Scalability of the Microsoft Cluster Service

Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Ted Chia, Katherine Guo
Department of Computer Science, Cornell University'
vogels@cs.cornell .edu

Abstract

An important argument for the introduction of software
managed clusters is that of scale: By constructing the
cluster out of commodity compute dements, one ca,
by simply adding new elements, improve the reliability
of the overall system in terms of performance and in
availability. The limitsto how far such a duster can be
scaled seems to be dependent on the scalability of its
management software, which inits core has a collection
of digributed agorithms to guarantee the rred
operation of the duster. The complexity of these
algorithms makes them a vulnerable component of the
system in terms of their impact on the overdl
scaahility of the system.

This paper examines two of the distributed components
of the Microsoft Cluster Service [8] that are mogt likely
to have an impact on its scaability: the membership
and the global update managers. The first sections of
the paper will provide some genera background on
these distributed services and scalability isaues. After
that the dgorithms used to implement these service ae
described in detail and an analysis of their impact on
scaability is given. The scalability analysisis based on
an off-line analysis of the dgorithms as well as the
results of online experiments on a duger with a, in
MSCS terms, large number of nodes.

1 Distributed Management

In dstributed management software two comporents
are considered basic building blocks: a consistent view
abou which nodes are online, and the &ility to
communicate with these nodes in an all-or-nothing
fashion [2].

The first building bdock is captured in a membership
service al nodes participate in a @nsensus algorithm
to agree on the aurrent set of nodes that are up and
runnng. The system makes use of a failure detection
mechanism that monitors heartbeat signals or adively
polls other nodes in the system. The failure detector
will signal the membership service whenever it suspects
the failure of a node in the system. The membership
service will read to thisby triggering the exeaution of a
distributed algorithm at al the nodes in the system, in

which they agree upon which nodes have failed and
which are gill available. The joining of a new member
in the system, does not require the nodes to run the
agreement protocol, but can dften be handed through a
simple update mechanism.

The second fundamental component provides a special
communication facility, with guarantees that exceed the
properties provided by regular communication systems.
Often in the processof managing a distributed system it
is necessary to provide the same information to a set of
nodess in the system. We @n simplify the software
design of many of the cmponents on the receiving side
of thisinformation if we can guarantee that if one node
receives this information, that all nodes will receive it.
This atomicity guarantee dlows nodes to act
immediately upon reception of a message, without the
nead for additional synchronization. Often this
atomicity guarantee is not sufficient for a system, as it
does not only need be asaured that all nodes will receive
the update, but that all nodes will see the updatesin the
same order. This total order property makes the
communication module avery powerful mechanism in
the control of the digtributed operation o the distributed
system.

2 Practical Scalability

This paper examines the membership and
communication services of the Microsoft Cluster
Service (MSCS) with an emphasis on their impact on
the scaability of the system. MSCS, as dhipped,
officialy suppats 2 nodes, but in reality the software
can be run on a 16-node NT server cluster. At Cornell
the software is extended to run on 32 nodes and a
research project is underway to make the system scale
to larger numbers.

Making systems scale in practice centers around the use
of mechanisms to reduce the dependency of the
algorithms on the number of nodes. In the past two
approaches have been succesdul in finding solutions to
problems of scae The first is to reduce the
synchronous behavior of the sysem by designing
messaging systems and protocols that allow high levels
of concurrent operation, for example by de-coupling the

" The reliable duster computing research of the Reliable Distributed Computing Group at the department of Computer Science a Cornell
Universty is supported by DARPA/ONR under contract NO01496-1-10014and by Intel Corporation and Microsoft Corporation.

sending of messages from the «llecting of
adknowledgements. The second approach is to reduce
the overall complexity of the system. By building the
system out of smaller (semi-)autonomous units and
conneding these units through hierarchica methods,
growing the overall system has no impact on the
mechanism and protocols used to make the smaller
units function correctly.

A third, more radicad approach, which is under
development at Cornell, makes use of gossp based
disemination algorithms. These techniques
significantly reduce the number of messages and the
amount of processng needed to reach a similar level of
information sharing among the duster nodes.

