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Abstract

This thesispresents a general theory of system compositan possibilistic
security properties. It is shown thaossibilistic securityproperties can bgiewed as a
predicate over the traces that are consistent with delmbobservatiort,,,. We provide
a uniform frameworKor analyzingand comparing these properties. We demonstrate how
to determine what securitproperty asystem satisfies givethe security properties
satisfied by itsconstituent components. Also, we show howctmstruct asystemthat
satisfies a desired securyoperty. This analysis yields aondition that can be used to
determinehow a propertynay energe under composition. Wsxaminethe reasons for
the failure of feedback composition and provide necessarysaffitient conditions for
determining when feedback compositioill ¥ail for all properties based oGeneralized

Noninterference. Unwinding theorems are given for a large class of security properties.
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1. Introduction and Overview

Security is a game in which the final goal is never quite in reach.
Laurence Martin(b. 1928)
British author, academic

1.1. Introduction

Computers have proliferatettiroughoutevery aspect of today’s society. Our
reliance oncomputers tanaintainand store everything fromour ration’s secrets to the
number of items an individuglurchases is growing rapidly. Information is becoming the
single most important commodity. It eing bought and sold to thhighest bidder.
Information aboutindividuals, corporations and governments muast beallowed to be
inappropriately disclosednaliciously altered, or destroyed. The threats that must be
protectedagainst are diverse, such as the disgrurglagloyeethe corporatespy, even
hackers whosenly desire is toinflict hardship on unsuspecting people. mans for
controlling these andll other attacks is required. Without one tteamage to society
could beimmense. Tq@rovide adequate security it must pessible toconstruct secure
computer systems.

The ability to derive the properties of amssembly ofcomponents from the
properties of itsndividual constituents is central toeing able to desigeecure computer
systems. A systerfor which this capability exists is said to be a composable system.
Unfortunately, an understanding of howdonstructsuch secure computsystems has
been unavailable.The goal of thisvork is to provide thenecessary foundations sloat
secure computer systems can be built.

The remainder of this introductory chapteill wprovide some background

information and state the thesis of the work.



1.2. Security Properties and Systems

The goals of computer security ars#y stated; prevent usefeom accessing or
acquiring information thewre notauthorized to access or acquifRealizing thiggoal has
been difficult. To accomplish this goal systems have tcopstructed thatatisfy security
properties. Security propertispecify the types of acceptableehaviours of a system.
There has beemuchwork in developing formal models of information flow the hopes
of understanding how to prevent these flows. Despite the advammeés todate a

complete theory of information flow in secure systems is still missing.

1.3. Composability

For many years engineers have been designing systems ssamglard, pre-
designed components to achieve an economy of design effort diuenamiher benefits.
The system is composexlit of components that have been desigmetividually and
separately. This means the designer needot startwith a blanksheet evergime a
system is to becomposed, because a repertoire of components exists that can be
incorporated into a new system.

Unfortunately for secursystems this type of system design hasbeen possible.
The criticalmissingtechnology is thebility to create a composite trustwortisystem,
using as components laeterogeneous collection @xisting products [Hemenway &
Gambel91]. The following quotation from John McLean clearly states the problem:

A generalability to build composite high-assurance systgmssupposes a

general theory of system composition. Such a theory prowdeggt into

why certain properties are preservednot perserved by certain forms of

compostion. More importantly, for a large claspaiperties and gariety

of composition constructs, it answers questions of the fdiifra system

satisfying property X is composed with system satisfyingoroperty Y

using compositiorconstruct Z, what propertiesiliwthe compositesystem
satisfy?” [McLean94]

In this work we examine securityproperties under composition apdopose a

solution to the problem stated by McLean.



1.4. This Thesis

This thesis is concerned withtheory of the composition of components into
systems such thathe information flow properties of the composeslystem can be
predicted fronthe information flowproperties of the components &indm the nature of
the interconnections. As can be sé&@am the review in Chapter 2, th@roblem has a
considerable history that hast alwaysresulted in a usefudutcome. Oupbjective has
been to present a newiew of this problem that develops new insight itlie control of
information flows by composed systems.

The thesis of thisvork is that wecan predict the security propesgtisfied by a
composed system frothose of its constituent components. Wétermine conditions for
a property to emerge under composition. We also demonstrate for aclasgeof
security properties how tdetermine if astate machinerepresentation of thesystem

satisfies the security property.

1.5. Overview

Chapter 2 provides arief review of the relevant related researdngcluding
security modeling, trusted systems and composability.

Chapter 3 introduces thmodel ofthe systems that we ilivbe considering in this
work. Wealsoformally introduce the notion of composition of components atier
notation that will be used throughout the work.

In Chapter 4 walefine securityproperties. We investigatbe nature osecurity
properties and provide a methodsplecifyingsecurity properties. We also demonstrate
how to compare security propertieBinally, wedemonstrate that the current approaches
to composition of systems are not applicable to security properties.

Chapter 5 presentour theory of secure composition. We investigate
compositions with and without feedback. We also provideeans of determining under
what conditions a propertyay energe under composition. That when a composed
system satisfies a property that not all of its constituent parts satisfy.

Chapter 6 comparesur work and results to thesther major work on the

composition of secure components, McLean’s Selective Interleaving Functions (SIF).

-3-



Chapter 7 presents a methoddaftermining if a non-determinist&tatemachine
satisfies a particulgsroperty. We W show that thelass ofproperties fowhich we can
provide such a result encompasses most of the security properties presented in the
literature.

Finally, Chapter 8ummarizeshe workand provides a number of conclusions. It

also gives a number of directions for future work in the area.



2. Previous Work

No great manlives in vain. The history of thewvorld is but the
biography of great men.

Thomas Carlyle(1795-1881)

Scottish writer

2.1. Introduction

In this chapter we introduce some tife related research in the area of
composability and formal modeling of system3he emphasis vl be placed on the

research upon which this thesis was directly based.

2.2. Event Systems

The purpose obur work is topredict theeffects of interconnecting systems.
These systemsilvbe modeled using discrete event systems. The idea of a discrete event
system is to descriltbe possible observed behaviourtbe systemrather than thevay it
works. At the heart odll event system models e concept of a trace. A trace is the
temporallyorderedseries of events that represent @ossible execution ahe system.

We defer a formal introduction to event systems until Chapter 3.

2.3. Confidentiality Models

We present some of the previowsrk in confidentiality. Confidentiality is the
property thatinformation shouldhot bemade available or disclosed to anauthorized
user. Thiswork is notintended to be an exposition of security properties. Therefore, we
will only present some of the relevant previousrk and defer introducing theecurity

properties until they are needed.



2.3.1. Lattice Approaches to Security

Bell and LaPadula [Bell & LaPadula7iitroduced a model of securipplicies for
military systems. Their modgBLP) is one of the earliestuccessful treatments of
confidentiality, and was subsequeritie basis ofU.S. Department obefense criteria to
be discussed in the next section.

The BLP model is basedpon requirements for access control8ell and
LaPadula formalized their model bye axioms ofsimple securityand the*-property (star
property). Thesexioms define which subjec{&ctive entities) are permitted to read
which objects (passive, data-storage entities).

Simple securitystates that a processynot haveread access tanyobjectunless
the securityclass ofthe object dominates that of the process. The *-progéates that a
processmay not write to an objectinlessthe securityclass ofthe object is dominated by
that of the process.

Denning [Denning76] extendede Bell and LaPadula model by pointirgit that
the classification of subjects and objects form a lattice of security levélse two
properties of the BLP model have straightforward extensions to the lattice model.

Sincethe introduction of these modekgveral shortcomings have besoted in
the literature [McCullough87] [McCullough88]. Thesgstems requirettustedsubjects
to perform vital functions othe system. Alsonot all information can beaesily described
usingthe object representation. The simple notions of read and write operations do not

adequately represent the often complex behaviour that occurs in real systems.

2.3.2. Formal Criteria

The formal criteriaare the securitypolicies by which security of systems are
established and verified. The issue of composabilitynbaibbeen addressed layy of the
formal criteria release e UnitedStates government, the Europegaommunity or the
Canadian government. Theanadian Trusted Computer Product Evaluation Criteria
[CTCPEC], released idanuaryl1993 mentionsthe issue of composability. It indicated
that the state of current researichs not yielded adequate advances ioclude any

composability requirements in the criteria.

-6 -



“Efforts have begun towork out methods of evaluation based on
composableproducts. As research continuesmposable evaluation of
properly defined composabfgoducts Wl enter themainstream from the
research arena. Composable products and evaluation would allow Vendors
to modify existingtrusted productsand ratina or improve their ratings
without having theentire product re-evaluated” [CTCPEC]

A detailed discussion othe underlying requirements isot warrantedhere.
However, the production of these critehias had aignificantinput on thedevelopment

of security policy and practice in various sectors.

2.3.3. Possibilistic Security Properties

In 1982, Goguen and Meseguer introduced the notioowihterference [Goguen

& Meseguer82] as the basis for confidentiality. They proposed the following definition:

“One group of usersusing a certairset of commands, is noninterfering
with anothergroup of users if what thérst group doeswith those
commands has no effect orhat the second group of useran see.”
[Goguen & Meseguer82]

Noninterference was thiast possibilistic securityproperty. Theidea behind all
possibilistic properties is that iinformation of a given securityevel interferes with
information of a different security levahe interference should be attributable to more
than one possible cause.

Numerous othesecurity propertiehave beerproposed. Eacmew proposed
security property was aattempt to correct daw with previous models. Some of the
more popular properties areGeneralized Noninterference [McCullough87],
Restrictiveness [McCullough88], Noninference [O’Halloran90] and n-Forward
Correctability [Johnson & Thayer88]. These propertidsh& examined in detail in this

section 4.4.

2.3.4. Sutherland’s Deducibility

In 1986,David Sutherland [Sutherland8tjok adifferentapproach tasolving the
security modeling problem. Sutherlaradtempted toquantify what it means for
information to flow fromone user to another. Each distinct execution ofyiséem can

be considered an elementtbé set ofpossibleworlds. A piece of informatioabout the

-7 -



system isrepresented by amformation functionwhosedomain isthe set ofpossible
worlds. Sutherland then defines information flows in terms of these concepts:
“Given aset ofpossible world€2 andtwo [information] functionsf; andf,
with domainQ, we say that information flows froma to f, if and only if
there exists sompossible worldw and some elememtin the range of,

such thatz is achieved by, in some possiblevorld, but inevery possible
world ' such thaf;(w') = f1(w), f2(w')# z” [Sutherland86]

Information flows fromf; to f, if knowing thevalue off; rulesout (oreliminates
from consideration) even a single possible valuef,of Sutherland has an intended
interpretation forf; andf,. This interpretation is not relevant for our work.

Sutherland’s definition implies that information flow is a symmetric relationship. If
there is dlow from low level users tahigh levelusers then there must exisflaw from
high levelusers to lowlevel users. This is an undesirable implication because security is
an asymmetric relation; Higlevel to low level information flowsare notallowed while
low level to high level information flows are.

Another consequence of traefinition of information flow is that security is
dependent orall high level activity that is consistent with each possible I@avel
observation. It vit be demonstrated in section 4.3 that this requirement can be met in an

insecure system.

2.4. Composability

The composition otwo components can b#hought of asinterconnecting the
components in some fashioifthere have been numerdiesmalismsand frameworks for
reasoningabout composition. In section 4.7 we demonstrate that most of these are not
applicable to securitproperties. Irthis section we reviewhe relevanwork in thearea

of composing secure systems.

2.4.1. Hook-up Security

Until 1987 notmuch work went into examiningthe effects of interconnecting
secure components. McCullough demonstratedBe#dtand LaPadula’s access controls

and its extensions, SutherlandBeducibility model, and Goguen and Meseguer’'s



Noninterference requirement are inadequate as composable security properties. It was
possible to interconnect components that satisfied {hregeerties in such way that the
resulting system didot satisfythe property. McCullough introducedheidea ofhook-up
security as a solution to this problem. McCulloughoposed thefollowing circular
definition:

“A system ishook-up secure if it isleducibility secure andf, when it is

hooked upwith a seconchook-up secursystem,the result is a hook-up
secure composite system” [McCullough87]

Millen [Millen90] argued that “hookupafety isnotjust afrill” and is “an essential
property of a definition of information security.”

McCullough also pyposed a new definition of security he called Restrictiveness
[McCullough88]. Restrictiveness had thdesirable property of composability.

Unfortunately, Restrictiveness is not a natural way of expressing security [Rushby91].

2.4.2. Safety and Liveness

In 1985, Alpern and Schneider [Alpern & Schneider85]oposed a formal
definition for properties. They expresproperties as aombination of asafety property
and aliveness property Informally, a livenesproperty stipulates thdsomething” must
eventually happen durinpe execution of aystem, while a safetyroperty requireshat
“something bad” never happens.

In the Alpern and Schneider modgbperty and @ystemare both sets of traces.
A property holds for aystem if andnly if the set of tracesxhibited bythe system is a
subset of the set of traces of the property.

The safety/liveness model has some appealing consequences.pi@ipegies are
a set of trace®very property is the intersection of safety property and diveness
property. Also, the notion ofefinement is very intuitive. Unfortunately, wsill

demonstrate that this model of properties is not applicable to secure systems.

2.4.3. Composing Specifications

Abadi and Lamport [Abadi & Lamport90] defined a modular specification method

for composition. Theiformalism isbased on an extension of tAern and Schneider
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notion of safety and Jenessproperties. Their extensiomcludes anotion of an
environment in whiclthe system is going toperate. Their goal is to provide a means to
“prove that a composite system satisfies its specificatialh iis componentsatisfy their
specification” [Abadi & Lamport 90].

The behaviour of components is represented biyfante sequence of states and
“agents” that cause the changes of states. Specifications are dalawaburs. [Abadi
and Lamport’s framework thirst step is todefinethe behaviour ofthe system and then
compose thesystems. There is also an assumptadout the behaviour of the
environment. The behaviour d¢iie environment must be an assumption because the
environmentcannot be controlled. The CompositiBrinciple put forward inthis work
applies to specifications ohe form E [ M, whereE is a property an# is a machine
property. This expressiorasserts that theystem wl satisfy propertyM as long as the
environment satisfies the propeBy

Abadi andLamportdefine a composition principle andsat of proof rules.These
proof rules can be used to prove that compondmbave correctly when their
environments behave correctly. The proof rules and composition principle are not relevant
to this work because in section 4.7 we demonstrate thatAlpern and Schneider
safety/liveness frameworkannot be used tspecify securityproperties. Therefore, the

Abadi and Lamport composition principle cannot be applied to secure systems.

2.4.4. Selective Interleaving Functions

One of thefirst theories toattempt to address the composition s#curity
properties was presented by McLean in “A General Theory of Compositidimeoe Sets
Closed Under Selective Interleaving Functions” [McLean94]. Mclresad thasecurity
properties do nofall within the Alpern and Schneider categorization pybperties and
therefore cannot be handled by the Abadi-Lamport Composition Principle (see also section
4.7).

McLean defines a Selective Interleaving Function thaitsisd todefine security
properties. This function is defined sudhat, giventwo tracest; andty, it will produce a

third tracef(t,, o) —» 1. The tracefg, is an interleaving othe two given traces. A
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component satisfies a securipyoperty if it is closed undef. Different interleaving
functions can be used to generateessatisfying different possibilistiproperties. For
example,one candefinef such thathigh_input$t) = high_input$t,), low_inputgt) =
low_inputgt,), andlow_output$t) = low_outputét,). This interleaving function defines
Generalized Noninterference.

A complete discussion of Selective Interleaving Functions is given in Chapter 6.

2.5. Bunch Theory

Bunch theory isiotitself amethod to model systems. Bunch theoily e used
throughout ouformalism. In thissection we present an introductionlionchtheory. A
complete description of bunch theory can be found in “A Practical Theory of
Programming” [Hehner93].

A bunch is an unpackaged collection of objectSontrastthis with a set, a
packaged collection of objects. A bunchhe contents of a sefThis point might seem
trivial, but it is essential to presenting a consistdmtory. Anelementary bunch, or
element, is any numbesharacter, string, et€or examplethe number 2 is an elementary
bunch, so is the character ‘c’ and the strialgba’. In thiswork the mostcommon
elementary bunch will be a trace of a systéime axioms of buncltheory that areelevant
to this work are:

If A andB are bunches, then

A B “A unionB”
Is a bunch, and
AB “Ais included iB”

is true iff all the elements oA areincluded inB.

An important bunch ishe empty bunchThat is abunch with no elementsThis
will be expressed awull. Thenull bunch satisfies the following identity property,

A null =A
For a omplete list ofthe axioms of Bunch Theorgee “A Practical Theory of

Programming” [Hehner93].
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Quantifiers vill be use throughouthis document. The quantifief$ and [J have
their standardmeaning but will be augmented byincluding with each variable of
guantification the bunch of elements that quantification is over. For example,
Oizint[Or:ratlik=r<=(i+1)
says for all integers there exists a rational number between it and the next higher integer.
The solution quantifier 8 (“solution of’pives the bunch of solutions of a

predicate. For example,
Siiintd*=4)=-2, 2 “thosé in int such that..”
The axioms for 8§ arev(s a nameA andB and bunched) is a Boolean expression

andx is an element):
(8v:nullB) = null
(8v:x[b) =if b(x) then x elsenull

(8v:A, Blb) = (8AlD), (8v:BIb)

2.6. Unwinding Theorems

Most of thesecurity properties presented in the literature HmBeentrace based.
Thatis, the security condition is expressed overgbeof traces of theystem. However,
most formal specificationapproaches are based orstatetransition model andpecify
individual statetransitions. A theorem stating tlegjuivalence between taace based
security condition and a transition based security condition is callednamding
theorem.

