’s bandwidth-
greedy protocols are designed to cause router overload 
in such situations, since packet loss and delay are 
precisely the mechanisms that trigger TCP flow control.  
Moreover, redundancy won’t give us fault-tolerance.  

Internet routing takes no advantage of dual routes and 
changes in routing propagate slowly.  While a router is 
down or a link is down, continued attempts to use the 
old route may result in periods of disconnection that 
would last for many minutes – even if an alternative 
route is available.  And, we haven’t even touched on 
protection from deliberate attacks.  Thus, no matter how 
the power grid network is designed and provisioned, the 
requirement (apparently, unavoidable) that it be 
constructed in a standard way using conventional 
components denies the industry any chance to benefit 
from this investment.  In all likelihood, the dedicated 
“powernet” will suffer from the same behavior, the 
same lack of security, and the same flaws as does the 
public Internet on which it will be based. 
 
The power grid is just one of many kinds of critical 
applications that are being deployed now, or will be in 
the near future, and that share very critical requirements.  
Some, like military command and control applications,  
air traffic control, or distributed medical computing 
systems, have life-critical implications.  Others, like 
financial systems or the electric power grid are critical 
in nature even if the consequences of failures or 
disruption may not be life-threatening.  But the pattern 
is similar: the problem is not so much that we cannot 
build the necessary protocols, making assumptions that 
would be valid in isolated, dedicated settings, but rather 
than were we to build them, we could not run them with 
confidence in a shared network populated not merely by 
competing applications but even potentially malicious 
intruders. 
 
Our challenge is to enable coexistence between critical 
kinds of applications that share a single, finite capacity 
infrastructure.  If we can solve this basic problem, we 
make it possible for the application developer to address 
each issues that arises in a complex application 
separately, as if the associated protocol would run on a 
dedicated, completely idle network.  The protocol 
would then deployed in a shared environment that 
provides a virtual form of isolation, allowing us to 
present the one physical network as multiple virtual 
ones, and thereby enabling the application to run 
without risk of interference.  Our proposal, which we 
call a “Virtual Overlay Network”, or VON, construes 
isolation broadly – the objective is to provide whatever 
aspects of a dedicated network may be important to the 
correctness of the desired application.  In contrast, 
traditional virtual private networks provide isolation and 
security, but at a high cost visible to the application, and 
without guaranteeing any minimum level of 
performance. 
 
Underlying this approach is our belief that rigorous 
solutions to complex distributed computing problems 

 



typically revolve around assumptions about the behavior 
of the network.  Today, these underlying assumptions 
are often implicit, and one often demonstrates the 
adequacy of the solution by simply running it 
experimentally and injecting faults.  Such demon-
strations are only as good as the coverage of one’s 
experiment.  Needed is a way to make these implicit 
requirements explicit, and then to enforce them.  Our 
virtual private network mechanisms assume that the 
user knows what the protocol requires, but lacks a way 
to ask for a network with the necessary behavior. 

III. Overlay Networks and Virtual 
Overlay Networks 

We are using the term Overlay Network (ON) to 
describe a configuration within which a base network is 
used to support some second network, “layered” upon 
the underlying infrastructure. Each ON has associated 
with it: 
• A globally unique identifier, with which traffic 

within that ON can be tagged.  Routers use the 
identifier to associate traffic on different ONs with 
the resources reserved for use by that ON. 

• Some set of access points.  One can imagine the 
ON as a sort of virtual Ethernet, in the sense that it 
offers service at multiple locations, and the 
resulting applications share what is logically a 
single infrastructure.   

• Some set of guaranteed properties.  Notice that 
these properties will usually relate to the aggregated 
traffic on the ON, not to point-to-point paths within 
the ON.  

 
An ON is intended to offer a minimal set of very basic 
guarantees, which may be very simple compared to the 
desired application-level properties.  Given an 
underlying ON with a sufficient set of raw or base 
properties, it will often be possible to build layers of 
software that extend the ON properties into new, 
stronger ones.  We will call such a network a Virtual 
Overlay Network (VON) because it refines the base 
properties of an ON with new properties that appear to 
hold for the underlying network, but are actually 
implemented on behalf of the user by means of some 
sort of protocol or algorithm.  In general, our goal 
should be to employ the simplest (“weakest”) ON that 
would still support the widest range of VONs, although 
this paper will not actually solve the problem of 
identifying such a minimal ON.  Instead, we simply 
observe that given an ON with “sufficiently strong” 
guarantees of minimum bandwidth and packet loss, 
which secures its own infrastructure against failure and 
attack, it should be possible to build almost any desired 
property over this, provided only that the basic speed of 

the ON is adequate to support the desired speed of the 
VON even with this intermediary software in use. 
 