Given that cluster systems such as MSCS are used for
enterprise computing, any ingability of the system can
have severe eonomic results. There is a continuols
tradeoff between resporsive failure handing and the
cost of an erroneous auspicion. The system needs to
detect and respond to failures in a very timely matter,
but designers may choose a more nservative
approach given the significant cost of an unnecessary
reconfiguration of the system, caused by an incorrect
failure suspicion. In general cluster server systems run
compute and memory intensive enterprise applications
and these systems experience a dgnificant load at
times, reducing the overall resporsiveness Scaling
failure detection needs intelligent mechanisms for fault
investigation [6,11] and requires the fail ure detectors to
be &leto learn and adapt to changes [7].

3 Scalability goalsof MSCS

The Microsoft Cluster Service is designed to suppat
two nodes, with a potential to scale to more nodes, but
inavery limited way. MSCS succesdully addresses the
neels of these smaller clusters. The duster management
tods are aggnificantly improvement over the airrent
practice and they are a major contribution to the
usability of clusters overall.

The reseach reported here is concerned with scaling
MSCS to larger numbers of nodes (16 - 64, or higher),
which is outsde of the scope of the initidl MSCS
design. Thereare three areas of interest:

1. Can the aurrently used distributed agorithms be a
solid foundation for scalable clusters?

2. Arethere any architecdural bottlenecks that should
be addresed if MSCS needsto be scalable?

3. If MSCSisextended with development support for
cluster aware applications are the airrent
distributed services agood basisfor these tool s?

This paper should not be seen as critician of the
current MSCS design. Within the goals set for MSCS it

functions correctly and will scde to numbers larger
then originally targeted by the duster design team.

4 Cluster Management

The dgorithms used in MSCS for membership and total
ordered messaging are a direct derivative of those
developed in the ealy eighties for Tandem as used in
the NonStop systems [3,4]. Nodes in a Tandem system
communicated via pairs of proprietary inter-processor
busses, which, in 1985, provided a 100 Mbit/second
transfer rate. Parts of the messging side of the
agorithms was implemented in interrupt handlers to
provide minimal system overhead.

Although MSCS has a kernd module that implements
some of the messaging and failure detection, the
membership and doba updete algorithms are
implemented in an NT service, the Cluster Service,
which runs at user level. The Cluster Service holds in
total 11 managers, each resporsible for a different part
of the cluster service functiondity. Next to the
membership and communication managers, there ae
managers for resource and failover management, for
loggng and checkpointing, and for configuration and
network management.

In the following sections three of the components are
examined in detail: first the kernel modue which holds
the duster communication and failure detection
functionality. Secondly the join process and the failure
reonfiguration of the membership modue are
anadyzed. The last analysis is that of the global update
communication module.

5 Cluster Network

MSCS provides a kernd based cluster network
interface, ClusNet, which presents a uniform interface
to networks available for intra-cluster communication.
ClusNet supports basic datagram communication to
each of the nodes, using an addressng scheme based on
smple node identifiers which are asdgned to nodes
when they are first configured for use in the duster. To
suppat reliable communication ClusNet provides a
transport interface used by MS-RPC.

ClusNet is capable of managing a redundant
networking infrastructure, automatically adapting
packet routing in case of network failure.

5.1 Node Failure Detedion

MSCS implements its Falure Detection (FD)
mechanism using heatbeas. Periodicdly every node
sends a sequenced message to every other node in the
cluster, over the networks that are marked for internal
communication. Whenever a noce detects a number of
consecutive missng heatbeats from ancther node it
sends an event to the duster service which uses this

event to activate the membership reconfiguration
module.

In the current MSCS configuration heartbeats are sent
every 1.2 seconds and the detection period for a node
suspicion is 7.2 seconds (6 missed heatbeats). The
timing values are not adaptive.