All of the unwindingtheorems presented in the literatusssdn dealt withspecific
security properties [Goguen & Meseguer84] [McCullough90] [Bevier & Young94]
[Millen94]. The specific details othese arenot important at this time. Generally, an
unwindingtheorem takes thillowing form. Given a system and a sensitivity level, an
equivalence relation is imposed tre systemstates. Then a condition is given on how
users of differensensitivity levelscan move from equivalence class to equivalence class.
For examplethe unwinding theorem for Noninterference camformally be expressed as

follows:
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“Two states areequivalent if theyare indistinguisablethrough system
output to auser atlevel s or below, either now or after futher inputs. The
noninterference policy is satisfied if andly if high-level inputs have no
apparent effect on a low user’'s view, because they cause transitions to
states in the same equivalence set.” [Millen94]

2.7. Summary

In this chapter we have presented some of the relevant research. In future chapters
we will build uponthis work to provide a general framework ftime analysis of security
properties.
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3. Components and Systems

Mathematicgpossessenot only truth, but supreméeauty — a beauty
cold and austere, like that of sculpture.
Bertrand Russe(1872-1970)
British philosopher, mathematician

3.1. Introduction

A discrete event system is @dynamic system that evolvesccording to the
occurrence ofphysical events. The system modeler first decidesich events are
important to thesystem being modeled. These evamgespond to thprimitive actions
done to or done by thgystem. Thetthe modeledescribeghe interaction between these
events. Once theystem has been adequately described, predicibosit expected

behaviour can be made and analyzed.

Example 3.1: In modeling a communication network the relevant events might be:
{ packet_sent, packet_lost, packet_received, time_out }

and the trace
S =<4, &, &>
may represent the behaviour

packet_sent, packet_ lost, time_out d

To say that s=<;a&, &,...> is a trace means thatig thefirst event andhe event
a+1 occurs after event.a The trace contains noformationabout thereal time atwhich
an event occurs. Wmay say thathe tracedescribes onlythe logical behaviour. This
relativistic timing notion correspond€losely to the practical operation of moseal
computing systems.

An event traceplaces no constraints dhe absolutdiming of particular events.
All executions with theame relative ordering of everaie captured and represented by a
single event sequence. Thisrepresentedyraphically in Figure 3.1. In thisase, the

labeled circlesepresentifferent events, and their absoldit@ing displayed orthe scale
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from left to right. The firsttwo timing sequences have identical evemace

representations <A,B,C>, while the third sequence differs.

—®
®

@ @

Time

©—
®—

Figure 3.1: Relativistic Timing of Event Traces [Nestor93]

The firsttwo sequences have identical eveatce representationshile the
third sequence differs.

3.2. Traces

As described in the previous sectiotrace of asystem indicatethe behaviour of
a process up to some moment in time.tr#&ce wl be denoted by an orderdslinch of
events enclosed in angular brackets:

<x,y> is atrace of two events. The event x followed by the event y.

<x> is the trace containing only the event x.

<> is the empty sequence containing no events.

Tracesplay acentral role inour theory of composition. We ilvneed operations
on traces.

Definition 3.1: Trace Concatenation
The notation % will refer to the tracédormed by puttingogether traces s
and t in thabrder. We W use st to denote concatenation if s and t are

obvious fromthe context. Formally, if X and Yare an ordebunch of
events then <X>Y> = <X,Y>

The expression t|A denotes the sub-trace of t containing only events in A.

Example 3.2: Lett = <@, &, &, &, &>. Then tl{a,a} = <a;,&,a>
The operaton will return the set of events present in a bunch.

Example 3.3: Lett = <a, &, &, &, &>. Thenat={a,, &, a}
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If A is a set of events thel is the set ofll finite traces(including <>) which are
formed from symbols in the sAt The following axioms exactly define this set.

1. <OA

2. <x>0 A if and only if XJA

3. (SHOA ifand only if 1A Ot0O A

It will be required to determine all the possible interleavingsvoftraces. A trace
t is an interleaving ofwo tracess andu if it can be split into a series of subsequences,

with alternate subsequences extracted fs@ndu. [Hoare85].

Definition 3.2: Interleave of two bunches of traces
The interleave of two bunchsst writteninterleave(s,t)s defined as:
8r:(AsOAL) [fas:sOr|at:t
Recall that a singlgrace is also &dunch. Therefore, if the argumentsititerleave

are single traces then the resulting bunch will contain all interleavings of the traces.

3.3. Discrete Event Systems

The framework forour investigation into composability ilvbe event systems as
given by McCullough [McCullough87] and Johnson and Thigeihnson and Thayer88].
McCullough’s definition derives fronthe work on mdeling concurrency oMHoare

[Hoare85]. We will define a discrete event system as follows:

Definition 3.3: Event Systems.
An event trace system is a 4-tuple:

S=<,10,T>
where

E is the set of events

[, the input events,[J E

O, the output event® O E andl n O=[
T O E is the set of traces

The set of events corresponds to pienitive actions done to or by thgystem.
The set of traces of an evesyistem must satisfthe following property. It mustlways

be possibldor the system taaccept an input eveniThis condition is calledhput totality
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[McCullough87a] [Johnson & Thayer88]. Thisodelingabstraction sinlgies the proof
of the theorems. The need for input totality is examined in section 5.3.2.

In thiswork we draw ndnference fromthe likelihood that certain members &f
are more probable than others; we are interestidin possibldraces. Thelefinition of
an event systerdoes notinclude a means tgenerate the sét. In thiswork it is not
important to have aneans togeneratel. However, it must beemembered that the
sequences i do have somerder. There areonditions for when events caccur and
what conditions are effected after the occurrence of an event.

Since we have augmented quantification with a bunch to quantifgver we

define the following:

Definition 3.4: Bunch Notation For the Set of Traces
For a systen$ the functiontraces(Syeturns aunch suchihatexactly all
traces ofSare elements of the bunch.

Definition 3.5: Verifying a trace of a System
The predicatéracey(t) is true if and only ift is a trace of system S.

The standard set operators wfion, [J, and intersectionn, will be used to
combinethe various sets of the event tragystem. Thesetdifferenceoperator, \will
also be used. Theet A\B, forexample, containall elements irthe set A that are not in
the set B.

The specification of securifgropertiesusuallyrequires a distinction betwedigh
level (trusted)and low-level(untrusted) users. We W refer to these categories as HLU
and LLU respectively. Thidivision is accomplished by dividing into thedisjoint subset
L andH, such that every event is in exaabtlge ofL or H. These arerespectively, the
sets of low- and high-level eventsAssumingtwo comparable levels sinfifles the
presentation of the results withoaiteringthe results; th@eneralization to an arbitrary

lattice of levels is straightforward but notationaly cumbersome.

Or less trusted.
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The following definition gives some notation for commonly used classes of events.

Definition 3.6: Event Classes.
The following notation will be useful in specifying security properties:

HI =Hnl high level input events,

LI =Lnl low level input events,

HO =Hn O high level output events and
LO =Ln O low level output events.

Throughoutthis documentomponentand systemwill be usedinterchangeably.
Thefollowing convention W be used wherdiscussing composition. Componenif e
interconnected tgield systems. It is equally valid taterconnect systems tgeld larger
systems. However, wieel that by explicitlyreferring tothe subparts of asystem as

components emphasizes that they are part of a larger system.

3.4. Composition

It is considered good engineering practice to build large and complex sysigms
smaller independently verifiedomponents. This leads to cheaper andtiee designed
systems. Figure 3.2 demonstrates a model of a system consistmg ©PUs and a bus
arbitrator controlling access to shane@mory. It is easiefor each component to be
independently designed and verifigen interconnected, rather than attemptingesign

it as one monolithic system.
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CPU1 CPU 2

L —>Grante—|
T WReques N
Bus Arbiter
T 7 A\ \

]

J [ &

Write to Bus M Read from Bus
emo
v Write to Bus
Read from Bus
Read from Memory! Write to Memory

Figure 3.2: An Example of a Composed System.
An example ofhow components are composed to formoaplex system.
This system is modelinthe interactions betweetwo CPU’s and a bus
arbiter to access shared memory.

The definition of anevent systenpresented above doest require E = 100 O.
The events B (I O O) areinternal events.Thatis, neither inputnor outputevents
These events arise in onetafo ways. The system designer coekplicitly use such an
event for somenternal purpose or through the interconnection of components (see
below). Sinceahe users of a component amely interested in the externdkehaviour of
the component weassume internal eventare caused by the interconnection of
components. Taimplify the identification of internal events weilivuse thefollowing

notation:

Definition 3.7: Communication Events.
The set of internal events (communication event$} in an
interconnection of two systems § and S is defined as
C=(01n 12)0(O2n1y)
If the system designer wants to lable to specify internaévents that are not
communication events theanotherclass of events can lalded to thelefinition of an
event system. Extendinpe definition of anevent system to includanotherclass of

events has no effect on any of the results presented in this work.
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start_clock clock_tick clock_tick
= " y Component1 [~~~ v /

start_clock || component 1 _4 Component 2| value_reached

count Component 2| Value_reached
e —

@) (b)

Figure 3.3: Interconnecting Components
(a) Twocomponents that Wbe interconnected. (b) the input event of the
second component is renametich indicates thathe output of thdirst is
to be connected to it.

The composition ofwo components can k@ought of aglirectingoutputevents
from one component to become input events at the otker.example, Figure 3.3(a)
demonstrateswo components. Component 1 is a clock component that produces
clock_tick events once a second. Component 2 is a counter that produces a
value_reacheevent aftereceivingten inputs. If ssystem designevanted a component
that caused something to happen every 10 seconds, he could interconnect these two
components byoining the output of theclock component to the input of the counter
(Figure 3.8b)). This combined system accomplishée desired behaviouExamining
how the above compositiaaccomplishedhe desireehaviour Wl be used to motivate
our composition operation.

Notice that theeommunication eventlock_tick is an output o€omponent 1 and
an input to component 2. Thasffers from Figure 3.@) whereclock_tickwasonly an
output ofcomponent Wwhile component 2’s input wasalled count Therefore, thdirst
step inany composition is to renambe events that Wbe connected to havihe same
name.

After this renaming has occurred the events of the commysteinare aunion of
the events of eadndividual component. Also, the inputs to thgstemareall the inputs
to each component except those connected toothputs of the othecomponent.
Similarly, for the output events. Theonly remainingaspect of the evergystem to
consider, are the traces of thgstem. Clearly, @&race of thesystemrestricted to the

events of a component must be a trace of that component. We have coraidgfects
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of composition on an event system and c@mw define the composition of two
components. Before we present tdefinition we wil present someadditional
requirements that simplify the notation.

To simplify the notation and presentation of the theorems some requirements are
required on the interconnection of components. dihlg valid connection is from an
output of onecomponent to the input of another. &chieveanother type of connection
the eventmay berouted through a é$igger or a merger component. Figure 3.4
demonstrates these components. If a component contains internal event these events may
not beused in further interconnections his requirement makes sense because in a real

system only the externally visible behaviour is known to the designer.

. Out]l —1 4
in_, Out Iny Out
Out Iny

@) (b)

Figure 3.4: Splitting or Merging Event Sequences
(&) The occurrence of the event causes thremutput events to occur.
These events can be used in further connectiosgrtolate connecting the
in event to three components. (b) Aftdirthreein events have occurred
anoutevent is emitted. This component can be used to merge events.

In the definition of composition we assume thtae eventrenaming mentioned

above has already been done.

Definition 3.8: Composition of Components
Given S=<E,1;,0,,T1> and $=<E,,l,,0,,T,> that Satisfy

lpnl=10

O.n0O,=0

(E:\ (11 00))n E;=0

(Ex\(1,00))n By =0

then the compostion of ;Sand $ produces a new component
S=<E,I,0,T> such that:

E=EUE

I'=(1:102) U (12\ Oy)
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O=O1\1) O(Ox\1y)

andT = { alE" such that &,0T, Oaf, 0T}

The definition of compositionimplies thatthe outputsfrom one component
immediatelybecome inputs at th@her component. kan be argued that in realssgms
there alvays exists sompropagationdelay and henceur requirement i2oo strong. It
would seem that a bettapproach would be tallow some time betweethe occurrence
of an output event and its receipt as an input at the other component.

This analysisthough correct, isverly simplistic. The difference betweethe two
is better characterized as synchronized versus non-synchronized communication. An
example of synchronized communication mightur in theRequesevent in Figure 3.2
(page 19). Inhis case it woulehot beunrealistic that whethe CPU generatdhis event
it immediatelyappears at the bus arbitehis exchange happens so quickly it can be
though of as an atomic event. TW&ite_to_Busevent, however, is good example of
where non-synchronized behaviour is desirable. In this casendtianreasonable to
assume thatthe Write_to_Bus and the Write_to_Memory event do not occur
simultaneously. In this casghersystem eventsayoccur between the occurrence of the
two events.

Section 5.5 vl examine the effects of synchronized communication on
composability. It Wi be shown that the type afynchronization is dactor when the
composition oftwo componentsfails to preserve a property. In section 5.5.3 we
introduce adelaycomponent that can be used to model non-synchronized communication.
We defer the introductioantil then becausthe delaycomponent hasnplications on the
composability of properties.

Typical research on composability haoceeded on thieasis that a system can be
constructedwo components at a time. Firstyo components are interconnected. These
are then considered one new component and another component is Baidguocedure
is repeatedintil the desiredsystem has bearonstructed. Iithis work, however, wewill
show that the structure of tisgstem is an important consideration composition. We
therefore require way of expressing thistructure. This will be done through the use of

a system graph.
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Definition 3.9: System Graph.
For asystem composed &fcomponents construct ti@lowing digraph
G=<V,D>. Let the set ofertices V be theset ofnumbers 1 tk. An
edge(i,)) LD iff there exists at such thattJO, andall;. The above
graph is called theystem graph

Figure 3.5(b) is arexample of a systergraph for thesystem in Figure 3(8).
Observe that the system graph captureptssible flow of events. The system graph has

a cycle if and only if the system involves feedback.

214

T

°
3
(b)

Figure 3.5: An Example of a System Graph
Figure (b) is the system graph for the system in part (a).

Definition 3.10:Feedback Path.
The feedback patfitom component is a path that starts at verteand

ends at vertex. It is possible that a componentnst part of any
feedback path.

Definition 3.11:Number of Components in the Feedback Path.
The number of components in the feedback path is defined as#liest

number of vertices visited ithe path that starts at vertexand ends at
vertexi.
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For example, in Figure 3(b) it can be seen that the pdttR-4-1 is afeedback

path and the number of components in that path is 3.

3.5. Summary

In this chapter we presentdtie eventsystem formalism that iV be used

throughout this work. In the next chapter we introduce security properties.
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4. Security Properties

The vanity of being known to be trusted with a secret is generally one
of the chief motives to disclose it.
Dr. Samuel Johnsor(1709-1784)
English author, lexicographer

4.1. Introduction

Each researcher that haooposed a new security propettas constructed his
own notation andormalism. Every new securifroperty proposal must @Ecompanied
with a proof of @mmposability. With differenhotations and assumptioabout themodel
of components, comparing the strengths and weaknesses of the various security properties
has been difficult. In thishapter weexamine securityproperties in gegral. We then
present ainified framework for thespecification andnalysis ofsecurity properties.This
framework is used throughottis work in proving propertiesabout thecomposition of
components that satisfy security properties.

There have been various frameworks preserited analyzing properties of
components [Hoare8%pbadi & Lamport90] [McLean94] [Nestor93] [Hinton96]. Why
is another framework required? In Section 4.7 we show that security properties do not
fall within the Alpern-Schneider [Alpern & Schneider85] safety/liveness framework
presented in Chapter 2. Therefore, feadi andLamport [Abadi and Lamport90]
composition principle cannot be applied to security properties.

One of thdirst attempts to provide general theory of security properties was the
use of Selective Interleaving Functions [Mclean94]. McLean's frameworkillabew
demonstrated isnly applicable to asubset of security propertie?ossibly itsgreatest
weakness, however, is that it does allow for an obviousspecification of security. Our
framework captures théntuitive notion of security properties and can be used to
determine the composability of components dadisfy securityroperties. A comparison

of selective interleaving functions and our framework is presented in Chapter 6.
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In this chapter we introduce and motivate security properties. Chapter 5 presents

composition theorems that can be used to determine the composability of these properties.

4.2. Properties of Secure Systems

A secure computer system is one that has the properwesiftdentiality, integrity
andavailability [McLean94]. There is no clear distinction between these propsities
they are not independent. A Trojan Horse that corfiilptsmakes theséles unavailable.
Also, a Trojan Horse thahakes a system unavailable carubed to transmidata to low
level users. Therefore, confidentiality cannot be assumed without some degtegriy
and availability. Each of confidentially, integrity andavailability is useful, however,
because each category has its own set of issues.

In this work we areinterested inconfidentiality properties. The goal of
confidentiality is toprevent lowlevel users from deducing@nything about high level
activity. The securitypolicy defines exactly hat low level users areforbidden to
discover. Forexample, itmay beconsidered desirable to ensure It@wvel users cannot
determine which higlevel inputs haveoccurred. Or wenaysay, informatiorabouthigh
levelinputsmaynotflow to LLU. The securitypolicy dictates whatlows are permissible
and whichare not. A security property is an instantiation pbécy. Theremay bemore
than one property thedatisfies a given policy. In thiwork we do not advocate any
specific security policy. Weonsider security properties in genéral

As with all of the work onconfidentiality, wetake anoptimistic view ofthe LLUs
abilittesand a pessimistic view tfie intent of the HLUs.For example, we assume LLUs
have complete knowledge dhe construction of thesystem and that HLUswhen
confronted with a choice, ilvmakethe one thatompromises system securttye most.
Taking this approach weet a lowerbound on the security of thsystem being

considered.

2 In this work when referring to security we mean confidentiality.
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4.3. Inference

To understand what a security propastywe must first understaritbw low level
users cannfer informationabouthigh levelusers’ activities. Information ilvbe deemed
to flow from high levelusers to lowlevel users whenthe low level users observe

something they believe is connected with high level user activity:

“Information is transmitted along an object when varietytha events
engaged by a [higheVel] user can be conveyed to a [laavél] user as a
result of [the high level users] interaction with the object.” [Foley87]

There are two types of inferences that can be made:

1. possibilistic

2. probabilistic

In thepossibilisticcase, one is interested in thassibility ofcertain events. In the
probabilistic casehe probability of the events is also consideredNearly all work on
secure systems has been possibilistic properties and systems. Somérk on
probabilistic properties has been presented [Gray90] [McLean90] [Gray92].