Notice that VON is somewhat like an abstract data type.  
In this perspective, the ON can be imagined as the base 
type from which other types are derived by refinement.  
A VON is created by instantiating an ON or VON but 
replacing some of its methods with modified ones that 
change the behavior of existing methods, or extend the 
interface with additional operations.  Were our VON 
proposal ever widely adopted, we believe that a natural 
way to present VONs to the application developer 
would be through ADTs available in the runtime 
environment of the application, much as Java treats 
aspects of the Java runtime environment.  The author is 
not aware of programming language research in which 
the network itself is treated as an ADT, but the step 
seems like a small and natural one.  

IV. The Next Generation Internet 
The NGI is a work in progress, and there is much debate 
about the best way to achieve even the widely accepted 
goals.   Nonetheless, most of the technologies that will 
be widely available within the next few years already 
exist.  Accordingly, this section speculates about the 
most probable evolution of the network.  Our goal is to 
understand the adequacy of the NGI for hosting 
applications needing VON capabilities: could one build 
an ON, and use it to build VONs, over the NGI? We 
focus on performance, security and quality of service. 

IV.1 Achieving Higher Performance 
It is certain that the NGI will be faster.  Widespread 
deployment of broadband technologies and optical fiber 
is expected to yield a 10- to 100-fold improvement in 
the performance of the Internet.  However, performance 
alone says nothing at all about isolation from undesired 
interference.  In particular, the contemporary Internet is 
much faster than the Internet of a decade past, yet 
interference problems are, if anything, much more in 
evidence.  The popular press routinely conflates speed 
with safety, but while speed is often necessary for 
safety, it rarely suffices. 

IV.2 Improving Security 
The NGI will also have much better security properties 
than does the current public Internet.  At the level of the 
network infrastructure, a security architecture is already 
being deployed.  At the application level, the NGI will 
see widespread availability of virtual private networks 
(VPNs).  A VPN is a software abstraction overlaid on a 
shared network, in which communication between end-
points belonging to the VPN is signed (for 
authentication), encrypted (for secrecy), or both.  Given 

 



a key infrastructure, a VPN offers a way to implement 
one form of VON – but only one form, and only one at a 
time: a given machine can only belong to a single VPN.   
Indeed, a VPN is similar to a firewall, except that 
whereas a firewall acts only at the periphery (where 
packets are filtered), a VPN acts at the network interface 
of each attached computer.   
 
In our own work, we have explored the extension of 
VPNs into a form of VON focused exclusively on 
security issues [Rodeh et. al. 1988].  Called a Dynamic 
Virtual Private Network (DVPN), our solution permits a 
single machine to belong to multiple VPNs, and 
provides fault-tolerance.  We also provide protocols for 
rapidly changing security keys when the set of 
participating computers or applications changes.  
DVPNs are limited in some respects.  For example, our 
work does not allow services like file systems or 
databases to reside in multiple DVPNs, and has no 
support for inter-DVPN communication; any serious 
DVPN implementation would need to reexamine such 
design decisions.  Nonetheless, it seems reasonable to 
assert that by extending the DVPN concept one could 
solve the infrastructure security needs of ONs and 
VONs.   

IV.4 Options for Supporting Isolation 
Although expressed in terms of isolation, one can also 
understand an ON or a VON as offering forms of many-
to-many quality of service.  This creates an apparent 
match between trends in the Internet  QoS domain and 
the needs of critical applications such as the ones we 
surveyed.  Internet QoS research seeks to overcome the 
erratic performance of the current Internet, which 
represents an obstacle to migration of telephony from 
the current dedicated infrastructure onto a packet-based 
one.   
 
Quite a few approaches to supporting quality of service 
have been advanced.  Among the most prominent are 
RSVP, RED and RIO, and a family of approaches called 
Diffserv [Zhang  1993, Floyd and Jacobson 1993, Clark 
and Fang 1997, Clark 1995].  All of these focus on 
providing guarantees of a type needed in telephony, and 
all are oriented towards one-to-one communication 
paths (some work has been done on one-to-many and 
many-to-many extensions of these methods, but 
consensus has yet to emerge).   
 
QoS solutions can be partitioned into two categories.  
The first category, exemplified by RSVP, operates by 
reserving resources along the route from source to 
sender for a period of time.  The second category 
operates by marking packets at the time they enter the 
network; the idea is that any resource reservation is 

done abstractly, by a service that tracks overall 
commitments and only accepts new requests if routers 
should have the capacity needed to accommodate them.  
Incoming packets are tagged as “in profile” or “out of 
profile,” and routers preferentially target out of profile 
packets when overload occurs.  Clark and others have 
shown that this approach yields excellent statistical 
guarantees while avoiding a costly traffic classification 
problem within the network.  Specifically, when using 
RSVP or similar schemes, if there are n endpoints in the 
network, a typical router may be asked to manage O(n2) 
connections.  The lookup needed to classify each packet 
passing through the router (so as to provide it with the 
appropriate form of service) becomes expensive, 
perhaps prohibitively so, and the use of resources may 
be inefficient.  Diffserv, while offering slightly weaker 
guarantees, avoids this costly lookup – a packet is 
classified at the edge of the network and the router need 
only concern itself with a single bit.    
 