The duster network module does not exploit any
broadcast or multicast functionality, and thus each
heatbeat resultsin (number_of nades-1) point-to-point
datagrams. In ou test setup of 32 nodes, the duster
badckgrourd traffic related to heatbedsis 800 messages
per second. With 32 nodes active and an otherwise idle
network the mechanism works flawlessand the packet
loss observed was minimal. Tests which replaced the
Fast-Ethernet switches with hubs showed that the
padket trains sometimes caused sgnificant Ethernet-
level collisons on the shared medium. Adding
processng load to the systems resulted in variaions in
the inter-transmisson periods. False suspicions were
never seen.

When adding processng load and additional load on the
network frequently single heartbeat misses where
observed, but the vaues for generating a failure
suspicion event so conservative that never any fase
suspicions were generated.

6 Node Membership

The MSCS membership manager is desgned into two
separate functional modues. the first handes the
joining of nodes and a seaond, regroup, implements the
consensus algorithm that runsin case of a node fail ure.

6.1 Join

The join algorithm starts with a discovery phase in
which the joining node attempts to find other nodes in
the duster. If this fail s the node tries to form a duster
by itself, the details of the cluster-form operation are
outside of the scope of the paper. After the node has
discovered which cluster nodes are currently running it
selects one of the nodes and petitions for membership
of the cluster. The selected node, dubbed the sponsor,
announces the new node to al active duster members,
transfers all the up-to-date duster configuration to the
new node, and waits for the node to become active. The
different phases of the join and their distributed
complexity are described in cetail in the following

paragraphs

Phase 1: Discovery. When a cluster service starts is
attempts to connect to each of the other known nodesin
the duster, using RPC over a regular UDP transport.
This sporsor discovery mechanism has a high degree of
concurrency: a thread is gtarted for each connection
probe. The joiner waits for al threads to terminate,
which occurs after the RPC binding operation fail s after

3000
A/

2500 /\/\/ /

2000 /\/\/_/\/\

1500 /\//\J“ Y

1000

500

milliseconds

25
28 |
31

LN e s s s s
— < N~ o o™ ©o o N
— — — — N

#nodes

Figure 1. Join latency under ideal conditions

atime-out or when a connection is established. As the
joiner waits for all threads to terminate, the delay the
joining node experiences is based on the time-out
period of an RPC connection to a single hode that is not
up. The timeout value for RPC out-of-the-box is
approximately 30 seconds, but it can be manipulated to
reducethe discovery phaseto 10 seconds.

In all observed cases, the joining nock always slected
the holder of the dugter IP addressto sponsor its join.
The duster IP address is a Single addressthat migrates
to a node that functions as the access point for
administrative purposes: if the duster isrunring thereis
always a node that holds this IP address. By modifying
the startup phase to start by attempting to connect to
this addressfirst before probing al the other nodes, it is
possble to reduce this phase of the join process to
under a second. This approach aso avoids garting a
number of threads that is equal to the number of nodes
inthe duster.

Phase 2: Lock. From the nodes that are up, the joiner
selects one node to sporsor its membership in the
cluster. The first action by the sponsor is to acquire a
distributed dobal lock to ensure that only a sngle join
isin progress Acquiring of the lock is performed using
aglobal update (GUP) method.

The use of GUP makes this phase is dependent on the
number of active nodes. Detail s on the performance and
scdability of GUP can be fourd in section 7.

Phase 3: Enable Network: Using a sequence of 5 RPC
cdls to the sporsor the joiner retrieves all information
on current nodes, networks and network interfaces.
Following this the joiner performs an RPC to each
adive node in the cluster for each interface anode is
listening on, and the contacted node in return performs
an RPC to the joiner to enable symmetric network
channels. After this squence the node seaurity
contexts are established which again requires the
joining node to contact al other active nodes in the
cluster, in sequence.

This phase depends on the number of active nodes in
the duster. An unoaded 31 nodes cluster, on average,
performs this sequence of RPC's in 2-4 seconds. On a
moderately loaded cluster, frequently this phase takes
longer then 60 seconds, causing the join operation to
time-out at the sponsor, resulting in an abort of thejoin.

Phase 4: Petition for M embership: The joiner requests
the sponsor to insert the node into the membership. This
is a5-step processdireded by the sponsor.

