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Abstract

Feature space clustering is a popular approach to image
segmentation, in which a feature vector of local proper-
ties (such as intensity, texture or motion) is computed
at each pixel. The feature space is then clustered, and
each pixel is labeled with the cluster that contains its
feature vector. A major limitation of this approach is
that feature space clusters generally lack spatial coher-
ence (i.e., they do not correspond to a compact group-
ing of pixels). In this paper, we propose a segmenta-
tion algorithm that operates simultaneously in feature
space and in image space. We define an energy func-
tion over both a set of clusters and a labeling of pix-
els with clusters. In our framework, a pixel is labeled
with a single cluster (rather than, for example, a dis-
tribution over clusters). Our energy function penal-
izes clusters that are a poor fit to the data in feature
space, and also penalizes clusters whose pixels lack spa-
tial coherence. The energy function can be efficiently
minimized using graph cuts. Our algorithm can incor-
porate both parametric and non-parametric clustering
methods. It can be applied to many optimization-based
clustering methods, including k-means and k-medians,
and can handle models which are very close in feature
space. Preliminary results are presented on segmenting
real and synthetic images, using both parametric and
non-parametric clustering.

1. Feature-Space Analysis

Many problems in computer vision require estimating
local properties at each pixel, such as texture or mo-
tion, and then using these properties for segmentation.
To accurately compute these local properties, of course,
would require knowing the segmentation ahead of time.
A popular way to overcome this difficulty is to use
feature-space analysis [4, 19, 5, 6, 20, 17, 27]. In this
technique, a vector of local properties (“features”) is
computed at each pixel without a segmentation, and
then mapped into the feature space. Significant fea-
tures will be shared by numerous pixels, and thus form
a dense region in feature space. These dense regions

can be detected by one of the numerous available clus-
tering techniques (see section 8 of [11] for a recent re-
view of clustering methods in vision). Clusters in fea-
ture space can then be used for image segmentation,
typically by fitting a parametric model to each cluster
and then labeling the pixels whose feature vectors lie
in the cluster with the parameters.

We can formalize the feature-space analysis ap-
proach as follows. The input image will have a set
of pixels P . The feature space X has d dimensions.
For each pixel p ∈ P there is a corresponding feature
vector xp ∈ X . The feature space will be summa-
rized by a set of K models. Each model k describes
a cluster in X , and has some parameters θk. The en-
tire set of clusters can be described by the parameter
set θ = {θ1, . . . , θK}. The desired output will consist
of the parameter set θ, plus a labeling f that assigns
each pixel p to a model fp ∈ {1, . . . , K}. A cluster
can also be viewed as a subset of the pixels, where
Pk(f) = {p|fp = k}, or as a set of points in feature
space Xk(f) = {xp|p ∈ Pk(f)}. Note that in this for-
mulation we have made a few simpifying assumptions.1

These assumptions are purely to simplify the notation,
and are not required for our method.

As an example, consider a very simple color image
segmentation algorithm. The feature space would have
3 dimensions (one per color channel). An even simpler
image segmentation algorithm would use grayscale in-
tensity as its single feature, and compute thresholds
between the different clusters. Each model might be
a gaussian, parameterized by its mean and variance
θk = (µk, σk). The pixel p will be labeled with the
model fp that has the highest density at the point xp.

1.1. Spatial coherence

The natural approach to these vision problems is to
do feature space clustering and pixel labeling as two
separate phases. However, a good cluster in feature

1We assume a single input image, even though there can be
more than one (for example, in motion segmentation). We also
assume that each pixel has a different feature vector, since oth-
erwise Xk(f) is a bag rather than a set. Our notation also im-
plicitly assumes that the models are parameterized.
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Figure 1: Example of segmentation in feature space
(see text for details). (a) Input image. (b) Segmen-
tation from a mixture of gaussians, without position
(c) Same as (b) with position (d) Segmentation from
spatially coherent clustering.

space will often not be coherent in image space. Simi-
larly, the correct segmentation in image space may not
correspond to a highly distinctive group of feature vec-
tors. The feature space clustering algorithm could miss
potential clusters which are less distinctive in feature
space, but which give rise to spatially coherent segmen-
tations.