It should be stressed that the properties offered by this 
approach are probabilistic.  For example, if network 
load or routing fluctuations cause network latencies to 
change suddenly, messages that were admitted at a 
steady rate (and within the sender’s profile) might arrive 
in a burst, perhaps exceeding the profile of the sender 
and overloading a router on the path.  In fact, one can 
identify any number of cases in which Diffserv would 
violate its guarantees.  The argument advanced by the 
Diffserv research community is that best-effort quality 
of service is often adequate.  Moreover, they see the 
approach as being more philosophically attuned to the 
prevailing style of the Internet community: it has an 
end-to-end feel to it, whereas RSVP appears to 
superimpose virtual circuits over the Internet’s basic 
packet structure.  
 
But rather than debate such issues, we should be asking 
ourselves whether either category of QoS mechanism is 
suitable for implementing ONs.  It seems that the 
answer is negative, in consequence of the need for an 
ON to emulate a dedicated network resource that may 
have many users.  Imagine a  power monitoring system 
configured to use a 10Mbit network accessible at 100 
endpoints, for example.  We now wish to run on an ON 
implemented using a QoS mechanism as the underlying 
building-block. 
 
It is quite possible that the burst load associated with 
any particular pair of endpoints (a source sending to 
some destination) could reach the performance limit of 
the ON.  Thus, in our example, the ON must guarantee 
an aggregated bandwidth of 10Mbits/second, but be 
capable of providing peak bandwidth to any pair of 
users that happen to generate the full load at a time 
when the ON is otherwise idle.   A connection-based 

 



resource reservation protocol might therefore be forced 
to reserve O(1002*10Mbits), or 100Gbits, of capacity at 
a central router.  Clearly, such a naïve implementation 
of resource reservation would be unsatisfactory. 
 
One can `speculate about various options for improving 
our naïve solution.  For example, we could dynamically 
allocate resources to endpoint-pairs, so that at any point 
in time, the aggregated allocation doesn’t exceed 
10Mbits/second, but with the allocation shifting around 
as needed.  Thus, if at time t0 process a sends 
5Mbits/second to process b, the remaining 5Mbits 
would be allocated to other uses.  At time t1 perhaps 
process a would stop sending and process b would 
attempt to consume the full 10Mbits, triggering a 
reallocation of resources.  But this would clearly entail a 
very sophisticated mechanism.  Shifting the allocation 
of bandwidth will take time, and requires a form of 
distributed coordination protocol that is hard to support 
with fault-tolerance guarantees.  We rule out this 
solution as overly complex. 
 
Similarly, one can imagine periodically multicasting the 
activity profile of the endpoints so that all endpoints 
have a reasonably current picture of the pattern of usage 
within the ON as a whole.  But this solution suffers 
from an n2 growth in overhead messages: as we scale 
the size of the ON up, the number of such messages will 
grow at least linearly in the number of endpoints, and 
each is a 1-n multicast.  Here, the multicast could be 
implemented using a simple scheme because reliability 
is probably not critical, but the background load looks 
intolerable.  Moreover, the higher the quality of data 
needed, the more overhead we pay.  With any lower 
quality of data, the quality of profile marking or 
prioritization may become unacceptably poor. 
 
Rather than continue on this line of speculation, 
however, we advance a stronger conjecture: that any 
VON solution based on a point-to-point reservation 
model or quality of service mechanisms will be 
intrinsically costly and scale poorly.  Furthermore, 
notice that both of the QoS mechanisms that seem most 
popular as candidates for the NGI are basically 
probabilistic: neither works well if the network itself 
comes under stress, changing routes or experiencing a 
failure.  Using these mechanisms to implement an ON is 
obviously going to be a very difficult problem, at best. 
If our hypothesis is correct, the NGI  is unlikely to 
represent a very friendly environment for applications 
seeking ON mechanisms.   

V. Alternatives for ON and VON 
Support 

The considerations just cited suggest that the NGI will 
be faster and more secure, but not “safer”, if the safety 
of critical applications requires VON-like functionality.  
However, such an outcome could be avoided.  We now 
present an informal proposal for an alternative way of 
building VONs that seems to be within the reach of 
current technology, and responsive to the need. 