1. The sporsor broadcasts to all current members the
identification the joining node.

2. The sporsor sends the membership algorithm
configuration data to the joiner

3. The sporsor waits for the first heartbeat from the
new joiner.

4. The sporsor broadcasts to al current members that
thenodeisalive

5. The sporsor notifies the joiner that it isinserted in
the membership

The broadcasts are implemented as sries of RPC call s,
one to each active node in the duster. On an urioaded
cluster and retwork the serialized invocation d RPC to
30 nales takes between 100 and 150 milliseconds.
When loading the systems with compute and 10 tasks,
the RPC times vary widdy from 3 millisscond to 3
second per RPC. Broadcast rounds to all 30 nodes were
observed taking more then 20 seconds to complete
(with exceptions up to 1 minute). Asthis phase is under
control of the sporsor the join isnot aborted because of
atime-out. It can abort on a cmmunication failure with
any o the nodes.

In step 3the detection of the new heartbeat is delegated
to ClusNet, which performs checks every 600
millisescond, resulting in an average waiting period
between 0.6 and 1.2 s2oonds

Phase 5: Database synchronization. The joiner
synchronizes its configuration dbtabase with the
sporsor. In the experimenta setup this database was of
minimal size and rever out-of-date. Asthe retrieving of
the database updatesis not depended on cluster size, not
further tests were performed in this phase.

Phase 6: Unlock. The newly joined node uses its access
to the globa update mechanism to broadcast to al
nodes that it now is full operation and that the global
lock should be released.

The join operation is very much dependent on the
number of nodesin the system. Figure 1 show the times
for ajoin under optimal condtions. All RPC callsin the
algorithms are seriadized and at minimum there are (10
+ 7 * number_of_nades) calls. Joining the 32" nade to
the duster requires at least 227 sequential RPC's. This
approach collapses under load, frequently it is
impassble to join any nodes if only a moderate load is

»»»»»»» 2 failures 1 failure

40000

35000

30000

25000

20000 s

#message

15000

10000

5000

Figure 2. Number of messagesin the system during regroup

placed on the nodes and the system has more then 10-
12 nades.

6.2 Regroup

Upon the receipt of a node failure event generated by
ClusNet the Cluster Service starts the reconfiguration
algorithm, dubbed regroup. The dgorithm runs in 5
phases, with the transition to each new phase
determined after itsis believed that al other nodes have
finished this phase, or when, in the firs two phases,
timersexpire.

During regroup the nodes periodicaly (300ms)
broadcast their current state information to all other
nodes using urreliable datagrams. The date is a
collection of bitmasks, one for each phase, describing
whether anode hasindicated it has passed a phase. It is
not necessary for each node to have head for each
other node in a phase; information abou which other
nodes a atain node has heard o is ared. For
example if node 1 indicates that it has received a
regroup message from node 2, node 3 uses this withou
that it actually needs to receive a message from node 2
in that phase. Also included in the date is a
connedivity matrix in which nodes record whether they
have seen messages from the other nodes and what
connedivity information has been recorded by the other
nodes.

The 5 phases of the regroup agorithm are the
following:

Phase 1: Activate. Each node waits for a local clock
tick to occur so that it knowsthat itstimeout system can
be trusted. After that it starts sending and collecting
status messages. It advancesto the next stage if

1. All current members have been detected to be
adive (e.g. there was afal se suspicion),

2. If thereis one snglefailure and aminimal time-out
has passed or,

3. When the maximum waiting time has elapsed and
several members have naot yet responded.

The minimum timeout for phase 1 is 2.4 seand, if all
but one node have resporded in this time period it is
asaumed that there was a dnge falure axd the
algorithm moves to the next phase. If multiple nodes do
not respord, the dgorithm waits for 9.6 seconds to
move to the next phase. If for some reason the regroup
algorithm times out in a different phase or when there
are @scading starts of the regroup algorithm at several
nodes, the dgorithm executes in cautious mode and
aways waitsfor the maximum timeout to expire.

