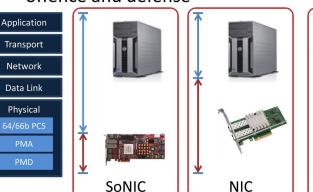
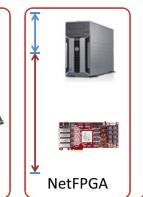
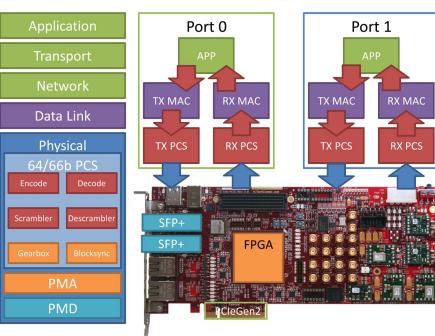
SoNIC: Reliable Communication in High Assurance Clouds

Ki Suh Lee, Han Wang, Hakim Weatherspoon **Computer Science, Cornell University**

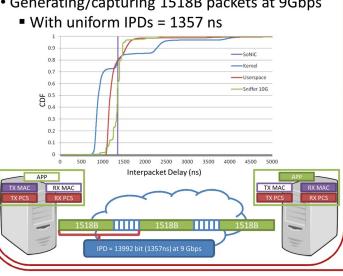

Military depends on Network


- Challenges:
 - Availability: Packet loss
 - Security: Rogue routers and end-hosts
- Requires software access to entire network stack


SoNIC

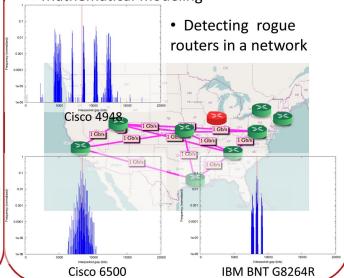
- Software-defined Network Interface Card
- Goal: Control every bit in software in realtime
- Implements the PHY in software
 - Enabling control / access to every bit in realtime
 - With commodity components
 - Thus, enables unique network capabilities: offence and defense

SoNIC Design

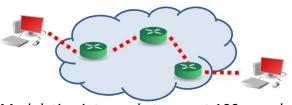


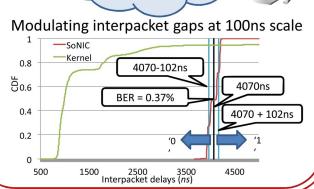
SoNIC separates what is sent and how it is sent

Unique Network Capabilities


Network Measurements

- Basics for network research
- Generation: precise control of interpacket gaps
- Capture: count # of bits between packets
- Generating/capturing 1518B packets at 9Gbps


Network Characterization


- Characterizing network components
- Routers perturb interpacket gaps differently => Mathematical modeling

Network Covert Channels

- Embedding signals into interpacket gaps.
- Large gap: '1'
- Small gap: '0'

Contributions

- Unprecedented access to the PHY
- Cross-network-laver research
- Precise control of IPGs
- Design and implementation of the PHY in software
- Novel scalable hardware design
- Optimizations / Parallelism

Status

- Measurements in large scale
 - Mini DCN with 16 boards
- GENI testbeds
- 40 GbE SoNIC

http://sonic.cs.cornell.edu

Sponsored by DARPA Mission-oriented Resilient Cloud Programs, DARPA Computer Science Study Group, NSF Future Internet Architecture, and NSF CAREER