In thiswork we areinterested impossibilisticproperties andnferences. Johnson
and Thayer argued that “possibilistic specificatitmiscomputersystemdare] inadequate
for addressing the am problems ofcomputer security” [Johnson & Thayer88While
this might bethe case we cannot hope to understanddireamics of a probabilistic
system without first understanding the possibilistic case.

In thefollowing discussion it vll be useful to examinéhe bunch oftraces that are
consistent with agiven low level observation. Thelefinition of alow level equivalent

bunch captures this notion.

Definition 4.1: Low level Equivalent Bunch.
Given atracet and a Systers, B,w(T,S) is thebunch oftraces thahave
the same lowlevel events ag in thesameorder. We W write B (1)
when referring to an arbitrary syst&n Formally,
§s:traces(SJ|L=s|L

When a lowlevel user observes a sequence of evegide knows there existsta

such thatr|L=t,,. Since we assume thisie lowlevel user knows the architecture of the
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component he can determitiee low level equivalent bunclkiorresponding ta,.. The
guestion that we wish to address is what can the user infergH8ut

One of the first attempts to model the flow of information in a secure system is due
to Sutherland [Sutherland86].His theory of information flow is based ological
deduction. Sutherland argued that if there wegh levelevent sequences such that no
element of Bu(tow) had thishigh level sequence then the lolevel user wouldhave
inferred somethingbouthigh levelbehaviour. Formally, informatiotoes notlow if and
only if Otew:traces(S)|Mty:traces(S)|Hk:(Biow(Tow,S)|H). Thus asystem has no
undesirable information flows &l possible high levedvent sequences are consisteitlh
every possible low level event sequence.

This definition of inference seems reasondhle it is neither completaor useful.
We will not coverall the details of why this definition of inference i®t acceptable for
secure systembut we wil cover some of thenajor issues below.For anexcellent
discussion onthe subject see “Arusted Network Architecture” [Thompsat. al 88] or
“Information Flow in Nondeterministic Systems” [Wittbold and Johnson90].

One of the biggest problems with Sutherland’s theory is that it allows sysiéms
undesirable information flows to be called secure and systems that dave undesirable
flows to be called insecure. Sutherland’s assertionalhpossible high level activitynust
be compatible with every lotevel sequence doasot encompass the notion eécurity
correctly.

Consider a system whosely function is tocopy all low levelinputs tohigh level
outputs. This system is clearly secure. However, Sutherland’s theory indicateiothat a
from high tolow levelusers to lowevel users exists. It isue that thdow level user has
knowledge ofhigh levelevents but hdasnot gained anynew information. In this case
Sutherland’s theory idoo strong. Sutherland’s definition of information flow is
symmetric. Ifthere is aflow from A to B then there must be #ow from B to A.
Security, however, is aasymmetriqoroperty. Informatiorflows from LLU to HLU are
allowed but information flows from HLU to LLU are not.

Sutherland’s theory also allovike construction of aystem that hsa real but

unacceptable flows. This happens becanse all possible methods of transmitting
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information have been considerednlydthe existence of onénterleaving of a higlevel
event sequence and a ldsvel observation is required. The Idevel user inexamining
Biow(Tiow) Can however make the following observations:

1. A particular high level input sequence is not consistenttith

2. A particular interleaving of high level event sequences is not possible.

3. A high level output event that does not depend on any high level input events is

not consistent witqy,.
No otherobservations can be made. Highel outputs thatdepend on input events are
not a factor because if something can be inferred about these events then something can be
inferred about high level inputs. We do not want to imply that the LLU will not kinaiv
a high levebutputhasoccurred. But, we donply thatthe knowledge of the occurrence
gives no information about the activities of the high level users.

The first item above has beeaddressed bynanyresearchers but the second has
received littleattention. Guttman and Nadel [Guttman & Nadel88] mentioned it as a
problem theyweretrying to address ithe presentation of their securjyoperty. Their
exposition of theproblem does notadequately address the issue. Furthermibwesy
examplesare notconvincingenough to demonstrate tipeoblem with interleavings. It
was hypothesized by Lee [Lee et. al 92] thatitkerleavings problem might m®nnected
to the issue of nondeterminism. Wagree with this and W demonstrate why
interleavings need to be considered.

Example 4.1: MachineA has onéigh levelinputin, and one higheveloutputout which
is caused byn after some processing. There i®wa-level cancelinput, which cancels
any high-leveprocessing that is underway, and a low-leagk output thatacknowledges
the cancelinput after soméime interval. Ifthere is higHevel processing at thime of
the ack, that is, ifthe number ofout events is less thahe number ofin eventsall high-
level processing is terminated, and ot will occuruntil after the nextincancelledn. If
there is no highdvel processing at theme of ack then a low-leveérror outputmay be
produced at somime following the ack however, theerror output is noguaranteed to
occur.

It is easy to see thdbr any sequence of lowevel events evenhigh level input

sequence is possible. However, consider the low level observation:
<cancel, ack, erro¥
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This low level observation precludes tli@llowing interleaving ofthe high levelsequence
<in, out>:
<cancel, in, ack, out, error
The out event must come before thek event. Therefore, the lolevel user knows that
at thetime of the ack no high levelevents are presentThis information can besed to
transmit information from the high level user to the low level user. a
In light of the above discussion we propose the following definition for information

flow in a secure system:

Definition 4.2: Information Flow.
Information flows fromhigh levelusers to lowlevel users if andonly if
the lowlevel user’s observation al,, implies that ateast onéenigh level
event sequence or interleaving is not possible.

Information flows fromhigh levelusers to lowlevel users if there exists ligh
level trace orinterleaving such that if it hadccurred thert, could not haveoccurred.
Care must be taken in interpreting this statement. Ifiéol actionsinfluence high level
behaviour then it is possibfer a particular sequeng®t to bepossible becauste low
level influenceprecludes it. However, itihis case no inference is possibor example,
the low level usermay know his influencecould not pcssibly result in a particulahigh
level output, or in theextreme casemay know exactly what theoutput must be. But
what is theinference? The lowlevel user is precludindpigh levelevents from occurring.
Therefore, he can communicate witte high leveluser through a covechannelbut low

level to high level communication is already allowed.

4.3.1. The Perfect Security Property

Separability is an example gierfect security [McLean94].This is because no
interaction is allowed betwednigh leveland low level eventd. It is like having two

separatesystems,one running the high level processes and omenning the low level

We must stresthat this is in thepossibilistic sense. It is possible to construct a Separability

secure system that has covert channels.
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processes. Segadility can be defined as follows-or every pair oftracest; andty the
tracet such that|L=t1|L andt|H=t2|H is a valid trace.

The problem with Separability is thatibes notallow low level users tanfluence
high level activity. For example, acomputersystem that keeps a journal af low level
user activity on a high level device would not be considered secure.

We will present a security property that is the weakest propertydthest not
allow a flow from high levelisers to lowlevel users. Our propertyilivallow low level
users toinfluence high leveluser activity. The Perfect SecuriBroperty (PSP) il be
proven to be the weakest property that dogtsallow a flow from high leveusers to low
level users.

The idea behind PSP is the same as that behind Separability. All possible high level
activity and interleavings must be possible with all low level activity. The differerloatis
PSPallows high levebutputs to belependent on lowevel events. The choice @utput
event forany given interleavingan depend on lovevel events. Thismplies thatnot all
interleavings of high levedvents argossible. This, asilvbe shown, doesot reduce
security because the lolevel user wll not know how hehas influenced highevel
outputs.

The traces of the system are construdtenh the set of events of tteystem. The
set of eventslefines allthe events that thgystem can engage it he definition of PSP
requires thensertion of events itraces. Tasimplify the presentation of PSP weed to
represent thensertion of no event. Taccomplish this wéntroduce aspecial event the

use of which has no effect on the set of possible traces. It is merely a placeholder.

Definition 4.3: Null Events
The symbole will be used to represent an event that is governed by the

following axiom:
p'<e>"s= pPs psUT

Thefollowing function givesall the possible high levetvents thatnay occur after
a prefix of a givertrace. This function vill be used to construddll the interleavings of

high levelsequence with lovievel events. Notice thagince we Wi be using a function
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that givesall possible eventafter a trace, it ipossible thathe lowlevel activity in the

trace can influence the possible events.

Definition 4.4: Possible Event Function.
Given atracert, Let v(t1)=8e:Hlelttacg(t"<e>). This functionreturns
the bunch ofall possible high leveévents that caoccur aftert. The
functionv() is called thgossible everfunction.

The definition of the possible event function requaés be a possible eventhis
will ensure that there will be no case where an erergtoccur.

Thefollowing definesPSP. Thedea behindhe property is that foanylow level
observation the following must be true:

1. Allinterleavings of high level input sequences must be possible.

2. High leveloutputscan be inserted anywhere time trace(assuming they are

possible) and can depend on low level activity.

If all high level input sequences angossible andhigh level outputs can be inserted
anywhere then the low level user cannot determine anything about high level adinrgy.

observation will be proven below.

Definition 4.5: The Perfect Bunch
Given anevent system S and a |devel observatiort,,, if the bunch
Biow(Tiow,S) contains the following traces then the bungteigect

Op,s:E [ftacegp"s)0s|H=<>1p"s |L=Tjow Da:v(p)[Fa"S: Bow(Tiow:S)

Definition 4.6: The Perfect Security Policy.
If for all 10w the bunch Bw(Tow,S) is perfectthen thesystem satisfies
PSP.
The expression of the property might seem complicated but fortunatelyefsse
a simple procedure tdetermine if a component satisfieSP (see Chapter 7). Wdl
use this property to determine the strength of the properties presented in the literature (see
section 4.5).
The definition of PSP can be transformed into a definitidar Separability by

defining the possible event function as follows:
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v(1)=8e:Helttace( (t%e) [H )

The only differencebetween thiglefinition of the possible event function and the
onegiven in Definition4.4 is thatthis possible eventsnly depend on the precedimigh
level events,not thewhole trace. Wedefer the proofs tha®SPallows no information
flow and isthe weakest such propenmtil section 4.6 because we requi@ncepts that

have not yet been introduced.

4.4. Security Properties

In the previous section weefined a securitproperty that does natllow any
information to flow from high level users to low level users. It would appear thathigth
property no other property is required. Theremamyreasonsvhy other properties are
required. For example:

1. The riskanalysis ofthe system indicates little threat of Troj&worses. Irthis

case a security property with tpessibility ofsome unauthorized flowsigint
be acceptable.

2. A desired component doest satisfy thisproperty and a weaker property

must be used.

3. The flow thatPSP objects tonight, under furtheanalysis,not be a threat to

the system.

The definition of PSPand information flow gave a hint athat a security property
is. The definition of PSP was done by indicating what elements must be present in the low
level equivalent buncfor a lowlevel observatiort,,. We can generalize this tover all
security properties: A security properhdicates whatraces must be consistent with a
low level observation,,. In other words, the lovevel user observing,, can determine
the lowlevel equivalent bunch dfaces. Theecurity property ensures that certain traces
are present ithis bunch. Thereforeéhe lowlevel user cannotlistinguish which othese

traces has occurred.

Definition 4.7: Security Properties
A system satisfies a securifgroperty if andonly if all low level
equivalent bunches satisfy the security property preditateormally,
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Ot:traces(S)|[B(Bow(T,S))
We will write P(S)to indicate that syste@satisfies propertfp.

A security property Wl ensure that certain traces are in the level equivalent
bunch. This isnot to imply that other tracesmay not be present in this bunch. For
example, if property?; implies propertyP, and the component is known to satiBfy then
it may also satisfyP;, butthis isnot guaranteedThe propertyspecifies wat must occur.
All other traces are coincidental and can vary from component to component.

For each security property theexists a bunch dfaces that are guaranteed to be
consistent witht,. As will beshown, constructing this bunch is a gleprocedure once
the propertyhas been expressed. Ttodlowing definition will be used toidentify this

bunch.

Definition 4.8: Guaranteedbw level equivalent bunch
We will write Go(1,S) to identify the bunch oftraces that property
guarantees W be present for trace in SystemS. We will write Gy(t) if
the system to which we are referring to is obvious from the context.

This bunch shoulahot beconfused with thdunch B (t,S). Bow(T,S) gives the
bunch ofall traces with thesame lowlevel events. @t,S) is thebunch oftraces that are
required to be present in the Jeof the systemfor the system to satisfi?. Clearly, if a
systemS satisfies a property, Gy(t,S) : Bow(T,S)

We have been deliberately vagaigout howsecurity properties can be expressed.
Beginning inthe next section wexaminesome of the security properties tlngtve been
presented in the literatureThis discussion W be used to demonstrate hosecurity
properties can be expressed. The security properties thahallgpresent here and
analyze inChapter 5 are intended to illustrate gwver of ourframework and hovether

frameworks anéd hocapproaches to security fail.

4.4.1. Noninference

Noninference was introduced by O’Halloran [O’Halloran90]. attempts to

separate the lovlevel activity fromthe high level activity. Informally, Noninference
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requires that foanytrace of thesystem removingill high levelevents results in a trace
that is still valid.

Noninference is too strong for systems that hakigla leveloutput without gigh
level input. As anexample consider a systetime only function of which is tdkeep a
journal ofall low level events on digh leveldevice. This system secure. The low
level user does not knowanythingabout whathigh levelusers are doing.This system,
however, does not satisfy the Noninference property.

McLean [McLean94] extends Noninference as followsr anytracet, it must be
possible to find another tracesuch that the low level eventswoére equal t@ ando has
no high level inputs. McLean calls tlsgsonger property Generalized Noninference.

Consider the following:

Ot:traces(S)|IEN(Bow(T,S))

GN( B )= x:BlfHI=<>
This satisfieghe definition of a securityproperty. The GN predicate ensuthat

the trace withoutiny high levelinputs is always possibli®r any low level observation.
Therefore, forall possible lowlevel observations a tracean be found with theame low
level events but with no high level inputs.

In the chapters thdollow it will be required to determinell the traces that are
guaranteed to be indistinguishable to the low level Es#rGeneralized Noninference this

bunch can be expressed as:

Gon(T,S) = 8s:traces(8|L =1|L Os|HI = <>
4.4.2. Noninterference

Noninterference is a security property introduced by Goguen and Meseguer
[Goguen & Meseguer82] [Goguen & Meseguer84]. It captures the attractive notion that
system security is preserved wheneawgh levelusers are preventdbm influencing the
behaviour of low level users. Goguen and Meseguergiginal definition of
Noninterference wasonly applicable to deterministic systems. McCullough
[McCullough87] [McCullough88] extendethe definition to encompass non-deterministic

systems.
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McCullough's definition of Generalized Noninterferencai] can beinformally
defined as follows: Given @acet, modifying it by inserting odeleting high level inputs
results in a sequenee which isnot necessarily a validrace. This is referred to as a
perturbationof 1. It must be possible toonstruct avalid tracet' from o by inserting or
deleting high level outputs. This is called a correction to the perturbation.

We will now formally define Generalized Noninterference.

Ot:traces(S)|LIGNI(Bow(T))
GNI( A) = Ot:interleavedI” T, [s: AliEs|(LOHI)
To simplify the presentation of the GNI predicate, we usgdto represent the

low level trace. This can be extracted from any membaAr of
Once the security predicateas been writterthe bunch of traces that are

guaranteed to look like a particular tragg to the low level user can be formed:

Geni(T,S) = §s:traces(8lt:interleavéH! ,T|L)|(LOHI) = t

4.4.2.1Forward Correctability

The above definition of Generalized Noninterference is different than
McCullough’s original definition. The abovedefinition allows acorrection to a
perturbation to occur anypoint in the tracegven beforehe perturbation.McCullough
calledthe possibility of correcting before the perturbatiori\aolation of causality.” We
will show in section 7.5.1 thétis violation caronly occur in anon-deterministic system.
We can also define a causalForward Correctableersion ofGNI where corrections can
only occur after the perturbationUnless otherwisespecified when referring to

Generalized Noninterference we will refer to the one defined in the previous section.

4.4.3. Non-Deducible Output Security

The previoudswo examplesvere of security properties are founded on the notion
of preventing a LLU from deducing anythimdpouthigh levelinputs. Ourdefinition of
security isnot limited to thistype of security. To illustrate a different form of security we
present Guttman and Nadel's Non-DeducBlgput Security [Guttman & Nadel88]. In
this example westartwith the formal description othe property and demonstrate how it

can be analyzed. Non-Deducible Output Security can be expressed as:
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Ot:traces(S)|[NDO(Biow(T))
NDO(A) = (t:traces(SYLI=T|LIT Ts: A [d|(HILD)=t|(HOLI)
Once again we have useg, to simplify the notation. This can beextractedrom

any trace of the bunoh

The analysis of groperty begins byriting the security property in form where
it is obvious which traces look like a tracéo a LLU.

Gnoo(T,S) = 8s:traces(8)t:traces(SY|LI=t|LI Os|L=t|LOs|(HILI) = t|(HOLI)

If the LLU sees a trace,, he can determinthe bunch B (Tiow,S). All of these
traces arendistinguishable to #éow level user from araces that haghe same lowevel
events ag but thehigh levelevents come fromanother trace thdtasthe same lowlevel
input events. Sincéne low level user cannot determinghich high levelevents were
chosen the observation of, givesthe user no nevwnformation abouthigh inputs or
outputs. Furthermorasjncethe merging was performed arbitrarilfhe low observation is
also compatible witfall interleavings and so give no informatiabhoutwhich interleaving
occurred.

OutputNon-Deducibilitycannot be expressed in McLean’s Selechiterleaving

Framework. This property is not the interleavings of two traces (see section 6.2).

4.4.4. Separability

Separability is an example perfect security [McLean94]Separability is perfect
security because no interaction is allowed betwegh leveland lowlevel events. It is
like having two separate systems, one running the high level processes and one running the
low level processes.Separability can be defined as followBor every pair oftracest
andty the traca such that|L=t14|L andt|H=T2|H is a valid trace.

