
On The Composition Of Security Properties

by

Aris Zakinthinos

A thesis submitted in conformity with the requirements for

the degree of Doctor of Philosophy

Graduate Department of Electrical and Computer Engineering

University of Toronto

© Copyright by Aris Zakinthinos 1996

- ii -

Abstract

This thesis presents a general theory of system composition for possibilistic

security properties. It is shown that possibilistic security properties can be viewed as a

predicate over the traces that are consistent with a low level observation τlow. We provide

a uniform framework for analyzing and comparing these properties. We demonstrate how

to determine what security property a system satisfies given the security properties

satisfied by its constituent components. Also, we show how to construct a system that

satisfies a desired security property. This analysis yields a condition that can be used to

determine how a property may emerge under composition. We examine the reasons for

the failure of feedback composition and provide necessary and sufficient conditions for

determining when feedback composition will fail for all properties based on Generalized

Noninterference. Unwinding theorems are given for a large class of security properties.

- iii -

Acknowledgments

A large number of persons were important in the development of this work. First and

foremost, I would like to thank my supervisor, Professor E. S. Lee, for his support,

encouragement and patient guidance throughout my graduate studies.

My university friends who helped make being a graduate student fun.

I would like to acknowledge the support that I have received from the Natural Sciences

and Engineering Research Council of Canada (NSERC) during the course of my graduate

studies.

My parents who without their support, dedication and love I would not be here today.

Last, but certainly not least, I would like to thank my wife Keri. Her understanding and

love have gotten me through the rough times. It is to her I dedicate this work.

- iv -

Table Of Contents

Abstract ...ii

Acknowledgments...iii

Table Of Contents..iv

List of Figures...viii

List of Definitions ...ix

Glossary of Symbols..x

1. INTRODUCTION AND OVERVIEW 1

1.1. INTRODUCTION 1

1.2. SECURITY PROPERTIES AND SYSTEMS 2

1.3. COMPOSABILITY 2

1.4. THIS THESIS 3

1.5. OVERVIEW 3

2. PREVIOUS WORK 5

2.1. INTRODUCTION 5

2.2. EVENT SYSTEMS 5

2.3. CONFIDENTIALITY MODELS 5

2.3.1. LATTICE APPROACHES TO SECURITY 6

2.3.2. FORMAL CRITERIA 6

2.3.3. POSSIBILISTIC SECURITY PROPERTIES 7

2.3.4. SUTHERLAND’S DEDUCIBILITY 7

2.4. COMPOSABILITY 8

2.4.1. HOOK-UP SECURITY 8

2.4.2. SAFETY AND LIVENESS 9

2.4.3. COMPOSING SPECIFICATIONS 9

2.4.4. SELECTIVE INTERLEAVING FUNCTIONS 10

2.5. BUNCH THEORY 11

- v -

2.6. UNWINDING THEOREMS 12

2.7. SUMMARY 13

3. COMPONENTS AND SYSTEMS 14

3.1. INTRODUCTION 14

3.2. TRACES 15

3.3. DISCRETE EVENT SYSTEMS 16

3.4. COMPOSITION 18

3.5. SUMMARY 24

4. SECURITY PROPERTIES 25

4.1. INTRODUCTION 25

4.2. PROPERTIES OF SECURE SYSTEMS 26

4.3. INFERENCE 27

4.3.1. THE PERFECT SECURITY PROPERTY 30

4.4. SECURITY PROPERTIES 33

4.4.1. NONINFERENCE 34

4.4.2. NONINTERFERENCE 35

4.4.2.1. Forward Correctability 36

4.4.3. NON-DEDUCIBLE OUTPUT SECURITY 36

4.4.4. SEPARABILITY 37

4.5. COMPARING SECURITY PROPERTIES 38

4.6. PSP SECURITY PROOFS 40

4.7. SECURITY PROPERTIES VS. SAFETY /L IVENESS PROPERTIES 42

4.8. CONCLUSIONS 43

5. COMPOSITION AND THE EMERGENCE OF SECURITY PROPERTIES 44

5.1. INTRODUCTION 44

5.2. CLASSIFICATION OF PROPERTIES 45

5.3. INTERCONNECTIONS OF COMPONENTS 46

- vi -

5.3.1. CASCADE COMPOSITION 47

5.3.2. CONSEQUENCES OF INPUT TOTALITY 54

5.4. EMERGENT PROPERTIES 55

5.5. FEEDBACK COMPOSITION 58

5.5.1. LOW LEVEL PRECONDITIONS AND SYSTEM STATE 61

5.5.2. THEOREMS ON FEEDBACK COMPOSITION 62

5.5.3. WHY DUMMY COMPONENTS? 68

5.5.4. EMERGENT PROPERTIES IN THE PRESENCE OF FEEDBACK 69

5.5.5. WHY CERTAIN PROPERTIES COMPOSE 69

5.6. SUMMARY AND CONCLUSIONS 71

6. COMPARISON TO SELECTIVE INTERLEAVING FUNCTIONS 72

6.1. INTRODUCTION 72

6.2. COMPARISON OF EXPRESSABILITY 73

6.3. COMPARISON OF RESULTS 75

6.4. SUMMARY 76

7. IMPLEMENTATION ISSUES 77

7.1. INTRODUCTION 77

7.2. EVENT SYSTEM ACCEPTORS 78

7.3. SECURITY PROPERTIES 82

7.4. UNWINDING THEOREMS 83

7.5. UNWINDING THEOREM FOR GNI AND N-FORWARD CORRECTABILITY 84

7.5.1. FORWARD CORRECTABLE VERSUS NON-FORWARD CORRECTABLE GNI 85

7.5.2. UNWINDING THEOREMS 86

7.6. UNWINDING THEOREM FOR PSP 90

7.7. UNWINDING THEOREM FOR GENERALIZED NONINTERFERENCE . 91

7.8. CONCLUSIONS 91

- vii -

8. SUMMARY AND CONCLUSIONS 92

8.1. SUMMARY 92

8.2. CONCLUSIONS 93

8.3. FUTURE WORK 93

Appendix A - Proof of Stability for Various Security Properties................................94