V.1 Using Router Partitioning to 
Implement ONs 
Existing routers support router partitioning, whereby 
one ISP can supply networking connectivity to another, 
with guarantees of minimum throughput and priority. 
To use router partitioning, a provider configures the 
router to set aside some percentage of its resources 
(Figure 1), dedicating these to a particular flow.  Each 
incoming packet is classified by means of a flow 
identifier and treated as if it resides entirely within a 
virtual router defined by the resource subset allocated 
on behalf of that flow.  For example, if Global 
Domination Networks leases one-half the capacity of 
some router to Gotham Network Solutions, then each 
GNS packet would be labeled with the same flow 
identifier and the GNS routers on the network routes 
associated with the lease would set aside half of their 
resources on behalf of GNS.  This is done in a way that 
virtualizes the router on behalf of GNS: one can even 
imagine a scenario in which GNS packets are dropped 
(due to congestion) although the GDN “side” of the 
same routers is idle.  
 
It may seem that if GDN has excess resources available, 
it should in general offer them to GNS, but upon further 
reflection, it becomes clear that dropping packets when 
GNS reaches its contracted-for traffic level is necessary 
if the solution is to work correctly.  The problem is that 
protocols such as TCP are designed to back off as 
congestion starts to occur.  Suppose, hypothetically, that 
GNS was allowed to expend 20% more bandwidth than 
it had contracted for simply because GDN has excess 
capacity.  TCP will now be operating at a rate that 
represents a substantial overload.   Now, imagine that 
traffic surges on the GDN side, forcing GDN to cut 
GNS back to its contracted-for profile of resources.  The 
TCP protocol, rather than seeing “early warning” of 

Figure 1: Router Flow Partitioning
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impending congestion will suddenly experience high 
rates of packet loss and a brief period of disruption is 
very likely – one that would have been avoided if GNS 
was limited to the profile of services it paid for, in the 
first place.  We see, then, that for an virtualized network 
to operate correctly, it needs to provide a faithful 
imitation of a dedicated network even with respect to 
the limitations of such networks! 
 
Notice that router partitioning yields a kind of Overlay 
Network, implemented by one ISP on behalf of another 
ISP.  All of the traffic flowing through GDN on behalf 
of GNS seems to live within a single shared ON, 
competing with other traffic in the same ON, but not 
influenced in any way at all by traffic originating in 
other flows. 
 
Our proposal starts by imagining that we extend this 
existing mechanism into one that can support perhaps 
thousands or tens of thousands of flows, but otherwise 
behaves in the same matter.  In general, each ON will 
serve some large number of endpoints.  For example, 
power systems applications for a large region could 
include several hundred monitoring devices, all sharing 
a single ON, with a single ON flow identifier.  This is in 
distinction to the connection-oriented perspective that 
one sees in existing quality of service proposals, such as 
the ones reviewed earlier.   
 

V.2 Building VONs over ONs 
Power applications and similar critical networked 
applications will want more than dedicated bandwidth 
from its ONs.  A network used to control devices such 
as protection relays within the power grid should be 
reliable even if links or routers crash, suggesting that the 
physical configuration of the resources used to construct 
the ON may need to be carefully controlled (for 
example, we might require redundant routes between all 
pairs of endpoints).   
 
Broadly, we should imagine a world within which the 
core properties of the ON can be strengthened by 
layering network management and control software over 
the endpoints of the ON, for example: 

• A VON might require specialized routing 
• We may wish to authenticate the connection of 

a computer to the VON, and assign it a 
specialized session key for use while 
communicating in the VON 

• We may need to refresh these session keys 
periodically, or in cases where a computer 
leaves the VON and is  no longer trusted 

• We may wish to coordinate the signing or 
encryption of data 

• We may need to monitor loads and adapt to 
overload 

• The VON may require some special protocol to 
ensure reliability, such as the duplicate 
transmission rule outlined above 

 
Abstracting, we can say that a VON resembles what the 
distributed computing community call a “process 
group.”  The desired group communication properties 
would depend upon the needs of the application, and (in 
distinction to classical work on distributed computing) 
the network itself (the ON) would itself offer a basic 
level of guarantees, reflecting the dedication of 
resources on its behalf.  This last point is important, 
because it offers a foundation over which much stronger 
properties can be guaranteed. 
 
For example, consider the TCP protocol.  In a 
conventional network, one cannot really assert that a 
TCP connection is “reliable”, since such a connection 
can potentially break in the event of an infrastructure 
disruption, even if neither endpoint has failed.  With a 
TCP connection within a VON, the identical TCP 
protocol might be able to offer a stronger guarantee, 
such as the guarantee that if no more than one network 
link or router fails, the TCP connection will never break 
unless one of its endpoints crashes.  This specific 
guarantee would require a degree of redundancy within 
the ON, but one can imagine all sorts of low level 
guarantees, translating to all sorts of higher level 
properties visible through TCP and other protocols. 
 