No matter what the lowevel user observegvery possible sequencetogh level
events is possible. Therefore, the low level user cannot gain any new information.

This property can be formalized as:

Ot:traces(S)|LBEPARABILITY (Biow(T))
SEPARABILITY( A) = Ot:traces(S)|Hhterleavet, Tow):A
GseparasiLTy(T,S) = 8s:traces(8lt:traces(S)|HH|L=t,,sinterleave(irow)
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4.5. Comparing Security Properties

Before we can compare security properties we must decide whagahs to
compare them. Considanycomponent ¢that satisfieproperty R andany component
C, that satisfies P We can ask does, @lways satisfy 2 If it does then property,Hs
weaker than P If C, always satisfies;then R is weaker than £. If neither istrue then
P, and B are notcomparable. By performinghe above comparison between all
properties a partial ordering of properties can be constructed.

Our formalism provides a mechanical method of evaluating the relative strengths of
security propertiesSince we have a logical expression our properties the comparison
is simple. To compare propertieandQ evaluatePl Q andQU P. If the first statement
is true therP is stronger the@. If the second statement is trilnenQ is stronger tha.
If both are true the properties are equal and if neither is true they are not comparable.
Example 4.2: We  will compare Generalized Noninference to Generalized
Noninterference:
We reproduce thedefiniton of Generalized Noninference and Generalized
Noninterference here:

GN(B)=:Blt|HI=<>
GNI( B ) = Ot:interleaveH1”,T,,) [Os:BEEs|(LOHI)

First we will show thatNI implies Generalized Noninference:

Ot:traces(S)|IENI( Bow(T,S) ) Definition of GNI
= [Ort:itraces(S)|[t:interleaved!”, Tiow) [05:Bow(T,S)IES|(LOHI) Specialization with tE
0 Ot:traces(S)|s:Bow(T,S)T=s|(LIHI) Distributive
0 Ot:traces(S)|Ms:Bow(T,S)T|L = s|LOT|HI = s|HI Definition of Bow(T,S)
= [Ot:traces(S)|s:Bow(t,S)THI = s|HI T has no high level events
= [Ot:traces(S)|s:Bow(T,S)<> = s|HI Definition of GN

= [Ot:traces(S)|IGN( Bow(T,S) )
Now we show that Generalized Noninference does not ignaty
Ot:traces(S)|IEN( Bow(T,S) )0 Ot:traces(S)|IGENI( Biow(T,S) )
Definition of GNI & GN

4 If both cases are true thepiP equal to R
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Ot:traces(S)|s:Bow(t,S)d|HI = <>0
Ot:traces(S)|[t:interleaved!”, Tiow) [05:Bow(T, S)IES|(LOHI)
Specialization such that t[#k>
0 Ot:traces(S)|s:Bow(T,S)S|HI = <> 0 Ot:traces(S)|s:Bow(T,S)Itl= s|( LO HI)
Distributive, Definition of B.(t,S) and the Specialization condition
0 Ot:traces(S)|s:Bow(T,S)S|HI = <>0 Ort:traces(S)|s:Bow(T,S)F s|HI = <>
= [

Therefore, GN does not imply GNI and GN is a weaker property than GNI. a

By applyingthe above technique to the security properties presented above the

following lattice can be constructed.

Separability

Output Non-
Deducibility

Generalized
Noninterference

Generalized Noninference

Figure 4.1: A Partial Ordering of Security Properties

The arrows in the lattice indicate which property implies which other. For example
PSP implies Generalized Noninterference and by transitivity Generalized Noninference.
An instructive way tarepresent part of thabove lattice is tanly consider theelements
that can be totally ordered.

Figure 4.2 shows the ordering of most of the security propertiehévat been
presented in the literature. First nottbat, forexample, Separabilitgecure systems are
both GNI secure and Generalized Noninference secure. Thereforesygdtem designer
wishesthe system to be Generalized Noninference secure and it is known thaint is
secure then it is also Generalized Noninference secAfso notice thaPSP,defined in

section 4.3.1, partitions tHgure intotwo. This can baused to determinthe strength of
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All Systems

Generalized
Noninference

n-Forward Correctability
| Restrictiveness

PSP

Separability

Figure 4.2: A Total Ordering of Most Possibilistic Properties

the properties. We can see tlaparability is atronger property thaRSP. Therefore,
systems with no information flow are being unnecessarily rejected.

Most security propertieslefined inthe literature are weaker th&sP. This may
be surprisingout can beexplained becaudagh level interleavingsire notconsidered by
any ofthe weaker propertiesExample 4.1 orpage 29 was used to demonstrate that the
interleavings oftraces can be used to transmibrmation from high levelisers to low
levelusers. It can be shown that the componerixaimple 4.1 is Restrictiveness secure
[Lee et. al 92]. From Figure 4.2 it can be seen that this component also satmsfstsof
the other properties presented in the literature. Theredlbngeaker properties than PSP

allow systems to be called secure which are not.

4.6. PSP Security Proofs

In this section weprove that PSRllows no information flow betweemigh level

users and low level users. We also prove that it is the weakest such property.

Theorem 4.1:PSP does natllow any information to flow from high levelsers to low

level users.
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Proof:

Assume thathere is asystemS that satisfiePSPand allowshigh level information to
flow to low level users. By thealefinition of information flowthere must be somagh
level sequence that isot possible. By constructioall possible high levahput sequences
and high level input sequence interleavingse possible. Furthermoreall possible
interleavings of high levebutputs are presentThe low level equivalent bunckor T,
containsall sequences that coudive the lowlevel usersany informationabouthigh level
activity.

a

Theorem 4.2:PSP is the weakesecurity property thadoes notallow information flow

from high level users to low level users.

Proof:

Theorem 4.1 proved that PSP doesallow information to flow from high levaisers to

low level users. We must therefore prove that any weaker property must allow flows from

high level users to low level users.

Assume that there exists a propeRythat is weaker than PSP and that doedawe¢ any
unauthorized information flowsLet S be a system thatoes notsatisfyPSP butsatisfies
P. Letp be a tracesuch that-:Gp(l,S). Such a tracexists becausk is weaker than
PSP.

Whenthe lowlevel user observes,, he knows that the trageis notpossible. We now
show that theabsence of thigracegivesthe low level user additional knowledgabout
high level activity. Sinc@ is not a possible trace one of the following must be true:

1. The high level input sequencetas not consistent with the,,, observation

2. A high leveloutput event that doesot depend on input events mustcur before

some low level trace,, because it influences the subsequent behaviour of the trace.

3. The interleaving dhigh levelevents given by is notpossible withthe observation of

Tw- BY the construction qi the sequence of eventfH is a validfor somet,,. The
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absence of this interleaving wittihe observedt, gives the low level user the
knowledge of some aspect of high level state.
In all the cases thabsence othe traceu givesthe lowlevel user additional knowledge

about high level activity. a

4.7. Security Properties vs. Safety/Liveness Properties

In section 2.4.2 we presented tAlpern and Schneider safety/liveness model of
properties. This model is currentlyhe domimnt model irthe specification of analysis of
programs [McLean94]. Properties are regarded as sets of traces and a component satisfies
a property if itsset of traces is a subset of the property’s setith Wiis notion of
refinement and Abadi and Lamport’'s composition principle it would be desirable to be able
to express security properties in this manner. Secpribperties, however, are not
preserved by this type of refinement [McLean92b] [McLean94].

In this section we demonstrate that security properties cannot be expressed in the
Alpern and Schneider framework. McLean has demonstrated this in “A General Theory of
Composition for Trac&etsClosed Under Selective Interleaving Functions” [McLean94]
but for adifferent model of components. Wallwprovethis forthe evensystems we are
considering.

Before we can prove the required result we nuefine the notion of one

component being a subset of another.

Definition 4.9: Event System Space
An event system space is4datuple <E,I,O,T> where E, I, O, T are
defined as irthe definition of anevent systenfseeDefinition 3.3 page
16) with T=E. We will write S for the event system space.

Definition 4.10:An Element of a System Space.
A system S=<El;,0,,T;> is a subset of the system space S=<E,I,0,T> if
and only if EOE, 1,01, 0,00, T,0T.

Theorem 4.3:Security properties are not expressible as sets of traces.

Proof:
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Let T be the subset of the set of traces of S shtisfy a securitproperty P. Any subset

S of S whose set of traces are a subseT shtisfies P. The satisfaction of a security
property ensures that a system has certain behaviours. A security property is defined as all
low level equivalent bunches of a system satisfying a predi€atea property to be
satisfiedthe required traces of tHminch must bengsent. Construct system S whose

traces are a subset ®fand the security property predicatefatse for some lowlevel
observationt,,,. Such a system exists because remowving of the traces required to
makeP true wil still result in the set of tracd®ing asubset ofl. The set of traces of S

does notsatisfythe security propertf? but is a subset of. This yields acontradiction.

Therefore, P cannot be expressed as a set of traces. a

The proof demonstrates that thefinementstep may eliminatesome possible
behaviours othe system. Eliminatinghese behaviounneans thathe security property

might no longer hold.

4.8. Conclusions

In this section we have presentbd notion of security propertieg.his definition
is general aneéhtuitively appealing. Welso demonstrated that security properties do not
fall within the safety/liveness framework of Alpern and Schneiderthénnext section we

begin our discussion on the composition of components that satisfy security properties.
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5. Composition And The Emergence Of
Security Properties

Others find their intellectual pleasutes in the theory, not the
practice.
Patrick White (1912-1990)
Australian novelist

5.1. Introduction

The purpose of ndeling a system is to be able peoedict its behaviour. To be
able to predict thebehaviour of a system, rules fohe effects of interconnecting
components are required. These rules shaliddv the system designer tenow what
property thesystem satisfies givetihe properties of each component. If the property of
interest falls within the safety-liveness framework thethe Abadi and Lamport
composition principlenay beused. If not, thesystem designer must evalu#ite system
to determine what properties it enforces.

In the previous chapter we demonstrated that security propertigst &l within
the safety-liveness frameworkTherefore,Abadi andLamport’s compositiorprinciple
cannot be applied. In this chapter we present composition results for security properties.
This givesthe system designethe ability to predict theresulting securityproperty of a
composition given the property of each of the components.

There aretwo different approaches a system designer @ke. Thesystem
designer may want to know what propemyo or more of the components mussttisfy so
that when they are interconnected the system satisfies a prBpeftye other approach is
to determine what properti@sesatisfied bythe system that results frothe composition
of two (or more) components with given properties.

The approaches can be seen to be duals of eaeh oth thefirst approach the
system isdecomposedo determine what its constitugmarts mussatisfy. Inthe other

approach the systemaésmposedo determine what the resulting system satisfies.
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Both approaches are requirbdcause they satisfy differeneeds. If a desired
property of thesystem mighihot bepreserved under composition then it is required to
decompose thesystem to determine lvat each component musatisfy. If the system
designer is composing several components then he wishHesowo what properties the
resulting system iV satisfy. Notice that if a property is always preserved under

composition then both approaches will uncover it.

5.2. Classification of Properties

When severatomponents thatatisfy a particulapropertyP are composed one of
three things may happen:

1. The resulting system will satisfy the propdety

2. The resulting system might satisfy the property

3. The resulting system will never satisfy the propBrty
The distinctions have important implications for the system designer.

It is desirable to identifyproperties such that the composition séveral
components thagatisfy aproperty always result in system that satisfies thptoperty.

We will call such propertiesomponent independent propertie8Vith components that
satisfycomponent independenttee system designer is free to interconnect them and need
not beconcerned about the propemyt holding.Unfortunately,not all properties are
component independent.

Components thasatisfy someproperty may becomposed so that thesulting
system mightnot satisfy the property. Specialattention is required from thsystem
designer to ensure thesulting system satisfigbe desired property. If no theory of
component composition wesvailablethe system designer would have to reevaluate the
systemafter everynewly added component. Fortunately, we can show that this is not
required. In thdollowing sections wepresent criteria that il allow the system designer
to know if the composition W preserve the property or not. Wélwall properties that
might not be preserved by compositmymponent dependent properties.

The last possible behaviour of @roperty is such that the composition of

components thasgatisfy aproperty inariably results in a system that never satisfies the
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property. Inthis casehe system designeknows that these components must never be
interconnected.

The system designer also needs t@lble to determinender what circumstances
a property emerges on composition. An emergent property is one thait Satisfied
individually by every constituent componeintit issatisfied by their composition. Waell

provide criteria to determine when and how a property may emerge on composition.

5.3. Interconnections of Components

In this work we examine what effect the interconnection of systems has on security
properties. We are interestedwo types of interconnections: cascade composition and
feedback composition. It can be shown that thesesaifecient to perform general
composition.

Cascades are formed by takitwgo components Sand $ and passing some of
Si’s outputevents to 8s input events (see Figure 5.1). We assume thiat dhitput
meetsany environmentestrictions expected by,’S input. Thatis, §’s outputs are
acceptable inputs for,S The resulting system cartow be considered a new component
and another component can be addedthis fashion larger and larger cascadstays

can be constructed.

_, The overall System S

Figure 5.1: Cascade Composition
The cascade composition of componentsassd $S. Some of 8s output

events are fed into, s inputs.

3 McLean [McLean94] demonstratésis with producttcomposition (cascade composition with no
internal events)and feedback composition.The ability to perform general compositidnom

cascade and feedback composition was noted by Millen [Millen90] who attributes it to Rushby.
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The other type otomposition involves feedback. In a systdérat is composed
with feedback some of,S outputs inFigure 5.1 are directed to become inputs;atSee

Figure 5.2. With these two types of composition any system can be constructed.

—, The overall System S

Figure 5.2: Feedback Composition
The difference between cascade composition and feedback composition is
that in feedback composition some ofsSoutputs are directed toecome

inputs at &

5.3.1. Cascade Composition

The definition of compositiorpresented in section 3.4 (page 18) was foegdn
composition. Since weillvbeginour investigation of composition byxaminingcascade
composition we will formally define the cascade composition operation.

It can be seen from Figure 5.1 ttaditinput events of théirst component, § are
also input events of the composggstem. All of the input events t&, are alsoinput
events ofS. Sinceall possible inputs caaccur for the $componenall the traces of S
are possible. For the second component (compon&ntin Figure 5.1)not all input
combinationsare necessarily possibleThe outputs ofS, may not generateall possible
input sequences t&, therefore, noall traces of $may bepossible. This leads us to the

following definition of cascade composition.

Definition 5.1: Cascade Composition
Given S=<E.,1;,0,,T1> and $=<E,,l,,0,,T,> that Satisfy
I, n =0
O.n0O,=0
(E.\N(1:O00))n Ex =0
(Ex\(1,00))n E; =0
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then the compostion of ;Sand $ produces a new component
S=<E,I,0,T> such that:

E= E]_D Ez

| = |1D (lz\ol)

o= (Ol\ |2) 0 Oz

andT = { alE" such that &,0T, Oaf, 0T}

Notice that the cascade compositiom@ asymmetricoperation. The cascade
composition of $and $ is notequal to the cascade composition gfa®d 3. In this
work we wil use the convention that componentl be the left component of Figure
5.1 and componentSvill be the right component.

The definition of cascade composition implies the following:

Ol N |2 =C
HI = HI, O HI,\HO,
HO = HO\HI, OO HO,
T,=T&
T, 0T|E

Givencomponents Sand $ that satisfyproperties Pand B respectively, we can
ask “what property does the cascade composition ah& $ satisfy?” The definition of
cascade composition yields:

Oty:traces(9 Pi(Biow(T1,S1)) 001 traces(9) [Bo(Biow(T2, S)) Distributive Laws

= [Orytraces(9to:traces(9 [Pi(Biow(T1,S1)) D Po(Biow(12,S:))
traces(S) interleavdtraces(9),traces(9)

0 Ot:traces(SPiBiow(T|E1, S1)) 0 P(Biow(T|E2 S2))

To proceed further we must substitute &xpressions for each of the properties.

The resulting expressionilirindicate the property that the composegstem satisfies. A
special case of the above is wHarP,=P. If after thesimplificationthe composedystem
can be seen to satisB/then the property is a component indepengeoperty. If the
resulting expressiodoes notyield thatthe composedystem satisfie® then thesystem
satisfies a component dependpnvperty. We Wl continue by demonstrating how to
proceed by a series of examples.

Thefollowing lemma is useful imeterminingthe effect of cascade composition.

It states that if therexists atrace ineach component’s lowevel equivalent bunch such
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that thecommunication eventare thesame andhe tracessatisfy somepredicate then
there exists &ace in the lowevel equivalent bunch dhe compositesystem that satisfies
the same predicate.
Lemma 5.1: D:l:B|0W(T|L1,Sl)mlz:B|0W(T|L2,Sz)m|Cﬂ H:t2|Cﬂ HDb(tl,tz) = D::B|0W(T,S)|:|
b(t|E,t|E), where b is any predicate
Proof:
[1:Biow(T|L1, St) [t2:Biow(T|L2, S:) [E|Cn H=t,|Cn Hb(t, 1) Definition of Bow

= [I;:[8si:traces(9|Li=s|L1] [[t1:[8sy:traces(9 [M|L=s|L,] [11]|Cn H=t,|Cn Hb(ty, 1)
Definition of §
= [Iytraces(9 i :traces(9LT|Li=ty| L0 T|Lo=t,|L,0 t;|Cn H=t,|Cn Hb(ty,t,)
Since {|CnL =t;|]CnL

= [Iytraces(9 M :traces(9LI|Li=ty|L,01|Lo=t,|Lo0 t;|C =b|Clb(ty,t,)
t,)C =¢|C andinterleave(t,t,):traces(S)

= [:traces(S)t|L=t|L Ob(t|E,t|E) Definition of §
= [1:[8s:traces(SY|L=s|L]B(t|E.t|E) Definition of By,
= [X:Biow(T,S)B(t|EL|E) Q

The firstexample wepresent proves that Generalized Noninterference is cascade
composable. This result is not new and has already been proven [McLean94] [Zakinthinos
& Lee95]. We present it here because Generalized Noninterferencedrasxtensively
studied and navork would be complete without demonstrating that it can duplicate

known results.