Appendix B - Proof that ≡≡ is an equivalence relation...96

List of References..97

- viii -

List of Figures

FIGURE 3.1: RELATIVISTIC TIMING OF EVENT TRACES [NESTOR93] ..15

FIGURE 3.2: AN EXAMPLE OF A COMPOSED SYSTEM. ...19

FIGURE 3.3: INTERCONNECTING COMPONENTS..20

FIGURE 3.4: SPLITTING OR MERGING EVENT SEQUENCES...21

FIGURE 3.5: AN EXAMPLE OF A SYSTEM GRAPH...23

FIGURE 4.1: A PARTIAL ORDERING OF SECURITY PROPERTIES..39

FIGURE 4.2: A TOTAL ORDERING OF MOST POSSIBILISTIC PROPERTIES...40

FIGURE 5.1: CASCADE COMPOSITION..47

FIGURE 5.2: FEEDBACK COMPOSITION...47

FIGURE 5.3: PRODUCT COMPOSITION..54

FIGURE 5.4: COMPARISON BETWEEN GNI OTHER PROPERTIES..59

FIGURE 5.5: INTERCONNECTIONS FOR EXAMPLE 5.6..60

FIGURE 5.6: DEMONSTRATION THAT THE COMPONENT OF FIGURE 5.5 DOES NOT SATISFY GNI.61

FIGURE 5.7: A COMPONENT THAT CAN BE USED TO MODEL NON-SYNCHRONIZED COMMUNICATION.69

FIGURE 6.1: GENERAL COMPOSITION..76

FIGURE 7.1: THE CLASS OF PROPERTIES OUR UNWINDING THEOREMS COVER. ..83

FIGURE 7.2: A STATE MACHINE USED TO DEMONSTRATE THE UNWINDING THEOREM.................................87

FIGURE 7.3: TRANSFORMING A STATE MACHINE..88

FIGURE 7.4: STATE MACHINES TO BE USED TO CALCULATE PROJECTIONS. ..89

- ix -

List of Definitions

DEFINITION 3.1: TRACE CONCATENATION...15

DEFINITION 3.2: INTERLEAVE OF TWO BUNCHES OF TRACES..16

DEFINITION 3.3: EVENT SYSTEMS. ..16

DEFINITION 3.4: BUNCH NOTATION FOR THE SET OF TRACES...17

DEFINITION 3.5: VERIFYING A TRACE OF A SYSTEM..17

DEFINITION 3.6: EVENT CLASSES...18

DEFINITION 3.7: COMMUNICATION EVENTS...19

DEFINITION 3.8: COMPOSITION OF COMPONENTS...21

DEFINITION 3.9: SYSTEM GRAPH. ...23

DEFINITION 3.10: FEEDBACK PATH. ..23

DEFINITION 3.11: NUMBER OF COMPONENTS IN THE FEEDBACK PATH. ...24

DEFINITION 4.1: LOW LEVEL EQUIVALENT BUNCH...27

DEFINITION 4.2: INFORMATION FLOW. ..30

DEFINITION 4.3: NULL EVENTS...31

DEFINITION 4.4: POSSIBLE EVENT FUNCTION. ...32

DEFINITION 4.5: THE PERFECT BUNCH..32

DEFINITION 4.6: THE PERFECT SECURITY POLICY..32

DEFINITION 4.7: SECURITY PROPERTIES..33

DEFINITION 4.8: GUARANTEED LOW LEVEL EQUIVALENT BUNCH...34

DEFINITION 4.9: EVENT SYSTEM SPACE..42

DEFINITION 4.10: AN ELEMENT OF A SYSTEM SPACE. ..42

DEFINITION 5.1: CASCADE COMPOSITION..48

DEFINITION 5.2: EVENT REMOVING OPERATOR. ..57

DEFINITION 5.3: STABLE PROPERTY..57

DEFINITION 5.4: LOW LEVEL PRECONDITIONS...62

DEFINITION 6.1: SELECTIVE INTERLEAVING FUNCTIONS...72

DEFINITION 7.1: PROJECTION OPERATOR. ...80

DEFINITION 7.2: PROJECTION OPERATOR II. ..80

DEFINITION 7.3: THE AFTER OPERATOR..80

DEFINITION 7.4: Λ EVENTS...80

DEFINITION 7.5: EVENT SYSTEM ACCEPTOR..80

DEFINITION 7.6: SIMPLE PERTURBATION. ..84

DEFINITION 7.7: CORRECTION. ...84

DEFINITION 7.8: N-FORWARD CORRECTABILITY. ..84

- x -

Glossary of Symbols
Notation Meaning Page

HLU A user with high level clearance. 17

LLU A user with low level clearance. 17

LI Low Level Input Events. 18

HI High Level Input Events. 18

LO Low Level Output Events, 18

HO High Level Output Events. 18

C Communication or Internal Events. 19

Traces

Notation Meaning Example Page

<> the empty trace 15

<a> a trace containing only a 15

<a,b,c> a trace with three symbols 15

 ̂ trace concatenation <a,b> ̂<> ̂<c> = <a,b,c> 15

t|A t restricted to events in the set A <b,c,d,a>|{a,c} = <c,a> 15

Λt alphabet of a trace t Λ< a1, a2, a1, a3, a2>
= {a1, a2, a3}

15

A* set of traces with elements in A A*={s | s|A = s } 16

interleave(t1,t2) interleaving of the bunch of traces t1

and t2

16

traces(τ) is τ a trace of system S 17

trace(S) bunch of traces of system S 17

Blow(τ,S) bunch of traces that are consistent
with observing τ by the low level
user

§s:traces(S)⋅τ|L=s|L 27

ε Null Event p ̂< ε > ̂ s = p̂ s 31

Gp(τ,S) bunch of traces property P
guarantees are consistent with the
observation of τ by the LLU

34

S\α Removes the event α from the
System S

57

- xi -

Logic

Notation Meaning Example

= equals x=x

≠ is not equal to x≠x+1

P∧Q P and Q are both true x≥x-1∧x≤x+1

P∨Q one or both are true y≤x ∨ y≥x

¬P P is not true ¬6>8

P⇒Q if P then Q x≤y⇒x<y

∀x:A⋅P for all x in bunch A P is true

∃x:A⋅P there exists a x in bunch A
such that P is true

§x:A⋅P those x in A such that P is
true

Sets and Bunches

Notation Meaning Example

∈ is a member of a∈{a,b,c,d}

A ∪ B A union B A∪B={x|x∈A∨x∈B}

A ∩ B A intersect B A∩B={x|x∈A∧x∈B}

A\B Set restriction A\B={x|x∈A∧¬x∈B}

: is a member of a : a,b,c,d

A, B A union B a,b,c,d

- 1 -

1. Introduction and Overview

Security is a game in which the final goal is never quite in reach.
Laurence Martin (b. 1928)

British author, academic

1.1. Introduction

Computers have proliferated throughout every aspect of today’s society. Our

reliance on computers to maintain and store everything from our nation’s secrets to the

number of items an individual purchases is growing rapidly. Information is becoming the

single most important commodity. It is being bought and sold to the highest bidder.

Information about individuals, corporations and governments must not be allowed to be

inappropriately disclosed, maliciously altered, or destroyed. The threats that must be

protected against are diverse, such as the disgruntled employee, the corporate spy, even

hackers whose only desire is to inflict hardship on unsuspecting people. A means for

controlling these and all other attacks is required. Without one the damage to society

could be immense. To provide adequate security it must be possible to construct secure

computer systems.

The ability to derive the properties of an assembly of components from the

properties of its individual constituents is central to being able to design secure computer

systems. A system for which this capability exists is said to be a composable system.

Unfortunately, an understanding of how to construct such secure computer systems has

been unavailable. The goal of this work is to provide the necessary foundations so that

secure computer systems can be built.

The remainder of this introductory chapter will provide some background

information and state the thesis of the work.

- 2 -

1.2. Security Properties and Systems

The goals of computer security are easily stated; prevent users from accessing or

acquiring information they are not authorized to access or acquire. Realizing this goal has

been difficult. To accomplish this goal systems have to be constructed that satisfy security

properties. Security properties specify the types of acceptable behaviours of a system.

There has been much work in developing formal models of information flow in the hopes

of understanding how to prevent these flows. Despite the advances made to date a

complete theory of information flow in secure systems is still missing.

1.3. Composability

For many years engineers have been designing systems using standard, pre-

designed components to achieve an economy of design effort and multiple other benefits.