Generalizing from this example, we can see that one 
builds a VON up from an ON by successively 
abstracting – layering one or more software-
implemented abstractions over the ON, so that each 
layer extends or strengthens the properties of the stack 
of layers and ON below it.  This is a way of building 
distributed protocols that has become popular over the 
past decade: it was introduced as the “streams” 
architecture of the Unix system then generalized by the 
x-Kernel [Peterson  1989], and adapted to group-
structured applications in our work on the Horus [Van 
Renesse  1996] and Ensemble [Hayden 1998] systems.  
Recent work has shown how to use formal methods to 
reason about, optimize, and prove properties of systems 
structured in this manner [Liu  1999][Birman  2000].  
Figure 2 illustrates the idea.  In 2a, we see the endpoints 
of a VON treating the ON as an abstract type.  Figure 2b 
illustrates the idea of stacking new subtypes 
(microprotocols) to produce new VONs with the same 
interface but transformed properties.  Figure 2c shows 
the result; in this case, with two VONs in use. 
 
Notice that we’ve made a leap here from talking about 
TCP, which is a point to point protocol, to talking about 

 



groups of endpoints representing the virtual access 
points to a VON, and finally to calling these set of 
endpoints a form of process group.  The idea is that 
even if the applications are unaware that we view them 
as participating in a process group, we might still station 
some small chunk of code next to the application to 
manage some aspects of the network connection it uses.  
For example, in implementing the DVPN architecture 
mentioned earlier, we placed a small key management 
application close to each DVPN participant; it was 
responsible for obtaining and tracking the DVPN key, 
which changed dynamically, and then rekeying the 
DVPN network driver using each new key as that key 
became available.  Similarly, these code stubs might 
take messages sent by the application and send more 
than one copy – perhaps one copy on each of two 
independent network routes.  In general, any form of 
control involving replicated data, replicated security 
keys, or coordinated actions can be implemented by an 

appropriate process group sitting next to the application 
and managing some aspects of its environment. 

Figure 3: Failure-independent routes in a network

 
Of course, we also have the option of making group 
communication more directly visible to the application.  
One could do so by replacing the standard IP multicast 
implementation with one that uses the identical interface 
but sending multicasts using the group communication 
tool.  Indeed, once one has this adopted this basic 
approach, it becomes clear that there are a great many 
things we might do on behalf of an application, so as to 
actually guarantee the properties that might traditionally 
have been implicit but critical. 

ONON ONON ONONONON ONON ONON

Figure 2a:  ON viewed as an abstract type

 
Given this perspective, it becomes possible to import a 
substantial body of knowledge about group 
communication into the VON arena.  The author, for 
example, has worked on four styles of group 
communication system:  

• Traditional best-effort group communication 
environments 

Interface to Ensemble is extremely flexible

Ensemble manages group abstraction
group semantics (membership, actions,
events) defined by stack  of modules

encryptencryptfilterfilter signsign

ftolftolEnsemble stacks
plug-and-play
modules to give
design flexibility
to developer

vsyncvsync

Figure 2b:  Stacking microprotocols in Ensemble

• Virtually synchronous group communication, 
with carefully managed group membership and 
multicast facilities (in addition to traditional 
point to point mechanisms of the sort normally 
seen in the Internet) 

• Secured group communication systems, 
providing authenticated join and keying both 
for the group as a whole and for point-to-point 
connections, as needed. 

• Probabilistic group communication, offering 
bimodal multicast and probabilistic 
membership tracking, for use in settings where 
scalability and stable throughput even when 
failures occur take precedence over absolute 
logical guarantees. 
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vsyncvsync
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vsyncvsync
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encryptencrypt
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RealReal--time group for video communicationtime group for video communication

Virtual Synchrony forVirtual Synchrony for
control andcontrol and
coordinationcoordination

Figure 2c:  Multiple VONs used in single system

 
Each of these could be understood as the infrastructure 
one might use in supporting some class of VONs.  
Moreover, this list illustrates just a few options within a 
spectrum of possible VONs.  Others include support for 
partition tolerance or mobility, specialized realtime 
guarantees, other types of security architectures, 
specialized protocols for video or other media 
tranmission, infrastructures which integrate 

 



management of the VON into application-level 
mechanisms such as automated restart facilities, and so 
forth. 
 
The key to our proposal is the idea of successively 
strengthening core properties by layering software over 
more basic VONs and ultimately over the underlying 
ON, with its strong isolation and resource allocation 
guarantees.  Lacking these basic guarantees, one could 
run the same sorts of protocols over the Internet, but 
would generally not arrive at the desired outcome, 
because the base case for proving many sorts of 
properties revolves around the properties of the 
underlying ON, and the isolation of the ON from 
external interference.  Given an ON with even weak 
isolation properties, however, one can often find ways 
to strengthen them.  In general, one should expect 
tradeoffs, such as paying communication overhead to 
gain higher reliability. 
 