Example 5.1 In this example we it prove that the cascade composition of two
components thasatisfy the Generalized Noninterferengaoperty wll also satisfy this
property.
Oty:traces(Q|L Mty interleave(HI 1) 5 Biow(t1, S) H=s|L.OHI; O
Oty:traces(g)|L Mtz interleave(H) ,12) 5 Biow(T2, S2) h=s;|L.OHI
traces(S) interleavdtraces(9),traces(9)
0 Ot:traces(S)|tyinterleave(H),T|Ey) 5 Biow(ts, S) =5 |L.OHI; O
Oty:interleave(H) ,T|E) [05:Biow(T2,S:) B=|L,OHI, Distributive Law
O Ottraces(S)|tyinterleave(H! ,T|Ey) (Ot :interleave (HAC) 1| Ex) sy Biow(T1,Sy) [
[5:Biow(T2,S) (51|HO N C=5|HI>n C O ty=5|LyOHI; O t=5|L,0HI,
Lemma 5.1 and Simplification

Ot:traces(S)|[Mt:interleave((HIOHIAC) 1) [@5:Bow (T, S) | E=s|LLOHI; O
t|E:=s|L.OHI\C Cascade Composition and Distributive Law
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Ot:traces(S)|[t:interleave(H1,t) [@5:Bow(T,S)d=s|LO(HI, OHIL\C)
Cascade Composition (HI=HIHI,\C)

Ot:traces(S)|[t:interleave(H1,t) [I55:Bow(t,S)=s|LOHI

Therefore, the composition otwo components thatsatisfy Generalized

Noninterference also satisfies Generalized Noninterference. a

Example 5.2: In this example we iV determine if Generalized Noninference (section
4.4.1, page 34) is@eomposable securifgroperty. O’Halloran [O’Halloran90] has proven

that Noninference is composable and McLean [McLean94] has “proven” using Selective
Interleaving Functions that Generalized Noninference is cascade composabldl bAs w
shown McLean’s result is wrong. McLean’s error comes fitoenincorrectepplication of

one of his theorems.

Oty:traces(9)|L 1 Biow(t1,S) [t |HI1=<> O Oty traces(9)| L IM,:Biow(T2, ) [t HI,=<>
traces(S) interleavdtraces(9),traces(9)

H DT:traceS(S)|If[tl:B|0W(T|El,Sl) II”H|1:<> H [tz:B|0W(T|L2,Sz) II;HH|2:<>
Distributive Law

= DT:traceS(S)lm]:l:BbW(TlEl,Sl) DD:z:BbW(Tle,Sz) II”H|1:<> [l t2|H|2:<>

We cannot progresmyfurther. Thehigh outputs of thdirst componentmay not
be <>. Theymaybe. However, the property doest guarantee that suchti@ceexists.
Therefore, Generalized Noninference@ acomponent independeptoperty. Wh this
analysis, however, we can easily determine what conditions are required for it to compose.
Sincethe second component requires tigh level communicatioevents to be <> we
can require thehigh level outputs of thefirst component be <> Notice that this is
Noninference whichwas proven by O’Halloran to be composableithvthis requirement
the interface requirement can be satisfied. a

In the aboveexample itwas easy to see th#dte composition woulshot succeed
because nothing could be saidout thebehaviour ofthe componenivhenthe high level
input sequence wast <>. In amore complexpropertythis type of observatiomay not
be as obvious. If compatible communication everdanot be guaranteed then the

property wll not becomposable. Therefore, compatible communication eversa

Only the high level communication events being <> would suffice.
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necessary condition for a property to be component independentolidheng steps can

be used to determine the conditions that are being imposed on the communication events.

1.
2.

For component;Svrite the expression for all traces that look like a tageof S;.

Take any tracethat looks liket,, and restrict the trace to teemmunication events.
Note that if the property does ngpecify arestriction on a particular class of events,
for example high levebutputs,then it must be assumékat any sequence of events
from this class can occur

For component,Svrite the expression for all traces that look like a tageof S,.

Take any trace s that looks like 1, and list the propertiessatisfied by the
communication events. The same comment as the one is number 2 applies.
Compare the sequences generated by 2 and 4. The compallisodicate what

additional restrictions are required.

Example 5.3: We will apply the above procedure to Generalized Noninference.

1.

For the first component we know the bunch of traces that look like atraakeS, is:
8t:traces(SYL=Tjow|LOHI=<>

Letr be any trace of this bunch. Restricting to its communication events it can be seen
thatr|Ln C=tew|]LNC. Since nothing is specifiebout thehigh leveloutputs wemust
assume that they can be anythiftdgn C:(HN C)'.

Proceeding in the same fashion for the second component:
8t:traces(YL=Tjou|LCHI=<>

Lets be any trace of this bunch. Restricting it to its communication events results in
SLN C=Tiww|LN C. Since some of the high level inputs g% now communication
events t|kh C=<>.

Comparing the communication events found in 2 and 4 we see that the low level
events are compatilSleut the high level outputs are not necessarily compatible.

The conclusions are the same as those found in Example 5.2. a

7

8

This is apessimistic view. Ibther information is known abotte clasghen that can based
instead.
This will always be true of security properties.
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This type ofanalysisperformed in the previousxample is quick and easyt the
benefitsmay not beobvious. Thefollowing conjecture W clarify why we believethis

analysis is useful.

Conjecture 5.1: If components § and $ satisfy security properties P and B
respectively, and ;Pand B guarantee compatibleommunication
events, then the cascade composition ofaBd $ will satisfy all

properties P such thatPP and R P.

Thefollowing example Wi illustrate how toapplythe techniques presented above
to determine whaproperty wl be satisfied bythe composition ofwo components that

each satisfy different properties

Example 5.4: In this example we il determine whaproperty theresulting systenwill
satisfy if component § satisfies Noninference and componentsatisfies Generalized
Noninterference.

Ota:traces(9|L M1 Biow(T1, Sy) [t Hi=<> [

Oty:traces(g)|L Mtz :interleave(H) ,12) 5 Biow(T2, S2) h=s;|L.OHI
traces(S) interleavdtraces(9),traces(9)

O Ort:traces(S)|[t1:Biow(T|EL, ) [H|Hi=<> O
Otz:interleave(H} ,12) 5 Biow(T2, S) Bh=s;|L.O0HI Cascade Composition

= [Otitraces(S)|t1:Biow(t|Es, S) M |H=<> O Otziinterleave(HAC) ,12) 05 Biow(T2, S:) [
S|HN C=t|HN C O t,=5,|L.[IHI; Semicommutative Laws

0 Ot:traces(S)|t,interleave((HAC),12) [(131:Biow(T|E1, St) (155 Biow(T2, S5) [
S|HN C=t|HN C O t=s,|L.OHI, O {h|Hy=<> Lemma5.1

= [Ortitraces(S)|[tzinterleave((HAC) ,12) [11:Biow(T,S)t=s|L.O0HI, O t|Hl=<>
Specialization withtHI,\C = <>

O Ot:traces(S)|:Biow(t,S)LE|HI=<>

Therefore, the composition of thisvo components satisfiethe Generalized
Noninference Property.

We will now do theanalysis bycomparing communication events aapplying
Conjecture 5.1.

1. For Noninferencethe high level communicatioreventsoutput from S are

guaranteed to be <>.
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2. ForGeneralized Noninterferentlee high level communicatioevents input to
S, can be anything.

Clearly compatible communicaticevents can be found. By Conjecture 5.1 the
system satisfies aproperty P such that Noninferenced P and Generalized
Noninterferencel] P. From Figure 4.1 (page 39) we see tRatan be Generalized
Noninference. This is the same conclusion demonstrated above.

Notice that in thissxamplethe resulting system satisfies a differgmbperty than

either of its components. We will discuss this further in section 5.4. a

Consider a property, P, that is known to be composable. What samdaéout a
property R such that BJ P? The cascade compositiontwb components thatatisfy R
will satisfy P. This followdecause both componeststisfy P, which is composable. But

does the resulting system satisf? P\Ve believe that it does.

Conjecture 5.2: Given a composableroperty P and properties; Rnd B suchthat
P00 P and RO P then the cascade composition of componentn8
S, that satisfy Pand B respectively W satisfy aproperty Q suclhat
PO Q, BOQ and QI P.

This conjecture follows from Conjecture 5.1 becatise compatibility of the
communication events is guaranteed by the composable property.

Product composition is a special case of cascade compositidhroduct
composition is cascade composition withoammunication events (see Figure 5.3). All
of the above results can lagplied toproductcomposition. For product composition

Conjecture 5.1 reduces to:

Conjecture 5.3: Given components;&nd $ that satisfy Pand B respectively then the
productcomposition of $and $ will satisfy aproperty P suchhat
P00 P and R P.
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Figure 5.3: Product Composition
Product Composition is cascade composition but without internal events.

5.3.2. Consequences of Input Totality

One of the assumptions in the section ComponentsSgatms (section 3, page
14) was thasll of the components must be ingatal. Thatis, they must alaysaccept
an input. Thisdiffers from most othermodels of event systemdnput totality sounds
more restrictive than it isAll that is required is that the input is recorded in treece. It
does not necessarily have any effect on the state of the system; it might be ignored.

Input totalitymakesthe presentation of the cascade results easier. If input totality
were notrequired then it would be possible timd two components such that their
cascade composition wouridbt beallowed. Consider theommunication events between
S; and S in Figure 5.1. If theutputs of $were unacceptable as inputs atSan input
event that must occur at $annot be generated by then the composition would not
succeed. The composition would cause deadlock. Input totality removes this problem.

McLean does notrequire input totality inhis theory of Selective Interleaving
Functions [McLean94]. Instead, he has an interface requirethemtensures the
composition will succeed. The input totality requirement can be replaced with an interface
requirement. This wouldhot changeany of our results but wouldcomplicate their

presentation.

5.4. Emergent Properties

In the previous section we investigated hovdéterminethe effects of composing
two components with known security properties in cascade. In this sectionillwe

examineemergent properties. As mentioned in section 5.2 an emeygggrty is one
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that is notsatisfied by evergonstituent component but satisfied bythe overall system.
One fundamental question that hast been answered is whether emergent security
properties exist? As we shall show the answer is yes.

Example 5.4 demonstrated that the composition of Noninference secure
component and a Generalized Noninterference secure component results in argtstem
satisfied Generalized Noninference. We miat believe that this examplproves the
existence of emergent properties. In this case the properties of the components both imply
Generalized Noninference. In Example 5.2 wemonstrated thatGeneralized
Noninference was not a composable property becausenbtiglarantee thexistence of
compatible communication events. However, the existence of the compatible
communication events is guaranteed by Generalized Noninterference. Therefore we do
not consider this aexample of emergence sinoeth components alsatisfy Generalized
Noninference.

We also want tceliminate fromconsideration the case where the components
satisfymore than one property. Fexample Generalized Noninterfererdmes not imply
nor is implied by Noninference. But a componentcan be both Generalized
Noninterference secure and Noninference secure. In composioagGeneralized
Noninterference componentsniight be thathe resulting system satisfies Noninference.
If both componentsatisfied Noninference then this wouldt be asurprise. If one (or
both) of the components didrsatisfy Noninferencéhen this would be aeaxample of an
emergent property. Weillvdemonstrate that if a composggstem satisfies Noninference
then each component must also satisfy Noninference.

We will demonstrate that there exists a secugptpperty such that two
components that both dwt satisfythe propertywhen composed result in a systémat
doessatisfythe property. We i not attempt tgustify the usefulness othe property.
We only want to demonstrate that such properties exist.

Example 5.5: Consider the property EMERGENT:
Ot:traces(S)|LEMERGENT (Bow(T,S))

EMERGENT( B )= [5:Bld|HI=<>-t|HO=<>
EMERGENT is Generalized Noninference witthe added stipulation that the

output sequence cannot be empty. Consider the composititwatomponents such
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that § satisfies Noninference andoes notsatisfy EMERGENT and $ satisfies

EMERGENT. Notice thaNoninference is neithemplied by nor implies EMERGENT.

This follows becaus&EMERGENT ensures that thagh level output sequence is not
empty but Noninference requires it to be empty.

Oty:traces(Q)|L MOty Biow(T1, Sy) | Hi=<> O

Oto:traces(9) LI Biow(T2, S) | HI=<>- 1, HO=<>
traces(S) interleavdtraces(9),traces(9)

[l DT:traceS(S)HfIIl: B|0W(T| El,Sl) II” Hi=<> 0O [,: B|0W(T| Ez,Sz) II;H Hl,=<>[h tzl HO=<>
Distributive Law

= DT:traceS(S)|mIl:B|0W(T|El,Sl) mlz:B|0W(T|E2,Sz) II”HH C:tzl HNCO t1|H1:<> [l
to|Hl,=<>[t|HO=<> Lemma 5.1

= [Ot:traces(S)|t:Bw(T,S)tl|H;=<> O t|HI,=<>[-t,JHO=<> Cascade Composition
= [Ot:traces(S)|Mt:Bw(t,S)t]HI=<> (- t|HO=<>

The resulting system satisfiESJERGENT but both componendi#d not satisfy it.
Therefore, there exist emergent properti€his exampleloes nowiolate Conjecture 5.1
because there doest exist a composableroperty, P, such that Noninferenamplies P
and EMERGENT implie®”. 0

Now that wehave demonstratethe existence of emergent properties wil
provide a criterion that allowthe system designer to determine ifpaoperty night

emerge under composition. Before we present the criterion some definitions are required.

Definition 5.2: Event Removing Operator.
Given anevent systens=<E,|,O,T> the operatiorBa, alJE yields the
following systemS’=<E’,I',O’, T"> :

E' = E\a
I' = Na
O’ = O\

andT = {t|t|E'TT }

o If such aP existedthenEMERGENT would be a composable property. But, EMERGENT is not

composable for the same reasons Generalised Noninference is not composable.
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The aboveoperatorremovesall occurrences of an event frothe eventsystem.
The following definition will use the above operator to give a condition on properties. We

will then show that this condition has an impact on the existence of emergent properties.

Definition 5.3: Stable Property.
A property P will be called stable if and only if for all systemsS
Oa:power_set(ER(SYJ P(Sh).

A system that satisfighe stability property is suctthat removing any number of
the events W result in a system thatill satisfiesthe property. Howestrictive is the
stability requirement? All security properties presented in the literatgetisfy this
requirement (se@ppendix A). The securitproperty EMERGENT oExample 5.5that
was used to demonstrate the existence of emergent properties, does not satisfy the stability
requirement. We daoot believe thatthe stability requirement imposes an unduly harsh
restriction on security properties. Furthermore, wenatdorcing all security properties
to satisfy thisproperty. If adesirableproperty does nagatisfy the stability requirement
then the previous results can be useddétermine composability. Unfortunately, no
general comment can be made about how a non stable property might emerge.

Consider the cascade compositiontwb componentsS; and S; such that their
composition results in a systeédthat satisfies aropertyP. If the propertyP satisfies the
stability requirementhen we can conclude(S\) andP(S\E). This follows from the
stability condition thatany subset of the events can be removed and the progigrty
holds. This result has obvioumplicationsfor the ability of the propertyP to emerge
under composition.

If a property,P, satisfiesthe stability requirementhen a necessary condition for
the composition otwo componentsS=<E,,l;,0,,T;> and $=<E,,l,,0,,T,> to yield a
system that satisfie® is if P(S;) and P(S;) where $=<E/,l,,0,,T,> and
S, =<E; ,l;,0; , T, > equal:

E. = E E, = E
=1 I, = 1,0,

Ol* = O\l Oz* =0
Tl* =T Tz* =T,
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This implies thabne can determing priori if the composition ofwo components ight
result in a system that satisfies Unfortunately, stability isiot a sufficient condition.
Generalized Noninference satisfibe stability definitionbut as demonstrated Example
5.2 the composition divo Generalized Noninference secure componeragnot saisfy
Generalized Noninference

The stability requirement allowshe system designer to determine under what
conditions a propertynay emerge. Consider, Generalized NoninterferenceExample
5.1 it was shown thagNI is a cascade composable secypityperty. Thereforany two
systems that satisfgNI when composed in cascadell wesult in a system that also
satisfiesGNI. SinceGNI is a stable property (sé@pendix A) we can also concludieat
the only way acascade system caatisfyGNI is if the externally visiblepartssatisfy GNI.

By externally visible we mean the system such that all internal events are removed.

5.5. Feedback Composition

In this section weexamine systems thabntain feedback. bbtreal systems do
exhibit some form of feedback. lihe previous sections weave considered security
properties in general. In this section wil Wit our discussion to a subset of security
properties. We dthis for two reasons. First, we can provideichstronger results by
limiting the class of securitproperties we consider. Second, thess weare considering
encompasses nearly all security properties presentkd literature and appear to contain
the best candidates for a formal basis of security.

The class obroperties that we W be considering includehose thatimply the
causal variant o6NI. Recall from section 4.4.2.1 on page 36 that the causal variant of
requires thagll corrections to perturbations occur after the perturbatiorthisnsection
when referring tasNI we mean causa&nNI. As can be seen from Figure 5.4 most security
properties thahave been mposed as a badr the foundations of computer security are

included.
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- All Systems
Generalized 4

» Noninference
n-Forward Correctability

| Restrictiveness

PSP

Separability

Figure 5.4: Comparison betweesN! other Properties.
Generalized Noninterference implied by most of the security properties
presented in the literature.

Until 1987 it was thought that security properties could be composed such that the

resulting system also satisfiehe property. ThenMcCullough [McCullough87]
[McCullough88] provided anexample oftwo GNI secure systems such that their
composition resulted in a system that dat satisfyGNI. We will present a variation of
the example McCullough used to motivate our results.
Example 5.6: MachineA has onéigh levelinputin, and one higheveloutputout which
is a reply tan after some processing. There is a low-l@agicelinput, which cancels any
high-levelprocessing that is underway, and a low-leanek output thatacknowledges the
cancelinput after soméime interval. Ifthere is higHevel processing at theme of the
ack,that is, ifthe cumulative number obut events is less thahe cumulative number of
in events, the high-level processing is terminated, ansubeill occuruntil after the next
uncancelledn. If there is no highevel processing at théme of ack then alow-level
error outputmay beproduced at soméme following the ack however, theerror output
is not guaranteed to occur.