The system is composed out of components that have been designed individually and

separately. This means that the designer need not start with a blank sheet every time a

system is to be composed, because a repertoire of components exists that can be

incorporated into a new system.

Unfortunately for secure systems this type of system design has not been possible.

The critical missing technology is the ability to create a composite trustworthy system,

using as components a heterogeneous collection of existing products [Hemenway &

Gambel91]. The following quotation from John McLean clearly states the problem:

A general ability to build composite high-assurance systems presupposes a
general theory of system composition. Such a theory provides insight into
why certain properties are preserved or not perserved by certain forms of
compostion. More importantly, for a large class of properties and a variety
of composition constructs, it answers questions of the form: “if a system
satisfying property X is composed with a system satisfying property Y
using composition construct Z, what properties will the composite system
satisfy?” [McLean94]

In this work we examine security properties under composition and propose a

solution to the problem stated by McLean.

- 3 -

1.4. This Thesis

This thesis is concerned with a theory of the composition of components into

systems such that the information flow properties of the composed system can be

predicted from the information flow properties of the components and from the nature of

the interconnections. As can be seen from the review in Chapter 2, the problem has a

considerable history that has not always resulted in a useful outcome. Our objective has

been to present a new view of this problem that develops new insight into the control of

information flows by composed systems.

The thesis of this work is that we can predict the security property satisfied by a

composed system from those of its constituent components. We determine conditions for

a property to emerge under composition. We also demonstrate for a large class of

security properties how to determine if a state machine representation of the system

satisfies the security property.

1.5. Overview

Chapter 2 provides a brief review of the relevant related research, including

security modeling, trusted systems and composability.

Chapter 3 introduces the model of the systems that we will be considering in this

work. We also formally introduce the notion of composition of components and other

notation that will be used throughout the work.

In Chapter 4 we define security properties. We investigate the nature of security

properties and provide a method of specifying security properties. We also demonstrate

how to compare security properties. Finally, we demonstrate that the current approaches

to composition of systems are not applicable to security properties.

Chapter 5 presents our theory of secure composition. We investigate

compositions with and without feedback. We also provide a means of determining under

what conditions a property may emerge under composition. That is, when a composed

system satisfies a property that not all of its constituent parts satisfy.

Chapter 6 compares our work and results to the other major work on the

composition of secure components, McLean’s Selective Interleaving Functions (SIF).

- 4 -

Chapter 7 presents a method of determining if a non-deterministic state machine

satisfies a particular property. We will show that the class of properties for which we can

provide such a result encompasses most of the security properties presented in the

literature.

Finally, Chapter 8 summarizes the work and provides a number of conclusions. It

also gives a number of directions for future work in the area.

- 5 -

2. Previous Work

No great man lives in vain. The history of the world is but the
biography of great men.

Thomas Carlyle (1795-1881)
Scottish writer

2.1. Introduction

In this chapter we introduce some of the related research in the area of

composability and formal modeling of systems. The emphasis will be placed on the

research upon which this thesis was directly based.

2.2. Event Systems

The purpose of our work is to predict the effects of interconnecting systems.

These systems will be modeled using discrete event systems. The idea of a discrete event

system is to describe the possible observed behaviour of the system rather than the way it

works. At the heart of all event system models is the concept of a trace. A trace is the

temporally ordered series of events that represent one possible execution of the system.

We defer a formal introduction to event systems until Chapter 3.

2.3. Confidentiality Models

We present some of the previous work in confidentiality. Confidentiality is the

property that information should not be made available or disclosed to an unauthorized

user. This work is not intended to be an exposition of security properties. Therefore, we

will only present some of the relevant previous work and defer introducing the security

properties until they are needed.

- 6 -

2.3.1. Lattice Approaches to Security

Bell and LaPadula [Bell & LaPadula75] introduced a model of security policies for

military systems. Their model (BLP) is one of the earliest successful treatments of

confidentiality, and was subsequently the basis of U.S. Department of Defense criteria to

be discussed in the next section.

The BLP model is based upon requirements for access controls. Bell and

LaPadula formalized their model by the axioms of simple security and the *-property (star

property). These axioms define which subjects (active entities) are permitted to read

which objects (passive, data-storage entities).

Simple security states that a process may not have read access to any object unless

the security class of the object dominates that of the process. The *-property states that a

process may not write to an object unless the security class of the object is dominated by

that of the process.

Denning [Denning76] extended the Bell and LaPadula model by pointing out that

the classification of subjects and objects form a lattice of security levels. The two

properties of the BLP model have straightforward extensions to the lattice model.

Since the introduction of these models, several shortcomings have been noted in

the literature [McCullough87] [McCullough88]. These systems required trusted subjects

to perform vital functions of the system. Also, not all information can be easily described

using the object representation. The simple notions of read and write operations do not

adequately represent the often complex behaviour that occurs in real systems.

2.3.2. Formal Criteria

The formal criteria are the security policies by which security of systems are

established and verified. The issue of composability has not been addressed by any of the

formal criteria release by the United States government, the European Community or the

Canadian government. The Canadian Trusted Computer Product Evaluation Criteria

[CTCPEC], released in January 1993 mentions the issue of composability. It indicated

that the state of current research has not yielded adequate advances to include any

composability requirements in the criteria.

- 7 -

“Efforts have begun to work out methods of evaluation based on
composable products. As research continues, composable evaluation of
properly defined composable products will enter the mainstream from the
research arena. Composable products and evaluation would allow Vendors
to modify existing trusted products and ratina or improve their ratings
without having the entire product re-evaluated” [CTCPEC]

A detailed discussion of the underlying requirements is not warranted here.

However, the production of these criteria has had a significant input on the development

of security policy and practice in various sectors.

2.3.3. Possibilistic Security Properties

In 1982, Goguen and Meseguer introduced the notion of noninterference [Goguen

& Meseguer82] as the basis for confidentiality. They proposed the following definition:

“One group of users, using a certain set of commands, is noninterfering
with another group of users if what the first group does with those
commands has no effect on what the second group of users can see.”
[Goguen & Meseguer82]

Noninterference was the first possibilistic security property. The idea behind all

possibilistic properties is that if information of a given security level interferes with

information of a different security level, the interference should be attributable to more

than one possible cause.

Numerous other security properties have been proposed. Each new proposed

security property was an attempt to correct a flaw with previous models. Some of the

more popular properties are Generalized Noninterference [McCullough87],

Restrictiveness [McCullough88], Noninference [O’Halloran90] and n-Forward

Correctability [Johnson & Thayer88]. These properties will be examined in detail in this

section 4.4.

2.3.4. Sutherland’s Deducibility

In 1986, David Sutherland [Sutherland86] took a different approach to solving the

security modeling problem. Sutherland attempted to quantify what it means for

information to flow from one user to another. Each distinct execution of the system can

be considered an element of the set of possible worlds. A piece of information about the

- 8 -

system is represented by an information function whose domain is the set of possible

worlds. Sutherland then defines information flows in terms of these concepts:

“Given a set of possible worlds Ω and two [information] functions f1 and f2

with domain Ω, we say that information flows from f1 to f2 if and only if
there exists some possible world ω and some element z in the range of f2

such that z is achieved by f2 in some possible world, but in every possible
world ω‘ such that f1(ω‘) = f1(ω), f2(ω‘)≠ z.” [Sutherland86]

Information flows from f1 to f2 if knowing the value of f1 rules out (or eliminates

from consideration) even a single possible value of f2. Sutherland has an intended

interpretation for f1 and f2. This interpretation is not relevant for our work.