But notice that not every form of ON can be used to 
support every possible VON.  An ON lacking a secured 
infrastructure may be intrinsically insecure and hence 
fundamentally inadequate for supporting certain types 
of secured VONs.  An ON that can be severely 
disrupted by a single router failure would be unable to 
support a VON requiring continuous throughput even 
when routers crash.  Among the many open questions 
about VONs, issues such as these stand out as requiring 
further study to determine the ultimate feasibility of 
responding to the apparent need. 

V.3 Building better ONs 
This observation motivates us to ask what properties 
ONs will need to have, and to what degree the 
underlying Internet mechanisms are adequate to provide 
them.   
 
Were we merely to support the extended router 
partitioning scheme described above, and to combine 
this with IPSec mechanisms to secure the routing and 
DNS infrastructure, the resulting ONs would support 
bandwidth isolation, but the degree of fault-tolerance 
against router failure and link failure would be limited.  
Specifically, while a router or link failure will 
eventually trigger a change in route (assuming that the 
network remains connected), the temporal properties of 
Internet routing protocols limit the speed of adaptation.  
It is likely that an extended period of disrupted 
communication would ensure, lasting for many seconds 
or even minutes.  Accordingly, our basic proposal is 
inadequate to support applications for which stronger 
guarantees are needed. 
 

It can be seen that for certain classes of applications, 
namely those needing stability even while a router or 
link failure is being detected and the necessary 
adaptations are still being performed, it will be 
necessary to provide redundancy.    At the time of this 
writing, one would normally do so using what is called 
a dual-IP naming architecture.  In this approach, each 
computer is assigned two IP addresses, and the physical 
network infrastructure is duplicated so that each 
machine has two or more network interfaces.  The intent 
of such designs is that even if machine A becomes 
unreachable for a period of time on one network, it may 
remain reachable on the second network under some 
other name, A’ (Figure 3).  A difficulty with dual-IP 
architectures, however, is that the existing Internet 
routing protocols lack provision for creating multiple, 
independent routes.  Thus, even if the capability of 
doing so exists, existing network routing protocols could 
easily chose to route messages from A to B and from A’ 
to B’ along the identical path, defeating the intentions of 
the dual IP configuration.  Additionally, even if one had 
some form of guarantee that dual IP addressing results 
in disjoint and failure independent paths between the 
respective address pairs, one could question whether 
this is the best way for the endpoints to take advantage 
of the dual network.  It is awkward to deal with 
processes using multiple names; more natural would be 
a networking infrastructure within which process A is 
always called A, and the infrastructure itself deals with 
dual addressing, redundant router paths, and the 
necessary mechanism. 
 
Such a vision leads to the following proposal.  Suppose 
that there were a way to deploy hardware redundantly, 
and that given an adequately redundant network, a way 
to obtain multiple disjoint paths between each pair of 
endpoints (and, for multicast applications, a way to 
obtain multiple, failure-independent routing trees).  
Then an ON might take advantage of this infrastructure 
by automatically duplicating packets, sending each 
packet once on each route (and similarly, for multicast 
routing). The potential for packet duplication is a 
property of the current Internet, so one can dispute the 
value of duplicate suppression within the ON, but if 
desired, this too would be a possibility.  
 
The idea of supporting disjoint redundant routes 
represents, we believe, an exciting direction for further 
study.  Existing Internet protocols suffer because both 
NAK packets and retransmissions typically follow the 
same routes that are followed by the initial data packet 
that was lost.  When a router becomes overloaded and 
begins to drop packets, this means that recovery 
mechanisms subject that router to additional stress, 
unless the protocol does some form of flow control, as 
in the case of TCP.  The Internet, then, is designed to 

 



suffer degraded performance during overload in part as 
a consequence of routing. 
 
But with redundant edge- and router-disjoint paths 
betweens source and destination, when a packet is lost 
on one path, one can imagine doing recovery on the 
other, potentially non-congested path.  Indeed, a 
protocol could potentially switch from a congested to a 
non-congested route dynamically as an alternative to 
choking back in the manner of current congestion-
control algorithms.  Such options are especially 
appealing when one considers reliability in multicast 
protocols, where large-numbers of receivers may 
depend upon steady data delivery: forward-error-
correction methods, for example, used on disjoint paths 
could be of great power and might tremendously 
improve the reliability of even the existing unreliable 
UDP and IP multicast protocols. 
 
Space constraints on this paper prevent us from 
exploring the options for building routing protocols with 
the desired structure.  This would not be a trivial 
undertaking: current protocols are designed to track 
shortest paths rather than independent paths, and any 
solution would also need to be dynamic, adapting to 
failures and recoveries.  Yet so much is known about 
routing that it would be surprising if such a problem 
were to prove intractable. 