MachineB is similar toA, but does nobhave anack output. Itcancels high-level

processing, if any, athe momentthe cancel is received. If there is nbigh-level
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processing at theme of the cance| then a low-levekrror outputmay beproduced at
some time following theance] however, thesrror output is not guaranteed to occur.

We will demonstrate that we can compose components such that thesulting
system isot non-interference secure. Welvhook up themachines as followsA’s ack
output feeds int®’s cancelinput, A’s out feeds intdB’s in, andB’s out feeds intA’s in.

A’s in is alsoavailable as aexternal input besides receivifjs out Our model of an
event system and compositiadoes notexplicitly allow A's in event to be both a
communication event and an input evefthis isnot aproblem because we can use a

multiplexer as describe in section 3p4ge 18. Figure 5.5 shows this interconnection.

_JM —in A out in B out High Level Events

ack —cancel Low Level Events

error [—*
error T

Figure 5.5: Interconnections for Example 5.6
A diagram ofthe interconnections between tkachineA and the Mchine
B. M is a multiplexer required becauser model of componentdoes not
allow an event to be both an internal event and an input event.

——cancel

Each trace irFigure 5.6 consists of a timae, running vertically,and events,
drawn adabeledarrowsalong thetime line. Time flowsup the time line; earlier events
are nearer the bottom of thime line. Dashed arrowsignify high-levelevents, andgolid
arrows ardow-level events. Ararrow directed at thiéme line is an inpuévent,while an
arrow directecawaydenotes an outp@vent. The composition of Figure 5.5nigt non-
interference secure because, for ttexe shown irFigure 5.§a) and the perturbation
shown in Figure 5.6(b), there is no correctidhny attempt to correct the trace in one of

the components results in the other component requiring a correction also. a
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Error Error
Error Error
—> —>
Canc Canc
In
"""" |

@) (b)

Figure 5.6: Demonstration that the Component of Figuredn&s not satisfgni.
Trace (a) is a trace of the compositechine thatdoes nothave a
correction for the perturbation shown in part (b).

5.5.1. Low Level Preconditions and System State

We have used an event system mddelcomponents becauseeéliminates the
need forspecifying a model ofomputation. Howevegvenwithout specifying a model
of computation we castill examinehow asystem behaves aspitocesses events. As the
systemaccepts and processes new eventstai of thesystem changes. Eventsgit
be dependent on the state of #ystem. That is the occurrence of an evenight be
dependent on some conditibaingtrue. These conditions amalled preconditionfor an
event. The event system mogeksented in Chapter 3 doest explicitly contain these
preconditions. The preconditions aneplicit and embedded ithe set ofall traces. In
proving our results for feedback composition we dwt explicitly require these
preconditions for each event. However, wi# vefer to them and therefore deal with the
preconditions if they exist.

In thiswork we areonly interested in the preconditions of a l¢éevel event that
requires a condition on high level state. It might segange that lovievel events can be
dependent ohigh levelstate butonsider thenformal definition ofprecondition given in
the preceding paragraptsincethe state of the component is dependent on both the low
level users actions im and thehigh levelusers actions im, the condition folA to occur

may be dependent on the actions of high level users.

Definition 5.4: Low Level Preconditions
A low level event requiring conditionp to be true forits occurrence

means either one (or both) of the following are true:
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1. The condition must beue of thehigh levelstate for the lowevel
event to occur
2. The condition must be true of thigh levelstate forsome future low
level event to occur.
The only exception to the above is that a Itevel input eventmay never depend

on high level state for it to occur.

5.5.2. Theorems on Feedback Composition

Example 5.@lemonstrates that a property that is cascade compasabienot be
composable in the presence of feedback. The questiohababt been addressed in any
work on composability is Wat structures of theystem cause thifailure to occur.
Example 5.6demonstrates thé&ilure of GNI to compose usingwo componentswith
feedback. Is it possible tmnstructsuch an example wittihree(or more) components in
the feedback path? As veball prove the answer iso. Theonly case where feedback
composition carfail is in the composition ofwo components. Howhis can help the
system designer is discussed below.

To prove that th@nly interconnection that causes feedback compositidailts
in the interconnection dfvo components, a characterizationvdfy the composition fails
is required. Thedollowing Lemmaproves that thdailure is due to a lowlevel event
whose preconditions cannot be satisfied.ddes not, howevemgive any indication to
which low level event or how the failure will occur. The determination of which event and
why it fails is presented below.

Lemma 5.1: For asystem composed @I secure components, if a tracexists such
that a perturbatiom has no correction then there exists a level event
such that its conditions for occurring can not be satisfied.

Proof:

Given atracet and a perturbatioa such that no correction exisessumeall low
level event conditions can be satisfied.

From o removeall high levelnon inputs. Apply the following procedure taeach

low level event beginning with the first low level eventin
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o can be written as=0Af whereA is the lowlevel event that we areurrently
considering. By assumption the conditions Xaoto occurcan be satisfied. Perform the
necessary corrections such thatanoccur in the trace All remainingcorrections can be
accomplished aftex.

After all low level events have been handledcan be written as=af3 wheref3
contains only high levedvents anall required corrections cavccur inf3. Constructing a
valid tracefrom this point is straightforward. Without a feedbgelth thesystem would
have acorrection too (event renaming M be required in general). If thisorrection is
then taken as the newand the feedback connections arade again then thisilvappear
as a new perturbation. The correction woutd affect anyevents ina. Thisprocedure
should then be repeatenhtil all feedback events afdeandled. This is a contradiction
because it is given that no correction exists.

Therefore, there exists a lolevel event such that its conditions for occurring

cannot be met. a

Theorem 5.1:Given acomposed system witicomponents thaatisfyGNI construct the

system graph. If the graph has no 2-cycles then the system satisfies

Proof: Consideranytracet of thesystem and gerturbationo. By Lemma5.1 theonly
way a correction wll not exist is if there exists a lowevel event such that its
preconditions canot besatisfied. Considesinylow level event,A, in 0. At worstA can
occur only if all the components tevhich it is connected tosatisfy their respective
conditions.  Sincethere is no feedback betweemy two components that share
communication eventgthere are no2-cycles) it is always possible to ensure the
precondition forA can be satisfied. This can be accomplished becausetlsereeis no
feedback between the componetiiey appear in cascade. It hbsen proventhat
cascade composition of components satisies Therefore, it is alwaypossible to
construct apartial correctiont’=af3 where 3 only containshigh level events and all
corrections caroccur in3. The corrections t@ can be accomplished by applying the

same technique that was used in Lemma 5.1. a
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Notice that the proof uses a mageneral definition of compositiothan the one
presented in section 3.4. Tlefinition in section 3.4only allows anoutput of one
component to be connected to an input of another component. The abovallpresf
the output to beonnected tan components. This wasdone because it is a stronger
result. Clearly, thisresult applies ithe definition of composition is that given in section
3.4.

The above theorem allovise system designer to quickly determinghie system
under consideratiomight not satisfy GNI.  If the system graplidoes notcontainany 2-
cyclesthen thesystem satisfie&NI and thesystem designer idone. Thesystem is
guaranteed tmatisfyGNI. If 2-cycles exist, then it is possible thhe systemdoes not
satisfyGNI.  Some possible solutiorse: 1) Reorganize thsystem to avoid 2-cycles or
2) insert adummy component to breakll 2-cycles. We il discuss 2-cycles and the
dummy component in sectié@n5.3.

The above alternativesilivwork but onceagain they mighttause unnecessary
work for thesystem designer. It is possible thiz feedback connection pgrfectly safe.
What is required araecessary and sufficient conditioftg the composition ofwo GNI
secure components to compose.

Theorem 5.2 Wl give the necessary and sufficient conditiofisr a security
property to be composable. Before presenting the theorem there aressoesthat
needclarifying. The theorem requires that certain conditionstrioe atcertain times.
Sincethe eventsystem model has no time component Bigemenimay seemstrange.
The idea inthe proof is to capture the notion thato conditions are required to beie
simultaneously. The easiest waydapturethis notion and to demonstrate that if it isn’t
true the propertyvould be composable, was to introduce #rifficial notion oftime into
the model. Our use of temporal words iserelyfor expediency andoes nowiolate the
event systems model.

Once again considehe composition that was used to demonstratdaihee of
GNI to compose in the presence of feedback (Figure 5M¢Cullough attributedthis
failure of GNI to compose to the rapidxchange of higHevel events between the

components in the feedback loop [McCullough8zgmma5.1 proved that iGN fails to

-64 -



compose it is because the preconditions to someldeal event couldnot besatisfied.
This thenimplies thatthe rapidexchange of events referred to by McCullough was the
attempt by the components satisfythe preconditions of a lovevel event. This can be
seen from Figure 5.6 by consideritige lowlevel trace <ancel, ackerror;, error,> and
the perturbation i, cancel, ack,error;, error,>. Each attempt tosatisfy the
precondition forackin S; caused the precondition in'$Sto become false and vice versa.
The mosdifficult aspect in presenting timecessary and sufficient conditions is to
capture the alternation of conditions that was observeBxample 5.6. An exact
definition of this alternatiomwould require a model of computatiéor the components;
that is a formal model that can recognijae generate) the set of trace®ne such model
has been developed blestor [Nestor93].Since we vant the theorem to be general as
possible we do not want to providesecific model otomputation. Also, the alternation
of conditionsmay cause the components to progress througariaty of states invhich
the alternatiormay finally stop because the required conditions carsbtsfied. For a
sufficient complex model afomputation determining the alternation of conditionstops
is undecidable. As will be shown theusefulness of thisheorem isnot diminished

without a strict definition of the alternation.

Theorem 5.2: The composition otwo GNI secure components, &nd S will yield a
system that isNI secure if ananly if for all low level outputsA; of one
component that are connected to l@wel inputsA, of the other, one or
more of the following is false:

1. For evenh; to occur requiresonditiong, to be true at the occurrence
of As.

2. For eveni\, to occur requiresonditiong, to be true at the occurrence
of ..

3. If ¢, or ¢, become false they cannot both be made true simultaneously.

Proof:

10 It is equivalent to the halting problem.
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We will prove the contrapositive statement. That is, if all of the conditiorfalaethen a
correction does not exist.

SinceA; andA; are connected rename this composite evekt to

Let t=aAP be a trace of the composigstem. Where a is a sequence of evenssthe
low level event defined above arfilis a sequence of events that contanglow level

events such thay and@, must be true at.

Consider a perturbaticn A3 that makes, false.

Sincethere is noway to makeboth ¢, and ¢, true thepreconditions forA cannot be

satisfied.

ONo correction can be found for the trace

U

We will prove each case by contradictioRor each case below assume that foraze t
and a perturbation s no correction exists. If no correction exists thHesnbya 5.1there
must exist a lowevel event in t such that a perturbation has meantttfeprecondition

for it cannot be satisfied. Assume that the event whose condition can not be satisfied is

Case 1:f is not a communication event.

Assumef is an event of componeng.SThefollowing is applicable if is an event of Sby
changingthe appropriate subscript§incef is not acommunication everdny correction

to f needonly effectevents in & The addition or removal of eventsight involve
communication events. Thesdllvappear as a perturbation tg. $he corrections for
these perturbations can be postponetl afterf. This leads to a contradiction that the

condition forf could not be satisfied.
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Case 2: Oné¢or both) of the conditions required for the Idevel event to occur are not
satisfied at the occurrence of the event but some time before it.

Assume { is to be evaluated before the occurrenck ddnce again witlthe appropriate
changes this is applicable tioe other case. The correctionrtake @, true must occur
before the poing, will be evaluated. Thisorrectionmay makeg, falsebut the correction
for this can waiuntil after @, is evaluated but befofe Wheng, is correctedp, may have
been made falsbut ¢, has already been evaluated and hénzanoccur. All remaining
corrections can waintil afterf. This lead to a contradiction th#te condition forf

could not be satisfied.

Case 3: If@ or @ is made false it is always possible to mafe and @, true
simultaneously.
The existence of drace follows immediately sincehe conditions forf are

guaranteed to be satisfied.

Sincefor each case wieave reached a contradiction ifrace does ndbave acorrection
then the conditions of the theorem must hold. a

The system designarow has all the tools required taletermine if a system
composed o6NI secure components @il secure. Théollowing procedure can be used
to determine if the systema@ni secure.

1. Construct the system graph.

2. If the graph has no 2-cycles then the systeanisecure.

3. For each 2-cycle examine the low level connections to see if tHedeMoutputevent
of one component mushtisfy a condition at iteccurrencewhile the lowlevel input
event of the other must also satisfy a condition at its occurrence.

4. 1f no such case exists then the systegNisecure.

5. Forall cases that do exist ensure ttta conditions required for the loevel events
can be satisfied.

The checking to ensure thie alternation of conditions doest occurmay not

be trivial in a complexxomponent. Therefore, we suggest that if it is discovered that the
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composition oftwo low level events requiresvo conditions to be satisfiefbr the event

to occur, a dummy component be inserted in the feedback path.

5.5.3. Why Dummy Components?

In this section wewish to investigate why &éhreecycle inthe system graph is
sufficient for the system to satisfycNI. Specifically, whydoes inserting adummy
component, a component that doeshing except copy its inputs to ibsitputs,ensures
that the system satisfiesi?

The definition of composition requires that aoutput of one component
immediately becomes an inputthe other. Inserting another component between the two
components allowother system events tmccur between theutput event of one
component and the corresponding input event. One may argue thiatitigeof events in
the system is important. Ifhe dummycomponent copies the eventasckly as it can
then no othesystem event would ba&ble to occur. This might ieue butsincecNl is a
possibilisticproperty thedummycomponent provides th@ssibility of acorrection. That
iSs not tosay that in a system with processing deldnessystem Wl have acorrection.
However, it can be argued that any possibilistic prog®ais/this problem since processing
delaysare notconsidered in thenodels ofthe properties. This leads tothe situation
where a system ipronounced secure bually is not secure. The prosand cons of
possibilistic properties are beyond the scope of this work.

Anotherway to viewthe effects ofthe dummy component is that it breaks the
synchronization between the components it is connected todefingion of composition
only allows for synchronized communication. Sinttee composition with th@&ummy
component allows other system events to occur betweeyuthatand the corresponding
input event it can be viewed as non-synchronized communication.

As mentioned in section 3Moth forms of communication might bequired. If
non-synchronized communication is required, tttencomponent depicted in Figure 5.7
can be used. Thbenefits of using this form of communicati@me obvious. If all
components use this form of communication atidcomponentssatisfy GNI, then the

whole system satisfiesnI.
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O(—>| Dummy |—B—'
So=<{a,p}{ o},{ B}L.{ aB}>

Figure 5.7: A Component that can be wused to Model Non-Synchronized
Communication.

5.5.4. Emergent Properties in the Presence of Feedback

In section 5.4 we discussed the conditions und@ch aproperty may emerge
under composition. In that section it was shown that if the propatisfied a stability
requirement then very specific predictions could be make about its emergent potential. The
necessary condition presented in that sectipplies here also. Thexternally visible
portion must satisfy the property. In tfe@dback case, however, imsichmoredifficult

to ensure that the communication events are compatible.

5.5.5. Why Certain Properties Compose

With the necessary and sufficient conditidias GNI to compose, somiasight can
be gained into whygertain properties and techniques ensure that the composition of two
components preserves the propertylhis insight wll give system designers and
researchers a better understanding of what the security property is attempting to
accomplish.

After McCullough demonstrated thati wasnot acomposable security property
he proposed a property loalled Restrictiveness. Restrictivenessig with the added
stipulation that highevel outputs cannot bixed up arbitrarilysoon after anodified high
level input. Highlevel outputcorrecting must waitintil any immediately following low
level inputs. Examining the Restrictiveness condition aeNI it can be seemwhy it
composes. Restrictiveness ensures thatlésel inputs never require a condition to be

true for futurelow level events to be possidfe The condition of the theorem above

1 The possibility of a low-levelinput can never be dependent on ktigh level state. The only

condition possible is for futurlew level events to bdependent on thhigh level state at the

occurrence of the low level input.
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requires that an input event have a condition associated with it. Since Restrictiveness does
not allow such a condition it is composable.

Johnson and Thayer’s [Johnson & Thayer88] n-Forward Correctability composes
for the exactsamereason as RestrictivenessThis shouldnot be a sumpse since
Restrictiveness and n-Forward Correctability are so similar. The only differencetleing
while Restrictiveness must wait unéfterall low level inputs following aperturbation to
begin acorrection n-Forward Correctability neely wait n low level input events.
Notice that 1-Forward Correciiity is the weakest condition @ny property thatsolely
eliminatesthe possible otherebeing a condition on Bw level input event. This follows
immediately fromthe theorem because tegnchronization affects at moshe low-level
event at a time.

Both Restrictiveness and n-Forward Correctabilitgly on eliminating all
components that require input conditions on the Il events. Vith Theorem 5.2 it is
possible toconstructmanysecurity properties that are composable. It is pissible to
construct acomposable security properstronger than 1-Forward Correctabilitgni
secure components can be used, but in interconnetittamy a check must be done to
ensure thatwo low level events araot connected such that easétisfies a condition at
thetime of itsoccurrence.This property enforces theame rule (albeit differently) as 1-
Forward Correctability but only in the cases where a problem may exist.

Zakinthinos and Lee [Zakinthinos & Lee95pposed a technique that allowsi
secure systems to be composed with feedb@blks technique is based ¢ime use of non-
synchronized communicatidor communication events. This is modeled by usiniglay
component in the feedbaglath. The reasowhy this techniqueworks follows from
Theorem 5.1. Sincthe delaycomponent is inserted in the feedbaekh, thefeedback
path contains three components. Theorem 5.1 gilsss guidance as tbow long the
delay shouldbe. In Zakinthinos and Leefsaper a feedback event mustdedayed until

the next low level event. Theorem 5.1 indicates that any (even a fixed) delay is sufficient.
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5.6. Summary and Conclusions

We began this chapter by considerimgywv to determinethe result ofcomposing
two components with known security properties. We demonstrate how to use our
formalism to determine at property theesulting system satisfies. Then we considered
under what conditions a propertyay energe under composition. We showed that if the
propertysatisfies a stability requiremetiten specific predictions can be madbout the
emergence of the property.