Sutherland’s definition implies that information flow is a symmetric relationship. If

there is a flow from low level users to high level users then there must exist a flow from

high level users to low level users. This is an undesirable implication because security is

an asymmetric relation; High level to low level information flows are not allowed while

low level to high level information flows are.

Another consequence of the definition of information flow is that security is

dependent on all high level activity that is consistent with each possible low level

observation. It will be demonstrated in section 4.3 that this requirement can be met in an

insecure system.

2.4. Composability

The composition of two components can be thought of as interconnecting the

components in some fashion. There have been numerous formalisms and frameworks for

reasoning about composition. In section 4.7 we demonstrate that most of these are not

applicable to security properties. In this section we review the relevant work in the area

of composing secure systems.

2.4.1. Hook-up Security

Until 1987 not much work went into examining the effects of interconnecting

secure components. McCullough demonstrated that Bell and LaPadula’s access controls

and its extensions, Sutherland’s Deducibility model, and Goguen and Meseguer’s

- 9 -

Noninterference requirement are inadequate as composable security properties. It was

possible to interconnect components that satisfied these properties in such a way that the

resulting system did not satisfy the property. McCullough introduced the idea of hook-up

security as a solution to this problem. McCullough proposed the following circular

definition:

“A system is hook-up secure if it is deducibility secure and if, when it is
hooked up with a second hook-up secure system, the result is a hook-up
secure composite system” [McCullough87]

Millen [Millen90] argued that “hookup safety is not just a frill” and is “an essential

property of a definition of information security.”

McCullough also proposed a new definition of security he called Restrictiveness

[McCullough88]. Restrictiveness had the desirable property of composability.

Unfortunately, Restrictiveness is not a natural way of expressing security [Rushby91].

2.4.2. Safety and Liveness

In 1985, Alpern and Schneider [Alpern & Schneider85] proposed a formal

definition for properties. They express properties as a combination of a safety property

and a liveness property. Informally, a liveness property stipulates that “something” must

eventually happen during the execution of a system, while a safety property requires that

“something bad” never happens.

In the Alpern and Schneider model a property and a system are both sets of traces.

A property holds for a system if and only if the set of traces exhibited by the system is a

subset of the set of traces of the property.

The safety/liveness model has some appealing consequences. Since properties are

a set of traces every property is the intersection of a safety property and a liveness

property. Also, the notion of refinement is very intuitive. Unfortunately, we will

demonstrate that this model of properties is not applicable to secure systems.

2.4.3. Composing Specifications

Abadi and Lamport [Abadi & Lamport90] defined a modular specification method

for composition. Their formalism is based on an extension of the Alpern and Schneider

- 10 -

notion of safety and liveness properties. Their extension includes a notion of an

environment in which the system is going to operate. Their goal is to provide a means to

“prove that a composite system satisfies its specification if all its components satisfy their

specification” [Abadi & Lamport 90].

The behaviour of components is represented by an infinite sequence of states and

“agents” that cause the changes of states. Specifications are a set of behaviours. In Abadi

and Lamport’s framework the first step is to define the behaviour of the system and then

compose the systems. There is also an assumption about the behaviour of the

environment. The behaviour of the environment must be an assumption because the

environment cannot be controlled. The Composition Principle put forward in this work

applies to specifications of the form E ⇒ M, where E is a property and M is a machine

property. This expression asserts that the system will satisfy property M as long as the

environment satisfies the property E.

Abadi and Lamport define a composition principle and a set of proof rules. These

proof rules can be used to prove that components behave correctly when their

environments behave correctly. The proof rules and composition principle are not relevant

to this work because in section 4.7 we demonstrate that the Alpern and Schneider

safety/liveness framework cannot be used to specify security properties. Therefore, the

Abadi and Lamport composition principle cannot be applied to secure systems.

2.4.4. Selective Interleaving Functions

One of the first theories to attempt to address the composition of security

properties was presented by McLean in “A General Theory of Composition for Trace Sets

Closed Under Selective Interleaving Functions” [McLean94]. McLean noted that security

properties do not fall within the Alpern and Schneider categorization of properties and

therefore cannot be handled by the Abadi-Lamport Composition Principle (see also section

4.7).

McLean defines a Selective Interleaving Function that is used to define security

properties. This function is defined such that, given two traces τ1 and τ2, it will produce a

third trace f(τ1, τ2) → τ. The trace, τ, is an interleaving of the two given traces. A

- 11 -

component satisfies a security property if it is closed under f. Different interleaving

functions can be used to generate traces satisfying different possibilistic properties. For

example, one can define f such that high_inputs(τ) = high_inputs(τ1), low_inputs(τ) =

low_inputs(τ2), and low_outputs(τ) = low_outputs(τ2). This interleaving function defines

Generalized Noninterference.

A complete discussion of Selective Interleaving Functions is given in Chapter 6.

2.5. Bunch Theory

Bunch theory is not itself a method to model systems. Bunch theory will be used

throughout our formalism. In this section we present an introduction to bunch theory. A

complete description of bunch theory can be found in “A Practical Theory of

Programming” [Hehner93].

A bunch is an unpackaged collection of objects. Contrast this with a set, a

packaged collection of objects. A bunch is the contents of a set. This point might seem

trivial, but it is essential to presenting a consistent theory. An elementary bunch, or

element, is any number, character, string, etc. For example, the number 2 is an elementary

bunch, so is the character ‘c’ and the string ‘abba’. In this work the most common

elementary bunch will be a trace of a system. The axioms of bunch theory that are relevant

to this work are:

If A and B are bunches, then

A, B “A union B”

 is a bunch, and

A:B “A is included in B”

is true iff all the elements of A are included in B.

An important bunch is the empty bunch. That is a bunch with no elements. This

will be expressed as null. The null bunch satisfies the following identity property,

A, null = A

For a complete list of the axioms of Bunch Theory see “A Practical Theory of

Programming” [Hehner93].

- 12 -

Quantifiers will be use throughout this document. The quantifiers ∀ and ∃ have

their standard meaning but will be augmented by including with each variable of

quantification the bunch of elements that quantification is over. For example,

∀i:int⋅⋅∃r:rat⋅i<=r<=(i+1)

says for all integers there exists a rational number between it and the next higher integer.

The solution quantifier § (“solution of”) gives the bunch of solutions of a

predicate. For example,

(§i:int⋅⋅ i2 = 4) = -2, 2 “those i in int such that …”

The axioms for § are (v is a name, A and B and bunches, b is a Boolean expression

and x is an element):

(§v:null⋅⋅b) = null

(§v:x⋅b) = if b(x) then x else null

(§v:A, B⋅b) = (§v:A⋅⋅b), (§v:B⋅⋅b)

2.6. Unwinding Theorems

Most of the security properties presented in the literature have been trace based.

That is, the security condition is expressed over the set of traces of the system. However,

most formal specification approaches are based on a state transition model and specify

individual state transitions. A theorem stating the equivalence between a trace based

security condition and a transition based security condition is called an unwinding

theorem.