To see the importance of spatial coherence, consider
the synthetic image shown in figure 1(a). Clearly, it
should be possible to segment this image into two re-
gions using intensity as a feature. However, the gaus-
sians that were used to generate the intensity distri-
butions in the different regions are quite close to each
other. As a consequence, clustering the intensity space
gives poor results. Clustering the feature space into
two gaussians results in extremely poor spatial co-
herence, as shown in the binary segmentation in fig-
ure 1(b).

A great deal of work has been done on feature-based
clustering (see [11] for a recent review, and [6] for one
recent clustering algorithm). However, surprisingly lit-
tle work has gone into how to make the resulting clus-
ters spatially coherent. (An exception is the work of
[18, 19] which we will discuss in section 4.) The most
common approach is to use the spatial coordinates of
a pixel as additional features. However, this does not
overcome the basic difficulties with performing cluster-
ing and labeling as separate and independent phases.

In fact, using position as a feature tends to result in

poor segmentations, especially when (as in figure 1) the
desired regions do not form simple regions with similar
coordinates. Large regions tend to be divided in some-
what arbitrary appearing ways, and there are often
multiple tiny regions. This in turn has led researchers
to use post-processing to correct for errors in the origi-
nal segmentation. This post-processing cleanup is usu-
ally done by morphological operators [4, 5]. Obviously,
it would be preferable to have the segmentation al-
gorithm not produce these kinds of errors in the first
place.

As a recent paper [4] notes:

“[L]arge, uniform background areas in the im-
age are sometimes arbitrarily split into two
pieces due to the use of position as a fea-
ture. On the whole, however, including po-
sition yields better segmentation results than
excluding it.”

For example, on the synthetic image in figure 1, clus-
tering in feature space gives much worse results if po-
sition is included as a feature. The input image in
figure 1(a) is a mixture of two gaussians, and if feature
space is clustered into two gaussians the resulting seg-
mentation is shown in figure 1(b). We then added po-
sition as a feature, without enforcing any relationship
between the different components of the feature vec-
tors and allowing the covariance matrix to determine
the relative importance of these features automatically.
Adding position and clustering into two gaussians gives
an essentially identical output to figure 1(b) (this is
not shown due to space contraints). Adding position
and clustering feature space into three gaussians gives
the spatially coherent yet completely wrong segmen-
tation shown in figure 1(c). Our algorithm produces
the more accurate segmentation shown in figure 1(d).
The experimental setup used to generate these results
is described in more detail in section 5.

1.2. Summary of our results

This paper is organized as follows. We begin by pre-
senting an energy minimization formulation, where the
energy function enforces both clustering quality in fea-
ture space and spatial coherence in image space. The
energy function can be minimized in an Expectation-
Maximization [7] style using graph cuts, as long as the
clustering quality measure obeys a linearity criterion
defined in section 2.1. Fortunately, we can easily show
that many common clustering methods, including k-
means, obey this criterion. In section 3 we describe
two clustering methods that we have used, one para-
metric and one non-parametric. The parametric clus-
tering method obeys the linearity criterion, while the
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non-parametric method obeys it under certain assump-
tions, which we have empirically validated. In section 4
we give a brief description of some related work, and
in section 5 we demonstrate how our method performs
segmentation on grayscale and color images.

2. Energy Minimization

The energy function that we will minimize has terms
that embody the following constraints on f and θ.

• Cluster quality in feature space: The clusters
should be good according to some quality measure
Q. For example, they should have low intra-cluster
variation and/or high inter-cluster variation.

• Spatial coherence in image space: The label-
ing f should be spatially coherent.