Phase 2: Closing. This gage determines whether
partitions exig and whether the current node is in a
partition that should survive. The rules for surviving
are

1. The current membership contains more than half
the original membership.

2. Or, the arrent membership has exactly half the
original members, and there ae d least two
members in the current membership and this
membership contains the tie breaker node that was
selected when the duster was formed.

3. Or, the original membership contained exactly two
members and the new membership only has one
member and this node has access to the quarum
resource.

After this the new members select atie breaker node to
use in the next regroup execution. This tiebreaker then
checks the @nrectivity information to ensure that the
surviving group isfully connected. If nat it prunesthose
members that do not have full conrectivity. It records
this pruning information in its regroup state, which is
broadcast to all other nodes. All move to stage 3 upon
receipt of thisinformation.

In case of incomplete @nnectivity information the
ticbreaker waits for an additional second to alow al
nodesto respond.

Phase 3: Pruning. All nodes that have been pruned
because of ladk of connectivity halt in this phase. All
others move forward to the first cleanup phase once
they have detected that al nodes have received the
pruning decision (e.g. they are in phase 3).

Phase 4. Cleanup Phase One. All surviving nodes
install the new membership, mark the nodes that did not
survive the membership change as down, and inform
the duster network to filter out messages from these
nodes. Each node's Event Manger then invokes locd
cdlbadk handersto naify other managers of the failure
of nodes.

Phase 5: Phase Two. Once dl members have indicated
that the Cleanup Phase One has been succesdully
executed, a second cleanup callbadk isinvoked to allow

Update 6

Figure 3. Globa Update Sequence

a oordinated two-phase deanup. Once dl members
have signaled the completion o thislast cleanup plase
they move to the regular operational state and seize the
sending of regroup state messages.

The regroup algorithm in its first two pheses is timer
driven and the dgorithm makes progress independent
of the number of nodes in the cluster. The transitions of
the next 3 phases are dependent on the number of nodes
in the system, but the "information sharing” mechanism
makes the system robust in deding with sporadic
message loss

The state information is broadcast by sending point-to-
point datagrams to each node in the duster. With an
inter-transmisson period of 300 millisecond, and 31
nodes in the duger, this generates a badkgrourd traffic
of over 3000 messges/second. A single failure
reconfiguration has an average runtime of 3 seconds
and thus generates around 10,000 messages. A two-
noce falure, with a full running cluger is likely to
generate between 30,000 and 40,000 messages. Figure
2 detail s the observed messages in the system during

regroup.

7 Global Update Protocol

It is essential for a distributed management system to
have acessto a primitive that allows consistent state
updates at al nodes. MSCS uses the Global Update
Protocol (GUP) for this purpose. Although the protocol
is described as providing atomicity, its implementation
has the stronger property of providing total ordering to
its update messages.

When a node starts an globa update operation, it first
competes for a transmisson lock managed by a node
that is assgned the functionality of the locker node.
Only one transmisson can be in progressat a time. If
the sender can not obtain the lock it is queued on the
lock waiting list and blocks urtil it reaches the head of

300

250

200

150

milliseconds

Figure4. latency of GLUP uncer ideal conditions

the queue. With the lock request the sender aso
tranamits its update information to the locker node
which appliesit locally, and stores the message for |ater
replay under certain failure scenarios. While holding
the lock the sender tranamits its update to dl other
adive nodes in the duder and terminates the
transmisgon with a final message to the locker node
which releases the lock (seefigure 3).

To transmit the messages to all other nodes, the sender
organizes the duster nodes into a drcular list, ordered
by Nodeld. After it acquired the lock the sender send its
updates starting with the node that is after the locker
nock in the lig. The sender works through the list in
order, wrapping when it reaches the last noce in the
cluster to the first node and stops when it once again
reaches the locker node. The transmisson is finished
with an unlock message to the locker node.

Acquiring the lock before performing the updates
guaranteesthat only one update isin progressat a given
time, which gives the protocol the tota ordering
property. Atomicity (if one surviving node gplies the
upckte, al other surviving nodes will) is adieved
through the implementation of a number of fault-
handling scenarios.