All of the unwinding theorems presented in the literature have dealt with specific

security properties [Goguen & Meseguer84] [McCullough90] [Bevier & Young94]

[Millen94]. The specific details of these are not important at this time. Generally, an

unwinding theorem takes the following form. Given a system and a sensitivity level, an

equivalence relation is imposed on the system states. Then a condition is given on how

users of different sensitivity levels can move from equivalence class to equivalence class.

For example the unwinding theorem for Noninterference can informally be expressed as

follows:

- 13 -

“Two states are equivalent if they are indistinguisable through system
output to a user at level s or below, either now or after futher inputs. The
noninterference policy is satisfied if and only if high-level inputs have no
apparent effect on a low user’s view, because they cause transitions to
states in the same equivalence set.” [Millen94]

2.7. Summary

In this chapter we have presented some of the relevant research. In future chapters

we will build upon this work to provide a general framework for the analysis of security

properties.

- 14 -

3. Components and Systems

Mathematics possesses not only truth, but supreme beauty – a beauty
cold and austere, like that of sculpture.

Bertrand Russel (1872-1970)
British philosopher, mathematician

3.1. Introduction

A discrete event system is a dynamic system that evolves according to the

occurrence of physical events. The system modeler first decides which events are

important to the system being modeled. These events correspond to the primitive actions

done to or done by the system. Then the modeler describes the interaction between these

events. Once the system has been adequately described, predictions about expected

behaviour can be made and analyzed.

Example 3.1: In modeling a communication network the relevant events might be:
{ packet_sent, packet_lost, packet_received, time_out }

and the trace

s = <a1, a2, a3>

may represent the behaviour

packet_sent, packet_lost, time_out q

To say that s=< a1, a2, a3,...> is a trace means that a1 is the first event and the event

ai+1 occurs after event ai. The trace contains no information about the real time at which

an event occurs. We may say that the trace describes only the logical behaviour. This

relativistic timing notion corresponds closely to the practical operation of most real

computing systems.

An event trace places no constraints on the absolute timing of particular events.

All executions with the same relative ordering of events are captured and represented by a

single event sequence. This is represented graphically in Figure 3.1. In this case, the

labeled circles represent different events, and their absolute timing displayed on the scale

- 15 -

from left to right. The first two timing sequences have identical event trace

representations <A,B,C>, while the third sequence differs.

A

A

B C

B C

B A

A

Time

Figure 3.1: Relativistic Timing of Event Traces [Nestor93]
The first two sequences have identical event trace representations, while the
third sequence differs.

3.2. Traces

As described in the previous section a trace of a system indicates the behaviour of

a process up to some moment in time. A trace will be denoted by an ordered bunch of

events enclosed in angular brackets:

<x,y> is a trace of two events. The event x followed by the event y.

<x> is the trace containing only the event x.

<> is the empty sequence containing no events.

Traces play a central role in our theory of composition. We will need operations

on traces.

Definition 3.1: Trace Concatenation

The notation ŝ t will refer to the trace formed by putting together traces s

and t in that order. We will use st to denote concatenation if s and t are

obvious from the context. Formally, if X and Y are an order bunch of

events then <X>̂ <Y> = <X,Y>

The expression t|A denotes the sub-trace of t containing only events in A.

Example 3.2: Let t = <a1, a2, a1, a3, a2>. Then t|{a1,a3} = <a1,a1,a3>

The operator Λ will return the set of events present in a bunch.

Example 3.3: Let t = <a1, a2, a1, a3, a2>. Then Λt={a1, a2, a3}

- 16 -

If A is a set of events then A* is the set of all finite traces (including <>) which are

formed from symbols in the set A. The following axioms exactly define this set.

1. <>∈A*

2. <x>∈ A* if and only if x∈A

3. (ŝ t)∈A* if and only if s∈ A* ∧ t∈ A*

It will be required to determine all the possible interleavings of two traces. A trace

t is an interleaving of two traces s and u if it can be split into a series of subsequences,

with alternate subsequences extracted from s and u. [Hoare85].

Definition 3.2: Interleave of two bunches of traces

The interleave of two bunches s, t written interleave(s,t) is defined as:

§r:(Λs∪Λt)*⋅r|Λs:s ∧ r|Λt:t

Recall that a single trace is also a bunch. Therefore, if the arguments to interleave

are single traces then the resulting bunch will contain all interleavings of the traces.

3.3. Discrete Event Systems

The framework for our investigation into composability will be event systems as

given by McCullough [McCullough87] and Johnson and Thayer [Johnson and Thayer88].

McCullough’s definition derives from the work on modeling concurrency of Hoare

[Hoare85]. We will define a discrete event system as follows:

Definition 3.3: Event Systems.

An event trace system is a 4-tuple:

S = <E,I,O,T>

where

E is the set of events
I, the input events, I ⊆ E
O, the output events, O ⊆ E and I ∩ O = ∅
T ⊆ E*

 is the set of traces

The set of events corresponds to the primitive actions done to or by the system.

The set of traces of an event system must satisfy the following property. It must always

be possible for the system to accept an input event. This condition is called input totality

- 17 -

[McCullough87a] [Johnson & Thayer88]. This modeling abstraction simplifies the proof

of the theorems. The need for input totality is examined in section 5.3.2.

In this work we draw no inference from the likelihood that certain members of T

are more probable than others; we are interested only in possible traces. The definition of

an event system does not include a means to generate the set T. In this work it is not

important to have a means to generate T. However, it must be remembered that the

sequences in T do have some order. There are conditions for when events can occur and

what conditions are effected after the occurrence of an event.

Since we have augmented all quantification with a bunch to quantify over we

define the following:

Definition 3.4: Bunch Notation For the Set of Traces

For a system S the function traces(S) returns a bunch such that exactly all

traces of S are elements of the bunch.

Definition 3.5: Verifying a trace of a System

The predicate traces(τ) is true if and only if τ is a trace of system S.

The standard set operators of union, ∪, and intersection, ∩, will be used to

combine the various sets of the event trace system. The set difference operator, \, will

also be used. The set A\B, for example, contains all elements in the set A that are not in

the set B.

The specification of security properties usually requires a distinction between high

level (trusted) and low-level (untrusted1) users. We will refer to these categories as HLU

and LLU respectively. This division is accomplished by dividing E into the disjoint subset

L and H, such that every event is in exactly one of L or H. These are, respectively, the

sets of low- and high-level events. Assuming two comparable levels simplifies the

presentation of the results without altering the results; the generalization to an arbitrary

lattice of levels is straightforward but notationaly cumbersome.

1 Or less trusted.

- 18 -

 The following definition gives some notation for commonly used classes of events.

Definition 3.6: Event Classes.

The following notation will be useful in specifying security properties:
HI = H ∩ I high level input events,
LI = L ∩ I low level input events,
HO = H ∩ O high level output events and
LO = L ∩ O low level output events.

Throughout this document component and system will be used interchangeably.

The following convention will be used when discussing composition. Components will be

interconnected to yield systems. It is equally valid to interconnect systems to yield larger

systems. However, we feel that by explicitly referring to the sub parts of a system as

components emphasizes that they are part of a larger system.

3.4. Composition

It is considered good engineering practice to build large and complex systems from

smaller independently verified components. This leads to cheaper and better designed

systems. Figure 3.2 demonstrates a model of a system consisting of two CPUs and a bus

arbitrator controlling access to shared memory. It is easier for each component to be

independently designed and verified then interconnected, rather than attempting to design

it as one monolithic system.