The energy function that we will minimize is

E(f, θ) = Q(f, θ) +
∑

p,q∈N
V (fp, fq). (1)

Here, Q measures the (lack of) quality of a particular
clustering of the feature space. To incorporate spa-
tial coherence, we have a set N of pairs of neighboring
pixels, and impose a penalty specified by V for neigh-
boring pixels to have different labels. V will be some
kind of robust metric in the space of clusters. Note
that if we ignore spatial coherence, we are simply per-
forming clustering in feature space according to some
objective function specified by Q.

We minimize the energy function E(f, θ) iteratively,
in a manner that is similar to EM [7]. The first step
(which resembles the “E” step in EM) is to fix the
cluster parameters θ and find the best labeling f . The
second step (the “M” step) is to fix the labeling f and
find the best clusters θ. The energy minimization in
the E step is done using graph cuts, which is a tech-
nique that has proven to be quite powerful, especially
in stereo. For example, according to the Middlebury
stereo database [22] the top 2 stereo algorithms, as
well as 7 of the top 10 algorithms, are based on graph
cuts. As we will see, we can use our method as long as
the clustering objective function Q meets a natural lin-
earity criterion. Fortunately, many popular objective
functions meet this criterion.

2.1. Fixing the clusters (E step)

In this step we seek the best labeling given a fixed
set of clusters. To solve this efficiently, we will take
advantage of the fact that there are fast algorithms
based on graph cuts that solve a closely related problem

[3]. In particular, it is possible to efficiently minimize
an energy function over pixel labelings f of the form

Ê(f) =
∑

p∈P
Dp(fp) +

∑

p,q∈N
V (fp, fq) (2)

under fairly broad constraints on the form of D and V
(see [14] for details). Here, Dp(fp) is the penalty for
assigning the label fp to the pixel p.

The most effective graph cut algorithm for minimiz-
ing Ê is the expansion move algorithm of [3]. For a la-
bel k, we will define fS←k

p , for an arbitrary set S ⊂ P ,
by fS←k

p = k if p ∈ S and otherwise fS←k
p = fp. Thus,

when we go from f to fS←k the pixels in the set S ac-
quire the label k and all other pixels remain the same.
We will say that fS←k is a k-expansion move from f .

Obviously the number of possible expansion moves
is exponential in |S|, and thus in the number of pix-
els. However, [3] shows that graph cuts can be used
to efficiently find the best k-expansion move, i.e. for
a given k the subset S ⊂ P that minimizes Ê(fS←k).
The expansion move algorithm of [3] works iteratively:
given an input labeling it picks a label k and uses graph
cuts to find the best k-expansion move, and moves to
that labeling if it decreases the energy. The expan-
sion move algorithm is actually an approximation al-
gorithm, in that it guarantees that the solution lies
within a constant factor of the global minimum. The
constant factor is at least 2, and depends on V (see [3]
for details).

Our task is to minimize E(f, θ) for a fixed set of
clusters θ. Obviously, this is nearly in the same form
as equation 2. All that is required is that for any fixed
θ there must exist some function Dp such that

Q(f) =
∑

p∈P
Dp(fp). (3)

This is our linearity criterion, and will refer to a
clustering objective function Q as linear if it meets this
criterion. If Q is linear then we can minimize the en-
ergy function in the E step by using the expansion move
algorithm.

2.1.1 What clustering methods are linear?

Fortunately, it is easy to prove that a large class of op-
timization based clustering methods meet our linearity
criterion, and hence that our method can be applied.
In particular, many clustering methods represent clus-
ters by a single point (the cluster centers ck). The
objective function is

Q(f, θ) =
∑

k

∑

x∈Xk(f)

ρ(ck, x). (4)
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Here ρ is some metric.
Obviously this class of clustering methods meets our

linearity criterion, with Dp(fp) being the distance un-
der ρ between the cluster center for cluster fp and the
feature vector xp. When ρ is the L2 distance, this
method is the well-known k-means clustering method;
when ρ is the L1 distance, this method is k-medians.
As a result, our algorithm can be applied with both
these clustering methods.