1. The sender fails. the locker node takes over the
transgmisgon and completesiit.

2. Arecever fails: wait for the regroup to finish and
then finish the transmisson.

3. Thelocker node fails: the next node in the node list
is asdgned locker functionality and the sender
treatsit as such.

4. The sender and locker fail: if the node following
the locker has received the update dready, in its
role as new locker it takes over the transmisgon.

5. All nodes that received an update and the sender
fail: pretend the update never happened.

‘ 2 Kbytes ——— 50 bytes

140

120

o]
\

#message/second
8 8
-

Figure 5. GLUP throughput under ideal conditions

The protocol is implemented as a series of RPC
invocations. If an RPC fails, the sender waits for the
regroup algorithm to run and install a new membership.
GUP will then finish the update series based on the new
membership.

Given the drict serial execution of the protocal, its
performance is strongly dependent on the number of
nodes in the system. The implementation enforces no
time bourd on the exeaution of an RPC and any node
can introduce unbourded delays as long as RPC keep-
alives are being honored.

Repeated measurements show huge variations in
results, with the variations being amplified as the
number of nodes increases. When a moderate load is
placed on the nodes it becomes imposshle to produce
stable results. These variaions can be contributed to
the RPC trains, which repeatedly transfer control to the
operating system while blocking for the reply. Upon
arrival of the reply at the OS level, the Cluster Service
neals to compete with other applications that are
engaged in 10, to regain CPU control. The non
determinism of the arrent load date of the system
introduces the variances.

The latency of the protocol in an ideal setting is shown
in figure 4, the message throughput in figure 5. With 32
nodes the system can hande 6 small (50 bytes)
updates/second or 4 larger (2 Kbytes) updates/second.

With systems under a load the protocol bregks down
with more then 12 nodes in the cluster. With 10 nodes
frequently transmissons are observed that take 2-5
seoonds to complete. With 32 nodes transmisgon times
up to one minute were recorded.

8 Discusson

When evauating the scalability of the distributed
components of MSCS it is necessary to separate two

issles. the dgorithms used and ther
implementation.

particular

8.1 Failure Detedion

MSCS is willing to tolerate along period d silence (7
sends) before a failure suspicion is raised. This
alows for the implementation of medianisms that can
easily deal with large number of nodes. The important
scde factor is the number of messges that the nodes
need to process both at the sending and the receiving
side. Implementing the heartbeat broadcast using
repeated pdnt-to-point datagrams does not introduce
any problems with 32 noas, but there is a dear
processng penaty at the sender and it will limit the
growth to larger numbers.

In an urgtructured heartbeat scheme (every node sends
heatbeats to al other nodes), the load on the sender
and onthe network can be significantly reduced by
using a true multicast primitive for disseminating the
heatbeats. It also removes the sender’s dependency on
the number of nodes in the system. However, the
number of messages a receiver has to process remains
propartional to the number of nodes in the system.

More dructured approaches have been proposed to
reduce the overall complexity of failure detection by
imposng a @rtain structure on the dudger, and
localizing failure detection within that structure. A
popuar approach is to arganize the cluster nodes in a
logica ring [1,5] where nodes only monitor neighbor
nodesin the ring and a token rotates through the ring to
diseminate status information. In this scheme however,
the token rotation time is dependent on the number of
nodes, and the scheme thus has clear scal ability limits.

Ancther aspect of scaling failure detection is the
increased chance of multiple concurrent node failuresin
the duster. The MSCS mechanism handles multiple
failuresjust as efficient as single fail ures, while most of
the structured fail ure detection schemes have problems
with timely detection d multiple failures and fast
reconfiguration of the imposed structure.

Currently the most promising work on fail ure detection
for larger sysems is the use of gosip and aher
epidemic tedhniques to dsseminate availability
information [6]. These detectors monitor hunded's of
nodes while gill providing timely detection, withou
impasing any significant increased load on nodes and
networks.