- 19 -

Figure 3.2: An Example of a Composed System.
An example of how components are composed to form a complex system.
This system is modeling the interactions between two CPU’s and a bus
arbiter to access shared memory.

The definition of an event system presented above does not require E = I ∪ O.

The events E ∩ (I ∪ O) are internal events. That is, neither input nor output events.

These events arise in one of two ways. The system designer could explicitly use such an

event for some internal purpose or through the interconnection of components (see

below). Since the users of a component are only interested in the external behaviour of

the component we assume internal events are caused by the interconnection of

components. To simplify the identification of internal events we will use the following

notation:

Definition 3.7: Communication Events.

The set of internal events (communication events) C in an

interconnection of two systems S1 and S2 is defined as

C=(O1∩ I2)∪(O2 ∩I1)

If the system designer wants to be able to specify internal events that are not

communication events then another class of events can be added to the definition of an

event system. Extending the definition of an event system to include another class of

events has no effect on any of the results presented in this work.

CPU 1 CPU 2

Bus Arbiter

Memory

Grant

Request

Write to Bus

Read from Bus

Read from Bus

Write to Bus

Read from Memory Write to Memory

- 20 -

clock_tick

value_reached

start_clock

count

Component 1

Component 2

start_clock Component 1 value_reachedComponent 2

(a) (b)

clock_tick

Figure 3.3: Interconnecting Components
(a) Two components that will be interconnected. (b) the input event of the
second component is renamed which indicates that the output of the first is
to be connected to it.

The composition of two components can be thought of as directing output events

from one component to become input events at the other. For example, Figure 3.3(a)

demonstrates two components. Component 1 is a clock component that produces

clock_tick events once a second. Component 2 is a counter that produces a

value_reached event after receiving ten inputs. If a system designer wanted a component

that caused something to happen every 10 seconds, he could interconnect these two

components by joining the output of the clock component to the input of the counter

(Figure 3.3(b)). This combined system accomplishes the desired behaviour. Examining

how the above composition accomplished the desired behaviour will be used to motivate

our composition operation.

Notice that the communication event (clock_tick) is an output of component 1 and

an input to component 2. This differs from Figure 3.3(a) where clock_tick was only an

output of component 1 while component 2’s input was called count. Therefore, the first

step in any composition is to rename the events that will be connected to have the same

name.

After this renaming has occurred the events of the composed system are a union of

the events of each individual component. Also, the inputs to the system are all the inputs

to each component except those connected to the outputs of the other component.

Similarly, for the output events. The only remaining aspect of the event system to

consider, are the traces of the system. Clearly, a trace of the system restricted to the

events of a component must be a trace of that component. We have considered all effects

- 21 -

of composition on an event system and can now define the composition of two

components. Before we present the definition we will present some additional

requirements that simplify the notation.

To simplify the notation and presentation of the theorems some requirements are

required on the interconnection of components. The only valid connection is from an

output of one component to the input of another. To achieve another type of connection

the event may be routed through a splitter or a merger component. Figure 3.4

demonstrates these components. If a component contains internal event these events may

not be used in further interconnections. This requirement makes sense because in a real

system only the externally visible behaviour is known to the designer.

in

In1

In2

In3

Out1

Out2
Out3

Out

(a) (b)

Figure 3.4: Splitting or Merging Event Sequences
(a) The occurrence of the in event causes three output events to occur.
These events can be used in further connections to simulate connecting the
in event to three components. (b) After all three in events have occurred
an out event is emitted. This component can be used to merge events.

In the definition of composition we assume that the event renaming mentioned

above has already been done.

Definition 3.8: Composition of Components

Given S1=<E1,I1,O1,T1> and S2=<E2,I2,O2,T2> that satisfy
I1 ∩ I2 = ∅

O1 ∩ O2 = ∅
(E1 \ (I1 ∪ O1)) ∩ E2 = ∅
(E2 \ (I2 ∪ O2)) ∩ E1 = ∅

then the compostion of S1 and S2 produces a new component

S=<E,I,O,T> such that:
E = E1 ∪ E2

I = (I1 \ O2) ∪ (I2 \ O1)

- 22 -

O = (O1 \ I2) ∪ (O2 \ I1)

and T = { a∈E* such that a|E1∈T1 ∧ a|E2 ∈T2}

The definition of composition implies that the outputs from one component

immediately become inputs at the other component. It can be argued that in real systems

there always exists some propagation delay and hence our requirement is too strong. It

would seem that a better approach would be to allow some time between the occurrence

of an output event and its receipt as an input at the other component.

This analysis, though correct, is overly simplistic. The difference between the two

is better characterized as synchronized versus non-synchronized communication. An

example of synchronized communication might occur in the Request event in Figure 3.2

(page 19). In this case it would not be unrealistic that when the CPU generates this event

it immediately appears at the bus arbiter. This exchange happens so quickly it can be

though of as an atomic event. The Write_to_Bus event, however, is a good example of

where non-synchronized behaviour is desirable. In this case it is not unreasonable to

assume that the Write_to_Bus and the Write_to_Memory event do not occur

simultaneously. In this case other system events may occur between the occurrence of the

two events.

Section 5.5 will examine the effects of synchronized communication on

composability. It will be shown that the type of synchronization is a factor when the

composition of two components fails to preserve a property. In section 5.5.3 we

introduce a delay component that can be used to model non-synchronized communication.

We defer the introduction until then because the delay component has implications on the

composability of properties.

Typical research on composability has proceeded on the basis that a system can be

constructed two components at a time. First, two components are interconnected. These

are then considered one new component and another component is added. This procedure

is repeated until the desired system has been constructed. In this work, however, we will

show that the structure of the system is an important consideration for composition. We

therefore require a way of expressing this structure. This will be done through the use of

a system graph.

- 23 -

Definition 3.9: System Graph.

For a system composed of k components construct the following digraph

G=<V,D>. Let the set of vertices V be the set of numbers 1 to k. An

edge (i,j)∈D iff there exists an α such that α∈Oi and α∈Ij. The above

graph is called the system graph.

Figure 3.5(b) is an example of a system graph for the system in Figure 3.5(a).

Observe that the system graph captures the possible flow of events. The system graph has

a cycle if and only if the system involves feedback.

1

2

3

4

1

2

3

4

(a)

(b)

Figure 3.5: An Example of a System Graph
Figure (b) is the system graph for the system in part (a).

Definition 3.10:Feedback Path.

The feedback path from component i is a path that starts at vertex i and

ends at vertex i. It is possible that a component is not part of any

feedback path.

Definition 3.11:Number of Components in the Feedback Path.

The number of components in the feedback path is defined as the smallest

number of vertices visited in the path that starts at vertex i and ends at

vertex i.

- 24 -

For example, in Figure 3.5(b) it can be seen that the path 1-2-4-1 is a feedback

path and the number of components in that path is 3.

3.5. Summary

In this chapter we presented the event system formalism that will be used

throughout this work. In the next chapter we introduce security properties.

- 25 -

4. Security Properties

The vanity of being known to be trusted with a secret is generally one
of the chief motives to disclose it.