2.2. Fixing the labeling (M step)

In the second step in our method, we fix the labeling f
and optimize for the cluster parameters θ. The details
of how this is done depend upon the way that clusters
are represented. With parametric models, this is fairly
simple. For example, if the models are gaussians then
this step simply consists of computing the model pa-
rameters for each cluster. Since this step is so fast, it
makes sense to do this after every expansion move in
the E step. If non-parametric clustering is used, this
step is not necessary (since by definition there are no
parameters to be estimated).

3. Clustering Methods

In this section we discuss the two different clustering
functions that we have used with our method. The
clustering functions that we consider are based upon
some objective function Q(f, θ) that determines the
(lack of) quality of the clustering f given the set of
model parameters θ. We will also consider a non-
parametric clustering method, where (by definition)
there are no parameters θ. As usual, clustering meth-
ods are easiest to describe in probabilistic terminology.

3.1. Parametric clustering method

We now describe a particular parametric clustering
method that we have explored. The clustering method
that we use is based on an objective function Q. We
use the same method as in [18, 29].

We will derive our choice of Q on probabilistic
grounds within the framework of Markov Random
Fields [15]. We wish to maximize the posterior proba-
bility

Pr(f, θ|x) ∼ Pr(x|f, θ)Pr(f)

(we assumed that f and θ are independent and that
θ has a uniform prior). The likelihood term and prior
on f are given by Pr(x|f, θ) =

∏
p∈P Pr(xp|θfp) and

Pr(f) ∼ exp(−∑
p,q∈N V (fp, fq)).

By taking the negative logarithm we obtain an en-
ergy function of the form in equation (1) with the clus-

tering objective function given by

Q(f, θ) =
∑

p∈P
− log Pr(xp|θfp). (5)

Obviously, this choice of Q meets our linearity crite-
rion. In our experiments we used gaussian distributions
parametrized by mean µk and covariance Σk.

It is well-known that this model can be viewed as
a generalization of the finite mixture model (FMM)
(see [29], for example). Let us briefly review a relation-
ship between them. In FMM the labels fp are assumed
to be independent for different pixels p. In this case
the prior on f can be written as Pr(f) =

∏
p∈P πfp ,

where πk is the probability of label k. The posterior be-
comes Pr(f, θ|x) ∼ ∏

p∈P πfpPr(xp|θfp). By marginal-
izing over labelings we get

Pr(θ|x) =
∑

f

Pr(f, θ|x) ∼
∑

f

∏

p∈P
πfpPr(xp|θfp)

=
∏

p∈P

K∑

k=1

πkPr(xp|θk) (6)

This distribution is called a mixture of models Pr(x|θk)
with mixing parameters πk.

An advantage of FMM is that it takes care of un-
certainty in f by marginalizing over it. However, it
lacks spatial coherence, which is an important clue for
deciding what label a pixel has.

3.2. Non-parametric clustering method

Our non-parametric clustering method works by rep-
resenting a cluster k as a collection of points in the
feature space Xk. Let Pr(x|Xk) be an estimate of the
distribution in this cluster. (For example, we compute
the histogram of Xk and convolve it with a kernel). As
in equation (5) we can write

Q(f, θ) =
∑

p∈P
− logPr(xp|Xfp(f)) (7)

(recall that Xk(f) is the set of features of pixels with
the label k according to labeling f).

This clustering method does not actually meet our
linearity criterion in the general case. However, when
the proposed α-expansion does not change the cluster
properties (i.e. the histogram in the feature space) it
is linear. This allows us to use our proposed technique,
but after each α-expansion we check whether the pro-
posed step decreases the energy function, and reject
the change if it does not. As we found experimentally,
most α-expansions do decrease the energy, which val-
idates the approximation. This is similar to the work
of [13].
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4. Related Work

Feature-space analysis has been widely used in com-
puter vision for segmentation, especially when the seg-
mentation is based on motion or texture. For exam-
ple, the original paper on layered motion estimation
[26] used local affine motion parameters as features and
then clustered them using k-means. Much of the large
amount of work on layers that followed also made use of
feature-space clustering, either explicitly or implicitly.