8.2 Membership Join

The observation that it frequently was imposshle to
join the 15" or higher node into the duster is an artifact
of the fact that MSCS was not implemented with alarge
number of nodes in mind. The join reject happens in
the phase that is not under control of the sponsor node
and where the new node is setting up a mesh of RPC

bindings and seaurity contexts with all other active
nodes. With 32 nodesthis phaseiscloseto a 100 RPC's
and any load on the nodes causes significant variations
in these serialized executions.

There is no fundamental solution to the problem; if the
RPC infrastructure needs to be maintained, the setup
phase is needed and some tolerance is nealed to allow
the mesh to be established. A possble solution would
for the joiner to update the sponsor on its progressin
this phase to avoid ajoin rejection.

8.3 Membership Regroup

The membership reconfiguration algorithm works
correct under al tested circumstances, independent of
the number of nodes used. There are two mechanisms
that ensure that the operation performs well, even with
a larger number of nodes: (1) The operation is fully
digtributed, the congant broadcasting of state dlows
noce to rely solely on loca observation d global state.
(20 The sharing of “l-have-heard-from-node-X”
information among nodes, makes that the nodes can
move to the next phase without having received status
messages from all nodes.

Given that a node fail ure suspicion is not raised until 7
seoonds of silence by a node and the first phase of
regroup waits for an additional 3 seconds, a problematic
nocde has 10 seconds to recover from some transient
failure state. As no fase suspicions were ever
observed, the timeoutsin the first two phases of regroup
can be considered to be very conservative. In dl
observed cases the current membership state was
aready egablished well within a second, the remaining
time (2-9 seconds) was gent waiting for the failed
nodes to respond. As the firg phase is dominant in the
execution time of the whole regroup operation, a
reduction in time @n be ahieved by combining the
failure detection information with the observed regroup
state.

A major concern in scaling the regroup operation is the
number of messages exchanged. A typical run with 32
nodes generates between 10,000 and 4Q000 messages.
The status message broadcasts are implemented as
series of paint-to-point datagrams, which has two major
effects: (1) the number of messages generated for the
regroup operation grows exponential with the number
of nodes and (2) the transmisson d 32 identical
messages every 300 milliseconds introduces a
significant processng overhead at the sender. The
regroup algorithm is run at the duster service, which
introduces a user-space/lkernd trangtion for each
message, with asciated overhead. Introduction of a
multicast primitive will alow the implementation to
scde & least linealy with the number of nodes and
would remove the processng over from the sender of
status messages.

8.4 Global Update Protocol

The absence of any concurrency in the message
transmisgon in GUP causes a grict linear increase in
|atency and decrease in throughput when the number of
nodesin the duster grows.

This serialized and synchronous nature of the protocol
is amplified in the particular MSCS implementation.
The protocol was originaly developed for updating
shared OS data-structures, with the update routines
running in device interrupt handlers. In MSCS the
protocol is implemented uses a series of RPC calls to
user-level services This change in exeadtion
environment exposes the vulnerability of the strict
seridized operation.

There is no quick solution for the problems that this
GUP implementation presents us with. To emulate the
original Tandem execution environment the Cluster
Service would reel to be implemented as a kernel
service, which at this point seemsimpractical.

Replacing GUP with a protocol that provides the same
properties but exhibits a more scalable exeattion style
seams preferable. This introduces a number of other
complexities, for example many of the arrently
popdar total ordering protocols rely on a tight
integration of membership and communication to
ensure arrect failure handling. This would result in
replacing regroup aswell as GUP.

9 Conclusions

In this paper some of the scaability aspects of the
Microsoft Cluster Service were examined. When
revisiting the three questions from section 3 the
foll owing is concluded:

Canthe currently used digtributed dgorithms be a solid
foundhtion for scalable dusters?

Both failure detection and regroup scale well to the
numbers that were tested in this paper. When scaling to
larger numbers the state processng at receivers will
bemmeanisale. The seridized neture of GUP limitsits
scaability to 10-16 nodes in the aurrent MSCS setup.

Are there any architectural bottlenecks that should be
addresed if MSCSneedsto be scalable?