Dr. Samuel Johnson (1709-1784)
English author, lexicographer

4.1. Introduction

Each researcher that has proposed a new security property has constructed his

own notation and formalism. Every new security property proposal must be accompanied

with a proof of composability. With different notations and assumptions about the model

of components, comparing the strengths and weaknesses of the various security properties

has been difficult. In this chapter we examine security properties in general. We then

present a unified framework for the specification and analysis of security properties. This

framework is used throughout this work in proving properties about the composition of

components that satisfy security properties.

There have been various frameworks presented for analyzing properties of

components [Hoare85] [Abadi & Lamport90] [McLean94] [Nestor93] [Hinton96]. Why

is another framework required? In Section 4.7 we show that security properties do not

fall within the Alpern-Schneider [Alpern & Schneider85] safety/liveness framework

presented in Chapter 2. Therefore, the Abadi and Lamport [Abadi and Lamport90]

composition principle cannot be applied to security properties.

One of the first attempts to provide a general theory of security properties was the

use of Selective Interleaving Functions [Mclean94]. McLean's framework as will be

demonstrated is only applicable to a subset of security properties. Possibly its greatest

weakness, however, is that it does not allow for an obvious specification of security. Our

framework captures the intuitive notion of security properties and can be used to

determine the composability of components that satisfy security properties. A comparison

of selective interleaving functions and our framework is presented in Chapter 6.

- 26 -

In this chapter we introduce and motivate security properties. Chapter 5 presents

composition theorems that can be used to determine the composability of these properties.

4.2. Properties of Secure Systems

A secure computer system is one that has the properties of confidentiality, integrity

and availability [McLean94]. There is no clear distinction between these properties since

they are not independent. A Trojan Horse that corrupts files makes these files unavailable.

Also, a Trojan Horse that makes a system unavailable can be used to transmit data to low

level users. Therefore, confidentiality cannot be assumed without some degree of integrity

and availability. Each of confidentially, integrity and availability is useful, however,

because each category has its own set of issues.

In this work we are interested in confidentiality properties. The goal of

confidentiality is to prevent low level users from deducing anything about high level

activity. The security policy defines exactly what low level users are forbidden to

discover. For example, it may be considered desirable to ensure low level users cannot

determine which high level inputs have occurred. Or we may say, information about high

level inputs may not flow to LLU. The security policy dictates what flows are permissible

and which are not. A security property is an instantiation of a policy. There may be more

than one property that satisfies a given policy. In this work we do not advocate any

specific security policy. We consider security properties in general2.

As with all of the work on confidentiality, we take an optimistic view of the LLUs

abilities and a pessimistic view of the intent of the HLUs. For example, we assume LLUs

have complete knowledge of the construction of the system and that HLUs, when

confronted with a choice, will make the one that compromises system security the most.

Taking this approach we get a lower bound on the security of the system being

considered.

2 In this work when referring to security we mean confidentiality.

- 27 -

4.3. Inference

To understand what a security property is, we must first understand how low level

users can infer information about high level users’ activities. Information will be deemed

to flow from high level users to low level users when the low level users observe

something they believe is connected with high level user activity:

“Information is transmitted along an object when variety in the events
engaged by a [high level] user can be conveyed to a [low level] user as a
result of [the high level users] interaction with the object.” [Foley87]

There are two types of inferences that can be made:

1. possibilistic

2. probabilistic

In the possibilistic case, one is interested in the possibility of certain events. In the

probabilistic case the probability of the events is also considered. Nearly all work on

secure systems has been on possibilistic properties and systems. Some work on

probabilistic properties has been presented [Gray90] [McLean90] [Gray92].

In this work we are interested in possibilistic properties and inferences. Johnson

and Thayer argued that “possibilistic specifications for computer systems [are] inadequate

for addressing the main problems of computer security” [Johnson & Thayer88]. While

this might be the case we cannot hope to understand the dynamics of a probabilistic

system without first understanding the possibilistic case.

In the following discussion it will be useful to examine the bunch of traces that are

consistent with a given low level observation. The definition of a low level equivalent

bunch captures this notion.

Definition 4.1: Low level Equivalent Bunch.

Given a trace τ and a System S, Blow(τ,S) is the bunch of traces that have

the same low level events as τ in the same order. We will write Blow(τ)

when referring to an arbitrary system S. Formally,

§s:traces(S)⋅τ|L=s|L

When a low level user observes a sequence of events τlow he knows there exists a τ

such that τ|L=τlow. Since we assume that the low level user knows the architecture of the

- 28 -

component he can determine the low level equivalent bunch corresponding to τlow. The

question that we wish to address is what can the user infer about τ|H?

One of the first attempts to model the flow of information in a secure system is due

to Sutherland [Sutherland86]. His theory of information flow is based on logical

deduction. Sutherland argued that if there were high level event sequences such that no

element of Blow(τlow) had this high level sequence then the low level user would have

inferred something about high level behaviour. Formally, information does not flow if and

only if ∀τlow:traces(S)|L⋅∀τH:traces(S)|H⋅τH:(Blow(τlow,S)|H). Thus a system has no

undesirable information flows if all possible high level event sequences are consistent with

every possible low level event sequence.

This definition of inference seems reasonable but it is neither complete nor useful.

We will not cover all the details of why this definition of inference is not acceptable for

secure systems but we will cover some of the major issues below. For an excellent

discussion on the subject see “A Trusted Network Architecture” [Thompson et. al 88] or

“Information Flow in Nondeterministic Systems” [Wittbold and Johnson90].

One of the biggest problems with Sutherland’s theory is that it allows systems with

undesirable information flows to be called secure and systems that do not have undesirable

flows to be called insecure. Sutherland’s assertion that all possible high level activity must

be compatible with every low level sequence does not encompass the notion of security

correctly.

Consider a system whose only function is to copy all low level inputs to high level

outputs. This system is clearly secure. However, Sutherland’s theory indicates that a flow

from high to low level users to low level users exists. It is true that the low level user has

knowledge of high level events but he has not gained any new information. In this case

Sutherland’s theory is too strong. Sutherland’s definition of information flow is

symmetric. If there is a flow from A to B then there must be a flow from B to A.

Security, however, is an asymmetric property. Information flows from LLU to HLU are

allowed but information flows from HLU to LLU are not.

Sutherland’s theory also allows the construction of a system that hsa real but

unacceptable flows. This happens because not all possible methods of transmitting

- 29 -

information have been considered. Only the existence of one interleaving of a high level

event sequence and a low level observation is required. The low level user in examining

Blow(τlow) can however make the following observations:

1. A particular high level input sequence is not consistent with τlow.

2. A particular interleaving of high level event sequences is not possible.

3. A high level output event that does not depend on any high level input events is

not consistent with τlow.

No other observations can be made. High level outputs that depend on input events are

not a factor because if something can be inferred about these events then something can be

inferred about high level inputs. We do not want to imply that the LLU will not know that

a high level output has occurred. But, we do imply that the knowledge of the occurrence

gives no information about the activities of the high level users.

The first item above has been addressed by many researchers but the second has

received little attention. Guttman and Nadel [Guttman & Nadel88] mentioned it as a

problem they were trying to address in the presentation of their security property. Their

exposition of the problem does not adequately address the issue. Furthermore, their

examples are not convincing enough to demonstrate the problem with interleavings. It

was hypothesized by Lee [Lee et. al 92] that the interleavings problem might be connected

to the issue of nondeterminism. We agree with this and will demonstrate why

interleavings need to be considered.