VI. Technology Summary 
Table I summarizes the VON proposal.  In this section 
we briefly recap the various aspects of the proposal with 
an emphasis on aspects that would go beyond what 
existing technologies currently do.   
 
Packet marking and classification.  Our proposal 
requires that routers be capable of identifying packets 
belonging to ON flows and of matching the packet to 
the associated resource reservation.  For this purpose, 
we envision a single bit, per-packet, marking it as an 
ON packet (the IP header has room, although there are 
competing proposals that would use the remaining bits), 
a 4-byte identifier drawn from a global space of ON 
identifiers (this could be placed behind the IP header 
since it would be needed only if the bit is set), and of 
course the mechanisms needed for the router to do the 
necessary classification.   
 
As seen previously, the major criticism of most router 
classification mechanisms is associated with their cost, 
both in terms of the compute time expended within the 
router, and also the manner in which resource 
reservations scale as a network grows larger.  Unlike 
RSVP, which is the most widely criticized in this 
respect, our proposal would require modest numbers of 

ONs, because the number of ON configurations needed 
by an application tends to be small even if the size of 
the application is large: an ON is like an entire network, 
not like a point-to-point circuit.  Moreover, existing 
routers already do a similar classification on a small 
scale.  Accordingly, while recognizing this as the most 
challenging aspect of our proposal, we consider it quite 
feasible.   
 
Finally, we note that our VON concept offers ISPs a 
cost-effective way to respond to the QoS needs of 
customers and to bill for the associated services.  Just as 
large common carriers have little difficulty billing one-
another for leased resources and accounting for them, 
our proposal (which works in the same manner) simply 
scales a working facility up, in a relatively 
straightforward manner. 
 
Resource reservations and management.  Like Diffserv 
and RSVP, we do require some degree of resource 
management to track reservations and grant requests.  
Diffserv does this entirely abstractly, using centralized 
servers that maintain a theoretical model of resource use 
and grant or deny requests based on their theoretical 
impact on the router.  Earlier, we saw that this works in 
a statistical sense, although network dynamics can cause 
the guarantees to break down when a fault occurs or a 
transient overload significantly changes packet latencies 
in ways that could cause a burst load on a router.  The 
RSVP approach is more mechanical: each router on a 
given point-to-point path is asked to set aside resources, 
and the resulting lease must be renewed periodically to 
ensure that the router won’t release the associated 
resources for other uses. 
 
Our proposal combines elements of both of these.  Like 
Diffserv, we envision certain global resource 
management tasks, such as management of the pool of 
ON flow identifiers, which must be globally unique.  On 
the other hand, the routers themselves must set the 
resources associated with each ON to the side, which 
would require a leasing mechanism similar to the one in 
RSVP.  We presume an ON management service that 
would operate somewhat like the one for Diffserv, first 
checking the request against an approximation of the 
network state, then for apparently acceptable requests,  
but then performing a 2-phase commit to actually 
allocate the desired router resources.  It would seem that 
such a mechanism can be distributed using a form of 
loose consistency that is easily implement (somewhat 
like the DNS), hence we see no difficulty associated 
with this functionality, nor does it pose any major 
scaling challenges.  Like RSVP reservations, ours 
should probably be implemented as leases which need 
to be refreshed periodically. 
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Feature Extends… 
(Existing Technology) 

Observations 

et marked as 
raffic 

In or out of profile bit Internet packet header has available bits, although many 
proposals are competing for them 

 flow id RSVP connection ID While the IP header lacks an appropriate 4-byte field, the 
flow id is needed only when the ON traffic bit is set, hence 
this can be accommodated as the first 4 bytes of the payload 
for ON packets 

uter classifica-
ask, resource 
vations 

RSVP resource leases, 
router flow partitioning 

The form of router flow partitioning we propose is similar 
to an existing router feature, but would need to support far 
more flows.   Routers would genuinely set-aside resources 
on behalf of these flows. 

age 
vations 

Diffserv reservation 
manager service 

As in Diffserv and RSVP, a new flow must establish a lease 
on router resources needed, and renew that lease 
periodically.   

 fault-tolerance Dual-IP networks, but these 
are inadequately supported 
in the existing Internet 

Unlike existing Internet routing, a fault-tolerant VON 
would require fault-tolerant ON infrastructure support: the 
ability to create router- and link-disjoint independent paths 
between each pair of senders, and a mechanism for sending 
duplicate packets down those paths. 

entication Public Key Infrastructure Emerging PKIs have rich feature sets and can be used to 
implement any desired authentication mechanism 

 services IP, TCP, IP multicast A VON supports the normal Internet protocols, so these 
would run without change.    Even so, these standard 
protocols might offer stronger guarantees emerging from 
the properties of the underlying VON, such as real-time 
properties or the guarantee that a TCP channel won’t break 
unless an endpoint crashes. 

tended services New A VON would often offer additional “new” communication 
protocols, such as scalable reliable multicast.  The protocols 
supporting these new services would be implemented and 
proved correct by drawing on the guarantees of the 
underlying ON.  They can be seen as offering a contract to 
the application: “if you run this protocol on such-and-such a 
VON, you will be guaranteed the property that…” 

N management New As a well-defined subnetwork residing within a shared 

Internet, a VON offers the possibility of sophisticated 
management, such as monitoring services, security policy 
enforcement, intrusion detection and response, load 
monitoring and overload management, etc. 