As another example, a number of graph-based seg-
mentation schemes such as [9, 10, 24, 28] rely on an an
affinity matrix which represents the similarity between
a pair of pixels. However, unless the segmentation is
purely based on intensity, they need to base affinity on
some kind of aggregate property, such as texture. This
is why, for instance, the Berkeley group’s work on im-
age segmentation [17, 4] does not use normalized cuts
directly on the image, but first performs clustering in
feature-space to generate the affinity matrix.

4.1. Incorporating spatial coherence into
feature-space analysis

Since the use of positional information as a feature is
known to be problematic, several groups have explored
alternatives. One possibility is to perform a fairly fine-
grained segmentation at the very beginning, and then
compute feature vectors from these regions rather than
from pixels. This approach is sometimes called “super-
pixels” [21], and was used in some work about a decade
ago in motion segmentation [8, 12], as well as in more
recent work [27]. Superpixels will result in a segmenta-
tion that does not cross superpixel boundaries. This,
obviously, is problematic if the superpixels themselves
cross the boundaries of objects. Moreover, the same
difficulties with doing clustering and segmentation in
two different passes still apply, since a good cluster in
feature space will not necessarily correspond to a con-
nected set of superpixels. Another approach, which has
similar motivations to our work, is Matas and Kittler’s
[19] FSD algorithm. This method cannot handle ad-
jacent regions whose clusters are too close in feature
space. As a result, FSD cannot handle most of the ex-
ample images that we use in this paper to demonstrate
our results. Finally, several researchers in the machine
learning community have explored EM-style methods
for clustering with additional constraints [23, 25]. How-
ever, these methods are not powerful enough to impose
spatial coherence.

4.2. Soft membership methods

The most closely related work to ours is a class of meth-
ods that uses “soft membership” clustering [11], where

a feature vector is labeled with a probability distribu-
tion over clusters instead of a single cluster. A num-
ber of techniques for doing spatially coherent soft clus-
tering have been developed in a Bayesian framework.
Marroquin et al. [18] refer to such methods as Segmen-
tation/Model Estimation Methods.

The first such technique appears to have been de-
veloped by Weiss and Adelson [27] as a way of incor-
porating spatial coherence into motion segmentation
in feature space. More recently, Hidden Markov Ran-
dom Fields (HMRF’s) [29] and Hidden Markov Mea-
sure Fields (HMMF’s) [18] have also been proposed.

The critical difference between these methods and
our approach lies in two (related) areas: the choice
between hard and soft membership; and the optimiza-
tion method used to solve the pixel labeling problem in
the E step. Previous techniques used soft membership,
which makes the M step more effective. Unfortunately,
computing soft membership in the E step is usually
intractable in the MRF framework. Researchers were
thus forced to use approximation schemes for MRF’s,
such as the mean field approximation [27], Iterated
Conditional Modes [29] and Hidden Markov Measure
Fields [18]. By using hard membership, our formu-
lation permits the use of the graph cut optimization
methods that have proven highly effective for solving
pixel labeling problems in stereo.

4.3. Graph cut techniques

Several recent researchers have used graph cuts to la-
bel sloped surfaces with affine parameters [1] or with
splines [16]. These approaches do not rely on clustering
in feature space; instead, they create a point in feature
space for each connected component of the labeling,
then iterate. They are aided significantly by the use
of graph cuts stereo with integer disparities to create a
good initial segmentation.