After considering cascade composition eeamined feedbac&omposition. We
proved that thenly structures of aystem that can cause Generalized Noninterference to
fail are those thainvolved feedbackbetweentwo components. We then presented
necessary and sufficient conditiof Generalized Noninterference to compasih
feedback. These results were then usezhtdyzed whycertain properties and techniques

were composable and others were not.
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6. Comparison To Selective Interleaving
Functions

Science moves, but slowly slowly, creeping on from point to point.
Alfred, Lord Tennyson(1809-1892)
English Poet.

6.1. Introduction

The only other general framework fothe specification andanalysis of security
properties is McLean’s Selective Interleaving Functions. In this chapter we compare our
framework to McLean’s. Specifically, we willcompare theexpressability ofthe two
frameworks and the results one can obtain from each.

McLean defines a frameworor the analysis ofSelective Interleaving Functions
(SIF). Selective Interleaving Functions can be used to express propertiegrehan
interleaving oftwo traces of thesystem. The justificatiofor using SIFs is McLean’s
observation that certain security properties are “a closure property with resgeché¢o
function thattakestwo traces andnterleaves them to form a thitchce” [McLean94]. If
a security property cannot be so expressed, then the resiftisLeiin’'swork are not
applicable. Itmay be arged that if the security properties that cannobéedled by SIFs
are “uninteresting” then SIFs aa# that isrequired. We vl show that at least one of the
security properties presented in the literature cannot be handled by SIFs.

Definition 6.1 definesSIF. Ourdefinition is differenthan McLean’s because our

model of components is different then McLean’s.

Definition 6.1: Selective Interleaving Functions
Let S=<E,I,O0,T> be a component. Partition the setirgut eventsl
into m disjoint subsetsl, will be used to refer to thé"subsetSimilarly,
partition the set obutputeventsO into n disjoint subsets.Ox will be
used to refer to the™™subset. Let[{0,1,2}™ and j1{0,1,2}", the
notation i[x], j[x] will be used to refer to the"xcoordinate of i or |

-72-



respectively. A functiori: TxT - T is aselective interleaving function
of type F,; if and only iff(t;,t;) = t implies:

for all x such that i[x] = 1 : t}{I= t]aly,

for all x such that i[x] = 2 : t}I= taly,

for all x such that j[x] = 1 : t|©= t;JaOxand

for all x such that j[x] = 2 : t|O= t;JaOy.

The definition of SIFs is intended to be general and encompasses more than
security properties.This can be seen fromxaminingthe partitioning ofi andO. The
definition allows an arbitrary partitioning. Ithe case of security propertighis
partitioning wil be into highand lowlevel event classes. In demonstrating that SIFs can
be expressed iaur framework we Wl partitionl andO into two sets, the sdtigh level
events and theet of lowlevel events. This partitioning is alsesed by McLean in

demonstrating the use of SIFs.

6.2. Comparison of Expressability

We will now consider theexpressability ofour framework versus SIFs. First,
consider thdollowing examples othe Separabilityproperty (section 4.4.4) akefined in
our framework and McLean'’s:

Ot:traces(S)|[SEPARABILITY (Bion(T,S))
SEPARABILITY( B ) = t:traces(S)|Hhterleavet,Tow):B

VS.

Faratsarats: TX T - T, which expands to
interleaveT x T — T, such that interleave(t,) = t implies
highin(t) = highin(t1)
lowin(t) = lowin(ty)
highou(t) = highoutt,)
lowouf(t) = lowouf(t,)
if a system is closed undeterleavethen it satisfies Separability

Expressing the property as a SIE{F . <" 2t ) requires thesystem designer to
take manysteps before he arrives at suciedinition. Also,the intent of the property is
not clear when expressed as &iF. Theintended property is clearer, however, in the

expanded version. We believe that neither form captures the notion of a security property.
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We believeour formalism, which is based onhat the lowlevel user cannfer from an
observation, is more natural.

We will now demonstrate that SIFs can be expressed in our formalism.il\Mle w
this forthe subset of SIFs thaavethe lowin andlowout from one trace and tHaghin
andhighoutfrom the other. All of the security propertiesxamined by McLean have this
property. Furthermore, it i3ot clear how the events can corfinem differenttraces and
still have a useful system.

Given a SIF of type &.2» < 2> X, YI{0,1} consider the following property:

Ot:traces(S)|LP(Bow(T,S))
P( B )= Ot:traces(S)|dnhterleave(,T.):B

Z X y
O 0 0
HO 0 1
HI 1 0
H 1 1

The implication of the above is thabnly 4 types of security properties can be
achieved usin@lF. This is partiallytrue. Toachieveothers thedomain ofthe interleave
can be restricted.For example, Generalized Noninferencetle SIF Ep .2t 5« 2t >
restricted to the domain {<>} T. Also, as mentioned above ttefinition of SIF is more
general then that considered here. The partitioning can becaorogg@ex therthe simple
high and low level events. However, all these extensions can be handled ithensae
way as above.

The above result demonstrates thktsecurity properties that SIFs can express
can also be expressed in our framework. We will demonstrate that there aseothity
properties that cannot be expressesthg SIFsbut can beusing our framework. The
argument thaall “interesting” security properties can be expressethige. First, wanill
show that SIFs cannot represalitsecurity properties presented in the literature. What is
considered interesting todayay not beinteresting the future. A framework should not
place limits on what types of properties can be expressed.

Consider Guttman and NadaButputNon-Deductibility (sectior.4.3, page 36)
reproduced here:

Ot:traces(S)| DO (Biow(T))
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NDO(B) = Ot:traces(SY|LI=Tiow| L1 0 Os:BIS|(HILI)=t|(HOLI)
Informally, for every pair of valid tracesp OT, if event sequencel$E satisfies

s|L = a|L
S|(HILI) = p|(HOLI)
thensis a trace.

This property appears that it should pessible to fit intahe SIF formasince the
final traces has all low level events from one trace and all high level events froothibe
A problem, however, is that thaterleaving is dependent ahe position of lowlevel
input events. This type of condition cannot be expressed in SIFs.

Anotherexample of groperty that can be expressedur formalismbut cannot
using SIFs ighe PSP property presented in section 4.3.1, pageR&gall thatPSP is
similar to Separabilityput allows high levebutputs to balependent on lodevel events.

This type of dependency is not expressible using SIFs.

6.3. Comparison of Results

McLean examinethree types of compositiorProduct,cascade and feedback. In
this work we considerproductcomposition a special case ofir definition of cascade
composition. McLean’s definition afascade composition is different thaars. In his
definition of cascade compositioall of the outputevents of theirst component and all
input events of the second arwolved inthe composition. Irthis definitionthe only
inputs to thesystemare the inputs to thérst component andhe only outputs are the
outputsfrom the second component. &cohievethe type of cascade composition that we
describe, identity components must be introduced by McLean. An identity component
copies its inputs to it®utputs. Figure 6.1 demonstrates this type of composition.

McLean calls this type of composition general cascade composition.
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Figure 6.1: General Composition
The two identity componentgl) are first composed with Sand $ using
product composition. Then cascade composition is used to connect the
composed S and $ components. In thidashion general cascade
composition can be achieved.

McLean'’s results on product and cascade compositiomaisyrprisingly,similar
to our own. The nain difference isour assumption of input totality. McLean requires the
a priori knowledge of compatibl&aces for the composition. Oassumption of input
totality removes this requirementSee section 5.3.1 for furthéiscussion otthe input
totality assumption.

Next McLean considers Feedback composition. McLedefmition of feedback
IS more restrictive thaours. McLean defines an interface condition whichessentially
the requirement that both componeniglved inthe feedback agree on theing of the
events. Wedeel that thigequirement is overly restrictive and requivesrk by thesystem

designer to determine if the required condition exists.

6.4. Summary

McLean’'s SIFs were a&tep forward indefining a generaframework for the
expression andnalysis ofsecurity properties. However, they camly beused toanalyze
a subset of possible securfiyoperties. One of the greatest weakness, however, is that if
the application ofthe theorenyields thatthe composition otwo components W not

satisfy the desired property, the result yields no information as to why.
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7. Implementation Issues

All theory, dear friend, is gray but the golden tree of adtfeakprints
evergreen.
Johann Wolfgang von Goethél749-1832)
German poet, novelist and playwright.

7.1. Introduction

The previous chapters dealt with tiesue of composability. Witlthe tools
provided thesystem designer can quickly determine ffraperty is composable. If it is
not composable then he can determine why. Whnaissing is gorocedure omechanism
for the system designer to determine if a component satisfies a particular property.

The framework we presented in chapter 3 was a trace Hasedlism for
components. This formalism allowsfor the easy expression of securiproperties but
makesthe procedure ofalidating acomponent mordifficult. While some systems may
be specified directly interms of their possibléraces (see [Zwiers & Roever89] or
[McLean92a] for arexample),program code andtherformal specificationapproaches
assume a state-transition model aspkcify individual state transitions [Millen94].
Therefore, it would béelpful if we could transfornour tracebased approach to security
to a condition onindividual states. A theorem stating tleguivalence of a trace-based
security condition with a transition-based security condition is callecuramnding
theorem.

To dateunwinding theorems havenly dealt with specific trace basedecurity
specifications Goguen & Meseguer84] [McCullough90] [Bevier & YoungJ¥illen94].
No general approach to constructingunwindingtheorem has beepresented. Irthis
chapter we vl present an approach to constructusmvinding theorem for aclass of

security properties.
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7.2. Event System Acceptors

In this work we have not relied on any model otomputation to generate or
recognize the traces of an event system. Thus our composition theorems can be applied to
any model otomputation. In presenting amwindingtheorem we need tix the model
of computation. All unwindingtheorems in the literature have used some forrstatie
machine. The differencesbetween the variousiodelsare whether thenachinesare non-
deterministic and whether they must haviemsie number ofstates. A statenachine with
an infinite number oftatesmay be oftheoretical interest buwnalyzingsuch amachine is
often impractical. Therefore, we have chosen to use non-determinfsiite state
automata (NFA) for our model of computation. Using NFAs asrbeel of computation
doeslimit the class of machines that can be analylzetiwebelieve thathe usefulness of
having an understanding of unwinding theorems out weigidimitation. The analysis of
more general models might be possible.

Millen [Millen94] has showrthe equivalence of an infinitetatemachineand an
event system as definedahapter 3. We il also show thigquivalence and as corollary
how aNFA can be used teepresent event systems. Thaimdifference between our
construction of the stat@machineand Millen’s is that Millen’s machines magequire an
infinite number ofstateseventhough ourconstructionmay not. Our constructiorwill
never require morstates thaMillen’s. The difference in number states is a result of
Millen’s desire to prove thexistence othe statemachinerather tharfinding acompact
representation.

A NFA defines a languagever itssymbols. We il interpret this language as the
set of traces of gystem. To be able tase NFAs as a model of computation we must
demonstrate their equivalence to a class of event systems.

We begin by showing how to construct agbly infinite statemachinefor agiven
eventsystem. Given amevent systenB={E,l,O,T} consider thefollowing equivalence
relation (seeAppendix Bfor a proof that it is aequivalence relation) ote set of traces
T.

SOT, tOT s=tiff OrE [EYOT < 0T (7.1)
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The above relation partitions the 3eto equivalence classes such that two traces
are in the same class if and only if they shihessame possiblautures. Thesequivalence
classescorrespond to the states of the eveydtem. An informablrgument for this is as
follows: Assumethe execution ofall the traces of arequivalence class arrive at
different states such that all possible futures are the same. Sincstaiés have theame
possible futures thewre indistinguishableand can be considered ostate [Wood87,
pgl28]. The above relationillvresult in afinite number of equivalence classesTifis
finite. If T is infinite then the number of equivalence classayg be infinite. The number of
equivalence classes is finite for the class of machines in whictieniatereste'd,

The events of an event systane partitioned intéwo classes. These are thigh
level events and the lovevel events. Securityolicy typically requires that lowevel
users can seenly low level events,while high levelusers can seall events. This
classification can be applied the setz of the NFA. Wen such a classification ised
we can also define the views of each user level.

A user’'s view of the system is thatportion of the system state thatcould
potentially influence his activitiegBevier & Young94]. Theunwinding technique
presented belowonstructs theview of the lowlevel user and theinwinding conditions
give the conditions on hovhigh level activity can influence the low level view. An
unwinding theorem can béhought of agyiving conditions on howhigh levelusers can
influence a low level user’s view.

The following definitions wil be central toour presentation of a a stateachine
that can be used to represent certain classes of event systems.

The projectioroperator isused to determinthe possible lowlevel futures from a
state. There arvo versions of thiooperator. The one inDefinition 7.1 wil be used in
those properties whetegh leveloutputscan be inserted to ensure that a correction for a
perturbation exists (see section 7.3). The vergieen in Definition 7.2 Wl be use for

those properties wet@gh leveloutputs cannot be serted to ensure a correction exists.

Theexistence of event systertisat require an infinite number sfatesfollows immediatly from

the existstance of languages that can noebegnized by a NFA.
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An algorithmic approach todeterminingthe projection of arNFA can be found in
[Ginzburg68].

Definition 7.1: Projection Operator.
The projection of a stat® g, wherehigh leveloutputs do nogffect the
projection writtenri(q) is the set of possible low level futures frgm

m(q) ={t| $Jg OsMIT Ot|HI=<>}|L

Definition 7.2: Projection Operator II.
The projection of a state, written1t(q) is the set opossible lowlevel
futures fromq:

m(q) = {t|sdgOs™MIT OtjH=<>}|L

Definition 7.3: The After Operator.
The after operator returns th&il of a trace after the execution of its
prefix. Formally, If £JE is a set of event sequences antE

rlo={p|o™pUr}

Definition 7.4: A Events
A is an event with the following behaviour:
rIx\=r Forallr.
The following definition describeshe equivalence between event systems and an
non-deterministianfinite state automata. For the purposesthi$ work we wil only

consider state machines that have a finite number of states.

Definition 7.5: Event System Acceptor.
An event system acceptor for an event system S={E,|,O, Thisrguple
M={Q, Z2,9,s,F} where:

Q is an alphabet of th&tatesymbols. Each state W correspond to different

equivalence class generated by relation 7.1.

13 By state we mean an equivalence class. This is formalized in Definition 7.5.
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> is an alphabet adymbolsfor the NFA. This corresponds to the set events

E. Therefore, for each mdrar ofZ there is a correspondingique member

of E.

OLIQ%(ZOAN)xQ is a transition relation such that (q,e,q’) if and onlg(d)/e =11(Qq).
The transitions are calledovesof the state machine.

S in Q is the start state

FOQ is the set of final states.

In this work the set offinal statesF will be equal to theset of states Q.This
implies thatthe set of traces prefix closed. The prefix-closedness is consistent with the
intuitive interpretation of an event sequence as a temporal ordering of events [Lee et al.
92]. Theimplication of this is thathere are ninseparable eventsThatis, there isnever
a state where theystem must waiexclusively for a particular event to occur. The
assumption of prefix-closure sififigs the presentation of the results. The extension to a

non prefix-closed set of traces is straightforward.
Theorem 7.1 If M is the event system acceptor for S, M accepts oJT.

Proof:
0 M accepts if oOT
We will prove this by induction on the length of sequences produced by the state machine.
Base Case:

The zerolength sequence correspondsthe emptytrace. Theemptytrace is a
trace of all event systems.
Induction Hypothesis:

A sequence of lengthn is a trace of S.
Induction Step:

Consider a sequena® whereo is a sequence of symbolsande is a possible
event aftero. Sinceo is a trace of S theelation 7.1 above placesin an equivalence
class. The evemtis possible iff there is a trace such thate=c'.

Therefore, by induction if M acceptsthenoIT
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O if oOT then M accepts

The proof is similar to the above and follows from the construction ofi\.

7.3. Security Properties

The definition of a security property given in Chapter 4 imposes few restrictions on
the form of aproperty. This lack ofstructuremakes providing a general transformation
routine from securityproperty tounwinding theoremdifficult. In this work we will
provide a set ofules that can be used to transform a class of sequoyerties into
unwinding conditions.

To simplify the presentation of the results wdl vgplit the unwinding theorems
into three classes. The firdass we ull consider are thosexpressible ithe N-Forward
Correctable Hierarchy and Generalized Noninterference. \Wedefine N-Forward
Correctability below. We W then show how thenwinding theorem for N-Forward
Correctability can be applied SP. Finally, we will demonstrate that special case of
the unwinding theorem can be used thandle Noninference and Generalized
Noninference. The unshaded area of Figufieshows the&lasses of security properties

we will provide unwinding theorems for.
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- All Systems
Generalized 4

» Noninference
n-Forward Correctability

| Restrictiveness

PSP

Separability

Figure 7.1: The Class of Properties Our Unwinding Theorems Cover.
The unshaded area shows tbkasses of securityproperties that our
unwinding theorems can handle.

It may seemstrange thatSeparability isnot included inthese theorems. Our
unwindingtheorems il be expressed in terms of states thatragechable from angiven
state. Separability requiresll high leveltraces to beossible withall low level traces.
This is an expressioover the wholestatemachineand cannot be expressed in terms of

reachable states from a state.

7.4. Unwinding Theorems

Ideally, an unwinding theorem has two properties:
1) The required conditions are an expression between a state and those one move away.
2) The system satisfi¢he desiredproperty if andonly if the unwinding condition igrue
for all states.

It is not alwayspossiblefor the unwinding theorem condition to be expressed
between adjacent stated-or example,the unwinding theoremgiven by Goguen and
Meseguer for non-interference can be expressed betwstateand all adjacent states.
Millen’s unwinding theorem for 1-Forwarorrectability, cannot be so expressed. We

will not restrictourselves to thosenwinding theorems that arexpressible between
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adjacent states. Wwill, however, only want unwinding theorems such that if the
conditions ardgrue onall states thesystemdoessatisfythe property andonversely. This

will ensure our unwinding theorems are sound and complete.