1: Technologies Required in Support of ONs and VONs.  Extensions that substantially exceed what 
I is already expected to include are marked with an asterix;  these raise substantial research issues.



ON fault-tolerance issues.  We’ve seen that a fault-
tolerant ON would need to offer path-disjoint routes 
between pairs of sources or, in the case of multicast, 
path-disjoint multicast routing trees.  Although non-
trivial, such a vision accords with what one builds when 
configuring a traditional LAN to support dual IP 
routing.  Indeed, as discussed previously, one could 
argue that the handling of dual IP addressing is 
currently defective, since even if multiple IP addresses 
are used, one has no guarantee that routes between 
disjoint addresses will  have independent reliability or 
latency properties.  Our approach would yield 
substantial new options for reliability even when using 
traditional Internet protocols such as TCP and IP 
multicast, while also creating a building block of great 
power for use in higher-level protocols. 
 
Authentication.  Although our approach assumes that 
one could authenticate membership in VONs, we see 
nothing about this that couldn’t be solved using 
emerging public key infrastructures and certification 
authorities.  Even group keying, which involves 
maintaining a key shared among the endpoints of the 
VON and refreshing that key as membership changes, is 
a well understood and largely “solved” problem. 
 
Basic services.  A VON would support the same basic 
services as a normal Internet: DNS, routing, IP, UDP, 
TCP, IP multicast, etc. 
 
Extended services.  Here, we would draw heavily on the 
group communication mechanisms cited earlier both to 
offer the end-user access to new kinds of multicast and 
communication protocols, and also to manage the 
periphery of the VON in such a manner as to 
“precondition” traffic where the VON properties require 
it (for example, if an application must be forced to 
respect a real-time property for which it has contracted). 
 
Earlier, we noted that it would be appealing to think of a 
VON as a new form of abstract data type, instantiated 
from a class within which the ON is the base element, 
and with each VON extending the ON or VON from 
which it was derived.   
 
VON management.  The fact that a VON has a well-
defined set of endpoints and mimics some form of 
dedicated network makes it appealing to think about 
new kinds of network management tools, similar to the 
ones used in modern LANs, but extended for 
management of the VON.  These might include load and 
other performance monitoring mechanisms, intrusion 
detection services, facilities for reconfiguring the VON 
when conditions change or an attack is detected, and so 
forth.  Network management is, today, a costly problem 
that grows difficult as a network grows to include 

Internet links; with our VON proposal, each VON has 
predictable behavior, making it far more reasonable to 
talk about detecting deviations from intended profiles of 
use or load, and hence much more reasonable to talk 
about managing the network in a pro-active manner. 

VII. Conclusions 
We have sketched an ambitious proposal to redesign the 
Internet through a series of relatively modest 
interventions, but with significant implications.  As seen 
in Table I, our proposal is constructed from existing 
mechanisms, although extended in non-trivial ways, and 
with significant new properties that result from the 
extensions. 
 
 Fleshing out this proposal into a full-fledged 
technology would be a major undertaking.  However, 
the primary intention of the author is to identify an 
unrecognized requirement upon the NGI.  We do wish 
to argue that the problem is tractable, but not that we 
solved the problem, and far more work would be 
required to do so.  The contribution of our study is to 
suggest that critical applications often depend on a form 
of isolation, and that, as things stand, the NGI will not 
support.   While we do suggest that VONs could be 
constructed and would respond to the need, we also 
identified a number of technical challenges which 
would need to be overcome before a working VON 
could be deployed.  These include support for a router 
resource partitioning mechanism, implementation of a 
service to manage router bandwidth and other resources 
in support of reservations, new routing mechanisms 
supporting redundancy, and the associated management 
infrastructure.   Our proposal, then, would require a 
considerable research and implementation effort. 
  
As things stand, developers of critical applications will 
be challenged by insurmountable barriers.  Yet it is 
within our technical reach to solve this problem, and 
this can be done in a way respectful of standards that 
builds on existing Internet router capabilities using 
services similar to ones already in the pipeline.  It would 
be a great shame if the NGI fails to do seize this oppor-
tunity to create a better communications infrastructure. 
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