5. Experimental Results

Spatially coherent clustering technique is a general
method for finding a spatially coherent clustering in
feature space. The output is a set of spatially co-
herent clusters, which could then be used (for exam-
ple) to compute the affinity matrix for a graph-based
segmentation algorithm such as [9, 24]. It can also
be used directly for segmentation. In our prelimi-
nary experiments, we did image segmentation with four
methods: spatially coherent parametric clustering with
gaussians (“Parametric SCC”), spatially coherent non-
parametric clustering (“Non-parametric SCC”), finite
gaussian mixture (“FGM”) and FGM with spatial co-
ordinates added as features (“FGM with position”).
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Input FGM
FGM with
position

Parametric
SCC

Non-parametric
SCC

Figure 2: Results on stamp image of [19]

Smoothness term. We used an 8-neighborhood
system N and the Potts smoothness term:

Vp,q(p, q) =
λ

|ep,q| · T (fp �= fq),

where |ep,q| is the length of edge ep,q and T (·) is 1 if its
argument is true and 0 otherwise. The choice of coeffi-
cient λ

|ep,q| was motivated by [2] which showed that the
separation cost becomes approximately the euclidian
length of the boundary between regions. In our experi-
ments we always used λ = 1. For this particular choice
of V , the expansion move algorithm is guaranteed to
converge to a solution whose energy is no more than
twice the global minimum’s.

Initialization. We found that initialization has a
significant effect on all four methods. The coarseness
of the resulting segmentation strongly depends on the
number of clusters that we start with. In one version
of our algorithm we implemented cluster merging, as-
suming that each cluster has a fixed penalty. It is not
clear, however, how to set this penalty automatically.
Moreover, sometimes a small visually distinctive region
would be merged with another cluster while two more
similar but large regions would remain unmerged.

The results that we present do not use any merging.
For initialization of FGM we divided the image into
a small number of rectangulars and used them as an
initial labeling. This initialization is obviously fairly
coarse, and can easily be improved upon. Other algo-
rithms were initialized with the results of FGM.

Convergence. Our algorithms are guaranteed to
decrease the energy and thus, theoretically, must con-
verge. For certain sequences they converged for a few
iterations of the expansion move algorithm. There were
cases, however, when several tens of iterations were re-
quired. Yet the changes made after the first ten iter-
ations were always negligible, and the most rapid de-
crease in energy occured in the first few iterations.

Synthetic test images. The synthetic image
shown in figure 1 was generated as follows. We gener-
ated an image with two regions of equal area (a bright

disk in a dark background). Then we added indepen-
dent gaussian noise to the image with variance equal to
the gap between region intensities. We initialized FGM
with two gaussians at far ends of the intensity range.
Results for FGM with positional features were close to
FGM results since the centers found were in the mid-
dle of the image. We show results obtained with FGM
with positional features and three labels in figure 1(c).

We also experimented with a version of the stamp
image used in [19]. Results are shown in figure 2.

Color test image. In figure 3 we show the result of
parametric SCC on a color image using 16 labels. The
color image has been used for a previous segmentation
algorithm [9]. With such a large number of labels, there
are a number of small segments in the output. How-
ever, the spatial coherence we impose also results in
many large regions (such as the truck, the street, and
much of the baseball field).

Grayscale test image. We performed grayscale
image segmentation using 6 labels on a baseball image
that has been used in several algorithms [9, 24].

It is, of course, very difficult to evaluate or compare
segmentation algorithms on real images. However, the
preliminary results suggest that spatially coherent seg-
mentation obtains smoother outputs than FGM. This
is particularly noticable in the baseball image, where
FGM without positional features yields a great deal of
noise, while FGM with positional features yields some
very puzzling segmentations.

6. Conclusions and Future Work

We have described a new technique to find spatially
coherent clusters, and shown that it can be used with
a wide variety of clustering techniques. In order to de-
termine the effect of spatially coherent clustering, we
will look at several segmentation algorithms that use
FGM internally and see how their performance changes
when we replace FGM with our technique. This will
be particularly interesting for segmentation algorithms
that are based on complex local properties such as tex-
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Figure 3: Color image segmentation example. The
input image is at top, the result of spatially coherent
clustering is at bottom.

ture or motion. We also plan to investigate ways to
automatically determine the number of clusters in an
energy-minimization framework.
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