The major isaue in both failure detection and regroup is
the implementation of a broadcast facility using
repeated pdnt-to-point messages. This introduces a
significant overhead on the sender and onthe network,
and reeds to be replaced by a simple multicast
primitive. The RPC trains in the membership join
operation and in GUP, create a magjor obstacle for
scdability, especidly when the systems operate under a
significant load.

If MSCS is extended with development suppat for
cluster aware applications are the arrent digributed
servicesa good basisfor these tools?

Suppat for cluster aware gplicaions has strong
requirements in the aea of application and component
management and failure handliing, and requires efficient
communication and coordination services. These
services would reed to be implemented using GUP,
which s, inits current form, unsuitable to provide such
aservice.

To support cluster aware applications a better
integration of membership and communication is
neaded. This will allow for the implementation of a
very efficient communication service with properties
similar to GUP. Such a serviceis capable of providing a
solid basis for application and component level
management and failure handing, and will offer
efficient communication and coordination services.

10 Future Work

Research is underway at the Cornel's Reliable
Distributed Systems group to investigate and implement
dternatives to the distributed management and
networking modues in MSCS. Goa is to dlow the
system to perform well under the scenarios tested for
this analysis and to scale to larger numbers (256 nodes
and above) at reasonable cost. Recent results such as
the scdable failure detedion [6] are very promising and
show that managing these numbers of nodesis feasble.

In arelated project, dubbed Quintet [9,10], new tods
are developed to construct highly available, cluster
aware gplication servers. Quintet exploits MSCS
features where posshle, but at this point provides its
own membership and communication modules.

Acknowledgements

Discusgons with Jim Gray, Catharine van Ingen, Rod
Gamade axd Mike Mass have helped to shape the
research reported in this paper. The advice of shepherd
Ed Lazowskawas very much appreciated. Thorsten von
Eicken, S. Keshav and Brian Smith gracioudy
contributed hardware to the world’'s largest wolfpack
cluster.

References

[1] Badovinatz, P., Chandra, T.D., Gopa, A,
Jurgensen, D., Kirby, T., Krishnamur, S, and
Pershing, J, "GroupServices: infrastructure for
highly available, clustered computing”,
unpublished document, December 1997

[2] Birman, K.P., Building Scure and Reliable
Network Applications. Manning Publishing
Company, and PrenticeHall, 1997

(3]

[4]

(3]

6]

[7]

8]

[9]

Car, R."Tandem Global Update Protocol",
Tandem Systems Review, V1.2 19&.

Katzman., JA. ead. "A Fault-tolerant
multiprocessor system”, United States Patent
4,817,091, March 28, 1989.

Moser, L., Médliar-Smith, M., D. A. Agarwal, D.,
Budhia, R., and Lingley-Papadopoulaos, C., “Totem
A Fault-Tolerant Multicast Group Communication
System”, Comnunications of the ACM, April 1996.

Renesse, R. van, Yaron Minsky, Y., and Hayden,
M., “A Gossp-Based Failure Detedion Service’,
in Procealings. of Middleware '98, Lancader,
England, September 1998.

Renese, R. van, Birman, K., Hayden, M.,
Vaysburd, A., and Karr, D., “Building Adaptive
Systems Using Ensemble”, Software--Practice and
Experience, August 1998.

Voges, W., Dumitriu, D., Birman, K. Gamache,
R., Short, R, Vert, J, Massa, M., Barrera, J., and
Gray, J., "The Design and Architedure of the
Microsoft Cluster Service -- A Practicd Approach
to High-Availability and Scalability", Proceeadings
of the 28" symposum on Faut-Tolerant
Computing, Munich, Germany, June 1998.

Voges, W., Dumitriu, D., Panitz, M,
Chipalowsky, K., Pettis, J., "Quintet, Tods for
Reliable Enterprise Computing®, submitted for
publi cation, June 1998.

[10] Vogels, W., van Reness, R., and Birman, K., "Six

Misconceptions about Reiable Distributed
Computing', Proceedings of the 8" ACM SGOPS
European Workshop, Sintra, Portugal, September
1998

[11] Vogels, W, "World Wide Failures’, Proceeding o

the 199 ACM S GOPS Workshop, Ireland 1996.