7.5. Unwinding Theorem for GNI and N-Forward Correctability

In this section we W provide an unwindingtheorem for Generalized
Noninterference and N-Forward Correctability. Before we presentutivending
conditions we Wl define these properties in terms thatllvgimplify the proofs of the

theorems. The following definitions are due to Millen [Millen94].

Definition 7.6: Simple Perturbation.
0 is asimple perturbatiorof T beforey if there exists digh level input

event x such that for sonfe
1. t=PByandd=Pxy (x is inserted inta beforey)

2. 1=Bxy andd=By (x is deleted fronm beforey)

Definition 7.7: Correction.
T is a correction of & in y if o=@y and T=@y such that
yI(LOHD=y'|(LOHI).

Thus, a correction ig is a modification of high levelon-inputs iny. We are now

ready to define N-Forward Correctability in the above terms.

Definition 7.8: N-Forward Correctability.
An event systen5=<E,l,O,T> is N-Forward Correctable if fall traces
10T and for allaOLI", if & is a simplgoerturbation oft before eithey or
ay, andy|HI=<> (y contains ndiigh levelinput events), then theexists
a correctiort’ of diny such that’OJT.

We note thatc-Forward Correctality is Restrictiveness and O-Forward
Correctability is forward correctable Generalized Noninterference. MWaow prove (in
Theorem 7.3) that the non-forward correctald®l is equivalent tothe forward

correctable version in deterministic systeri$atis, acorrection caronly occur before a

perturbation in a non-deterministic system. Furthermore, Wedemonstrate how to
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transform theNFA into one such that the forward correctabiginition of the security

property can be applied.

7.5.1. Forward Correctable versusNon-Forward Correctable GNI

The non-forward correctable version is mdrtficult to handlethan the forward
correctable one. For the forward correctable only the possible futures need to be
considered. If the system designer is evaluating gtdtenonly the stateseachable from
g need to be considered sincearection to a perturbation canly affectfuture events.

In a non-forward correctable system a changetta@maychange the path through the
state macdime. Therefore, if one isonsideringstateq a change in the path from the start
statemay result in thesystem being in atateq’, g#zq’. Thefollowing theorem proves
that we can always transform the state machine into one which causal techniques apply.

Theorem 7.2:Given a NFA, M, by
1. replacing all high level output transitions witliransitions,
2. transforming the NFA to removetransitions
3. transforming the NFA to eliminate non-determinism
will result in a deterministidinite automata (DFA), M’, such that the
causal versioeNI may be used to evaluate the system.

Proof:

In M replacehigh leveloutputtransitions withA transitions anceliminatethe A
transitions and thaon-determinism. Call thisew DFA M’. The transformation can be
accomplished and does not change the language[\Wfddd87 pg. 118]. We must prove
that if M’ satisfiesthe causal version othe property then Msatisfiedthe non-causal
version.

Let T be a trace that iliv placethe system instate @Q (of M) such that for a
simple perturbation after a correction woulanodify events int. After themodification
of the events im M will be in a state q'. By definition only High LevBlutputevents may
be changed. Consider teffects onthe states g and g’ beplacing in Mall High Level
Outputtransitions withA transitions. The projections frothe two states must bequal
by definition. If g=q' then weare donesince eliminating non-determinismilwnot affect
this equality. If g and qare different thenthere exists aon-deterministic choicéhat

causes the path through the sta&chine todiverge. If thiswere not thecase then the
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execution oft (afterreplacingthe Hgh LevelOutputtransitions withA transitions) would
be in state g.Transformingthe NFA to a DFA wil result in thenon-determinism being
removed. Since there is no long&y non-determinisrthe execution ot (afterreplacing
High Level Outputtransitions withA transitions) Wl placethe system instate g=q’ and
only future events from g need be considered. a
Theorem 7.2 demonstrates that a non-causal property can be transformed into a

causal one beliminating A transitions and transformingpe NFA to a DFA. If the
property iscausal therthe elimination of the A transitions could be done. It is not
required sincehe calculation ofthe projectionfrom astate vill implicitly remove them.
However, the transformatidrom a NFA to a DFA mustot be done. In @ausal system
the nature of th@on-determinism is importantThis will be demonstrated below. If the
non-determinism is eliminatethen the property is transformed into it®n-causal

equivalent.

7.5.2. Unwinding Theorems

Theorem 7.3:If M is the evensystemacceptor for the eversystemS S is N-Forward

Correctable if and only if

Ox:HI oL "Mg:Q
T(q)=T(q/x) andri(q/y)=Ti(q/x/a)

Proof:

There are four parts tihis proof corresponding to thsvo directions of thamplication
and either théwo stateequivalenciesibove, or whether arot thelow inputs are present
beforey in the definition of N-Forward Correctability.

Suppose&is N-Forward Correctable. Assumigbl and 1Q. We willshow that
1(q)=T(g/X) intwo steps. First we W show thatr(g/x)0m(q). Letyl{ t | sU(g/x) O
sMOT O t|HI=<> }. By definitionsthere exists @ such thaoxyJT. Sooy is a simple
perturbation ofoxy beforey. Alsoy has no highevel input events. By N-Forward
Correctability there exists & such thatoy UT and y|LOHI=y|LOHI. Therefore
m(g/x)J(q). The proof that(q)(g/x) areidentical to thisonesince inserting an event
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is also a simple perturbation. The proof titd/y)=m(g/x/a) is thesame as above. The
same proof methods are used.

Assumert(q)=r(q/x) andr(g/y)=m(qg/x/a). Consider a traceIT such thaxyIT
where yOm(g/x), by definition y|HI=<>. From the equivalence 1(q)=1(g/x) and
m(g/y)=r(g/x/a) there exists & 0m(q) such thatBy OOT. Therefore By which is the
simple perturbation oBxy has a correctioy. Similarly we canconstruct corrections
for Bxy a simple perturbation @y, Bay a simple perturbation @xay andpxay a simple

perturbation offay. Therefore the state machine satisfies N-Forward Correctabilita.

We will demonstrate how tapplythe aboveunwindingtheorem with arexample.
Figure 7.2 illustrates the system under consideration. The usefulnessurrction of this
system in unimportant. We illvdemonstrate that the stateachine is Generalized

Noninterference secure but is not O-Forward Correctability secure.

Figure 7.2: A State Machine Used to Demonstrate the Unwinding Theorem.

Since we wvant to determine if itsatisfiesboth forward correctable and non-
forward correctablesNi we must transform thetate machine such that the forward
correctable version iapplicable. Figure 7(8) shows the results @éplacingthe high
level output transitions withA transitions. Figure 7.3(b) shows the transformation to

remove the\ transitions and Figure 7.3(c) removes the non-determinism.
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HI, A

@) (b)

©

Figure 7.3: Transforming a State Machine.
The statemachine istransformed so that forward correctaldsi can be
applied toit. Part (a)shows thereplacing of high levebutputtransitions
with A transitions. (b) shows thaimination ofthe A transitions and (c)
shows the elimination of non-determinism.

After the high leveloutput transitions have been replaced withransitions the
high levelinput transitions should be removed fréine state maghe. The stateamachine
at this point Wl only havestateswith low level event transitions.Now the projections
from eachstatemust be calculated. The projection indicatespossible futures that the
low level user in that state.Figure 7.4a) and Figure 7.4(b) show this transformation

given causal and non-causall respectively.
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@) (b)

Figure 7.4: State Machines to be used to Calculate Projections.
Figure (a) is the statenachinefor forward correctablesni and (b) is the
state machine to be used for non-forward correctaile

We will now calculate the projectiorieom eachstate. For the statmachine in
part (a) ofFigure 7.4 (Note: '+’ means OR):
(o) = [L(L1+L)]"
T[(ql) =null + L(Ll + Lz)
() = null + (Ly + L) [L(Ls + L) T
(k) = null + (L + Lg) [L(L; + Lo)]
T(Qs) = null + Ly[L(L + Ly) ]

T(gs) = null + Lo[L(L1 + Ly)]
For the state machine in part (b) of Figure 7.4:

M) = [L(L1+L)]"
T(cw) = null + L(L; + Ly)
T(0p) = null + (Ly + Ly) [L(L, + Lz)*]*
T(0s) = null + (Ly + Ly) [L(L, + Lz)*]*
n(g) =null + (Ls + L) [L(L1 + L) ]
T(gs) = null + (Ly + Ly) [L(L, + Ly) ]

We are ready tapplythe unwinding conditions tsee if the statenachines satisfy
GNI. For thefirst statemachinenotice thatr(cs) = null + (Ly + L) [L(L: + L) #
T(gs/HI) = 1(0gs) = null + Ly[L(L1 + Ly)]". Therefore this systemoes notsatisfy GNI.
Another way of seeing this is to consideéhe trace <L,b> and the perturbation
<L,HI,L,>. This perturbation doesot have a causatorrection. This can be seen by
examiningstate 5 ofrigure 7.2. There is no;ltransition from thistateandall high level

events do not change the state of the system.
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Now we will examine the state machine in part (b) of Figure 7.4:

(o) = [L(L1 + Lo)T" = T(qo/HI) = Ti(ap)

T(q:) = 1(qu/HI) = () .

T(gz) = null + (Ly + L) [L(L1 + L2) ] =m(qp/HI) = 1(q4)
() = null + (Ly + L) [L(L1 + L) T = T(ge/HI) = T1(qls)
T(04) = TH(Qa/HI) = T(C)

T(Qs) = T(gs/HI) = 1(Cs)

Therefore the stat@machine inpart (b) ofFigure 7.4 satisfiesorward Correctable
Generalized Noninterferencdut, wehave transformethe statemachineand hence the
original statemachine satisfies GeneralizB@ninterference. The trace tgeesForward
Correctable Generalized Noninterference problemsely<L,L,>, and the perturbation

<L,HI,L,> has a correction <HO,L,HI;b.

7.6. Unwinding Theorem for PSP

The unwinding theorem for PSP is similar to the one for N-Forward Coritggtab
The differencebeing that ilPSPhigh leveloutputs cannot b&eely inseted to ensure a

correction exists. Therefore the unwinding theorem for PSP is

Theorem 7.4:1f M is the evensystemacceptor for the evemslystemS S satisfiesPSP if
and only if Ox:H[q: QI (q)=rT (g/x)

Proof:

This follows immediately fronthe definition of PSP. PSP iglefined by saying that a

possible high levedvent can be inserted not atany point in the trace and the lolavel

events must stay the same&his is exactly wat ishappeninghere. Inany state of the

system, performing a possible high level event must not change the low level userswview.

The unwindingtheorem for PSP isimplerthan that for the otheslass of security
properties. This shouldnot be a sumgse since it is alsonore restrictive then the other
class ofproperties. Thenwinding condition is simplenough that an automated tool can
easilytake adescription of thestatemachineunder consideration argiickly determine if
it satisfies PSP.
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7.7. Unwinding Theorem for Generalized Noninterference.

The properties considered above ensure &gt high level thabccurs vill not
affectthe lowlevel usersview of the system. Generalized Noninterference requines
for anytrace the trace withowny high leveinput events be a trace of tegstem. The
unwindingtheorem for Generalized Noninterferencesimsilar to the one for N-Forward
Correctability. The difference can be illustrated as follows: If aléweluser is in a state
of the statanachine hesees a projectiory. If no high levelinput eventsoccur then all
traces iy are possible. Consider a high level input occurring and the system moving to a
new statewith projectiont,. The propertyindicates that removing this event must not
decrease thpossiblefutures, thereforerpm. If this isnot truethen a possiblérace
after the occurrence of th@gh level event isnot possible if itdoes not occur. The
projections donot have to be equal (i.en,=1y) sincethe propertymerely requires the
removing of high leveinputs to result irvalid traces. Therefore, thenwindingtheorem

for properties like Generalized Noninference is:

Ox:HIg: Ql(q)OTt(a/X)
The proof thatthis is the unwinding theorem for Generalized Noninference is
identical to the proof above except the proofi@/x)[I1(q) must be removed.
As a special case of the unwinding theorem for Generalized Noninference we can
give an unwinding theorem for Noninference. The difference between the unwinding
theorem for Noninference and Generalized Noninference is that high level outputs can not

be freely inserted to ensure a trace exists. Therefore we must use the second version of

the projection operator. The unwinding theorem beconbesi [[q: Q' (q) Ot (q/X)

7.8. Conclusions

In this chapter wénave presented a techniquectnstruct arunwindingtheorem
for a class of securityproperties. This result andhe composition theoremgive the

system designer all the tools to construct secure systems.
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8. Summary and Conclusions

Nothing is worth doing unless the consequences may be serious
George Bernard Shaw1865-1950)
Anglo-Irish Playwright, critic.

8.1. Summary

In this work we have presented aneikamined aframework for expressing and
analyzing security properties. The use of this framewdltkallow the system designer to
reason aboutsecurity properties both abstractly and in tbesign of systems.
Furthermore, it provides means to ensure th#te system begin designed enforces the
desired security property.

We began byexamininghow low level users cannfer possibilistic information
from high level activity. Wethen defined groperty thathas no possibilistic information
flows and ishe weakest such propertyxamining thispropertyled us tothe definition of
a securityproperty. Asecurity property enforces tlegistence of certaihigh leveltraces
for every possible low level observation.

We then examinedthe composition of security properties. Videgan our
examination ofsecure composition with cascade composition. We demonstrate how to
determine the effects of interconnecting two components with known properties. We next
turned to determining underhat conditions a propertyay energe under composition.

We demonstrated that if a propesgtisfies a stability requiremetiten it may only
emerge in a very specific fashiorkinally, we turned taccomposition in the presence of
feedback. Ouinvestigation of feedback began by considering vdtaictures of the
system caused feedbackftdl. We discovered that it was whehe system graph had a
two cycle. We thenpresented necessary asdfficient conditionsfor the feedback

composition to succeed.
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That lastthing we presented was anwindingtheorem. Theinwindingtheorem

can be used to determine if a component expressed as a non-deterfimitésacitomata

satisfies a property.

8.2. Conclusions

The ability to construct large complex systems from smaller independently

designed and verifiedomponents is a requisite lilding affordablesecure systems. In

this work we have presented the foundations requirdditd such systems. Even though

our results have beeapplied directly tothe design andanalysis ofsecure computer

systems we conjecture thahat we call a property can bwoadly extended beyond

security tomanyothersystem features. Several such awsgagault toleranceavailability

anddataintegrity. Itmay bepossible irthe future to incorporate some of thédeas into

the software engineering area.

8.3. Future Work

The previous sections have summariieel results othis thesis. However, as in

every research efforthe resultshave indicated a number of areas where furtherk

could lead to other important conclusions. Some of these areas include:

Developing a software-base tool thall wiake a statéased definition of a system and
a property and determine if the system satisfies the property. Such a tool could also be
used to construct systems with a known property from individual components.
Work must be done odeveloping a securefinementtheorem. System designers
must know at eachtep of thedesignprocess if thesystem satisfiethe desired secure
property. Waiting until the design isdone toverify the system mightesult in a large
redesign effort if the desired security property is not satisfied.

It would be interesting t@xamine what othertypes of properties can wndled by
our approach. Irhis work a security property waslefined as gredicate over a
bunch oftraces that look theame tothe low level user. Afault tolerant property
might be defined as predicate over &unch oftraces with thesame externalisible

behaviour.
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Appendix A -  Proof of Stability for Various Security

Properties

In this Appendix we Wl demonstrate that thetability requirement is satisfied by

most of the security properties presented in the literatReeallthe definition of a stable
property:

Definition 5.3: Stable Property.
A property P will be called stable if and only if for all systemsS
Oa:power_set(ER(SYJ P(Sh).

Separability
In a Separabilitysecure systerall interleavings of high levdaraces and lowevel

traces are presentRemoving arevent, be ithigh level orlow level, mightreduce the
number of traces but all interleavings are still possible.

PSP,cNI and N-Forward Correctability

All of these properties akeery similarand hence aimilar argument demonstrates
that theyare stable properties. Consideisystem,S, that satisfiesone of the above
properties. Removing a low level event fr@will result in a system thatill satisfies the
propertysince allperturbations of lowevel tracesstill have acorrection but there are
fewer lowlevel traces to considerRemoving a high levahput event isnot aproblem
because this can be viewed as a perturbatiotme@otracesS . We will now examine
removing a high level output event frdgn We will argue thathis results in a systethat
still satisfies the property. Consider a trac# Ssuch that a perturbatianrequires some
particularhigh leveloutputevent to have aorrectiont’. The tracet’ with the high level
outputsremoved is a trace of the nesystem and is aorrection to thes perturbation.
Therefore all of the properties are stable.

Noninference and Generalized Noninference

Removing lowlevel events andhigh levelinput events from a systethat satisfies
either of these propertiesilwresult in a system thagtill satisfiesthe property. Also

removing high leveloutputs for aNoninference secure system is acceptahee the
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property requires the trace with no high level events to be trace ofigh®al system. By
the same argument as thgiven for the PSPGNI andN-Forward Correctality class of

property Generalized Noninference is a stable property.
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Appendix B - Proof that =is an equivalence relation

In this appendix w@rove that thdollowing expression is an equivalence relation
on the set of trace§, of an event system:
SOT, tOT s=tiff Or:E SN - thrt (1)
Reflexive
Letsbe an element &f. We must show=s.

Assume-s=s

- 0Or:E EMNT = sAOT

[0r:E 3 (s™MOT - sAT)

=
Symmetric
Let 9T and &§T. We must show= 0 t=s

st

Or:E [SMOT < tAOT

Or:E BMOT = sAOT
= t=s
Transitive
Let s,t,lJT we must show=t[t=ul] s=u

s=tlt=u

Or:E [SMOT < t"OT O 0Or:E BNOT & urdT

Or:E [SMOT < t"OT OtArOT < urOT

Or:E [SMOT < uMdT

Su

Therefore, the relatiodefined in(1) is anequivalence relation and partitions the

set of traces of an event system into equivalence classes.
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