Example 4.1: Machine A has one high level input in, and one high-level output out which

is caused by in after some processing. There is a low-level cancel input, which cancels

any high-level processing that is underway, and a low-level ack output that acknowledges

the cancel input after some time interval. If there is high-level processing at the time of

the ack, that is, if the number of out events is less than the number of in events, all high-

level processing is terminated, and no out will occur until after the next uncancelled in. If

there is no high-level processing at the time of ack, then a low-level error output may be

produced at some time following the ack; however, the error output is not guaranteed to

occur.

It is easy to see that for any sequence of low level events every high level input

sequence is possible. However, consider the low level observation:

<cancel, ack, error>

- 30 -

This low level observation precludes the following interleaving of the high level sequence

<in, out>:

<cancel, in, ack, out, error>

The out event must come before the ack event. Therefore, the low level user knows that

at the time of the ack no high level events are present. This information can be used to

transmit information from the high level user to the low level user. q

In light of the above discussion we propose the following definition for information

flow in a secure system:

Definition 4.2: Information Flow.

Information flows from high level users to low level users if and only if

the low level user’s observation of τlow implies that at least one high level

event sequence or interleaving is not possible.

Information flows from high level users to low level users if there exists a high

level trace or interleaving such that if it had occurred then τlow could not have occurred.

Care must be taken in interpreting this statement. If low level actions influence high level

behaviour then it is possible for a particular sequence not to be possible because the low

level influence precludes it. However, in this case no inference is possible. For example,

the low level user may know his influence could not possibly result in a particular high

level output, or in the extreme case, may know exactly what the output must be. But

what is the inference? The low level user is precluding high level events from occurring.

Therefore, he can communicate with the high level user through a covert channel but low

level to high level communication is already allowed.

4.3.1. The Perfect Security Property

Separability is an example of perfect security [McLean94]. This is because no

interaction is allowed between high level and low level events3. It is like having two

separate systems, one running the high level processes and one running the low level

3 We must stress that this is in the possibilistic sense. It is possible to construct a Separability

secure system that has covert channels.

- 31 -

processes. Separability can be defined as follows. For every pair of traces τ1 and τ2 the

trace τ such that τ|L=τ1|L and τ|H=τ2|H is a valid trace.

The problem with Separability is that it does not allow low level users to influence

high level activity. For example, a computer system that keeps a journal of all low level

user activity on a high level device would not be considered secure.

We will present a security property that is the weakest property that does not

allow a flow from high level users to low level users. Our property will allow low level

users to influence high level user activity. The Perfect Security Property (PSP) will be

proven to be the weakest property that does not allow a flow from high level users to low

level users.

The idea behind PSP is the same as that behind Separability. All possible high level

activity and interleavings must be possible with all low level activity. The difference is that

PSP allows high level outputs to be dependent on low level events. The choice of output

event for any given interleaving can depend on low level events. This implies that not all

interleavings of high level events are possible. This, as will be shown, does not reduce

security because the low level user will not know how he has influenced high level

outputs.

The traces of the system are constructed from the set of events of the system. The

set of events defines all the events that the system can engage in. The definition of PSP

requires the insertion of events in traces. To simplify the presentation of PSP we need to

represent the insertion of no event. To accomplish this we introduce a special event the

use of which has no effect on the set of possible traces. It is merely a placeholder.

Definition 4.3: Null Events

The symbol ε will be used to represent an event that is governed by the

following axiom:
p ̂< ε > ̂ s = p̂ s p̂ s∈T

The following function gives all the possible high level events that may occur after

a prefix of a given trace. This function will be used to construct all the interleavings of

high level sequence with low level events. Notice that since we will be using a function

- 32 -

that gives all possible events after a trace, it is possible that the low level activity in the

trace can influence the possible events.

Definition 4.4: Possible Event Function.

Given a trace τ, Let ν(τ)=§e:H∪ε⋅traces(τ ̂<e>). This function returns

the bunch of all possible high level events that can occur after τ. The

function ν(τ) is called the possible event function.

The definition of the possible event function requires ε to be a possible event. This

will ensure that there will be no case where an event must occur.

The following defines PSP. The idea behind the property is that for any low level

observation the following must be true:

1. All interleavings of high level input sequences must be possible.

2. High level outputs can be inserted anywhere in the trace (assuming they are

possible) and can depend on low level activity.

If all high level input sequences are possible and high level outputs can be inserted

anywhere then the low level user cannot determine anything about high level activity. This

observation will be proven below.

Definition 4.5: The Perfect Bunch

Given an event system S and a low level observation τlow, if the bunch

Blow(τlow,S) contains the following traces then the bunch is perfect.

∀p,s:E*⋅tracess(p ̂s)∧s|H=<>∧p ̂s |L=τlow⇒∀α:ν(p)⋅p ̂α ̂ s : Blow(τlow,S)

Definition 4.6: The Perfect Security Policy.

If for all τlow the bunch Blow(τlow,S) is perfect then the system satisfies

PSP.

The expression of the property might seem complicated but fortunately there exists

a simple procedure to determine if a component satisfies PSP (see Chapter 7). We will

use this property to determine the strength of the properties presented in the literature (see

section 4.5).

The definition of PSP can be transformed into a definition for Separability by

defining the possible event function as follows:

- 33 -

ν(τ)=§e:H∪ε⋅traces((τ ̂e) |H)

The only difference between this definition of the possible event function and the

one given in Definition 4.4 is that this possible events only depend on the preceding high

level events, not the whole trace. We defer the proofs that PSP allows no information

flow and is the weakest such property until section 4.6 because we require concepts that

have not yet been introduced.

4.4. Security Properties

In the previous section we defined a security property that does not allow any

information to flow from high level users to low level users. It would appear that with this

property no other property is required. There are many reasons why other properties are

required. For example:

1. The risk analysis of the system indicates little threat of Trojan horses. In this

case a security property with the possibility of some unauthorized flows might

be acceptable.

2. A desired component does not satisfy this property and a weaker property

must be used.

3. The flow that PSP objects to might, under further analysis, not be a threat to

the system.

The definition of PSP and information flow gave a hint at what a security property

is. The definition of PSP was done by indicating what elements must be present in the low

level equivalent bunch for a low level observation τlow. We can generalize this to cover all

security properties: A security property indicates what traces must be consistent with a

low level observation τlow. In other words, the low level user observing τlow can determine

the low level equivalent bunch of traces. The security property ensures that certain traces

are present in this bunch. Therefore, the low level user cannot distinguish which of these

traces has occurred.

Definition 4.7: Security Properties

A system satisfies a security property if and only if all low level

equivalent bunches satisfy the security property predicate P. Formally,

- 34 -

∀t:traces(S)|L⋅P(Blow(τ,S))

We will write P(S) to indicate that system S satisfies property P.

A security property will ensure that certain traces are in the low level equivalent

bunch. This is not to imply that other traces may not be present in this bunch. For

example, if property P1 implies property P2 and the component is known to satisfy P2, then

it may also satisfy P1, but this is not guaranteed. The property specifies what must occur.

All other traces are coincidental and can vary from component to component.

For each security property there exists a bunch of traces that are guaranteed to be

consistent with τlow. As will be shown, constructing this bunch is a simple procedure once

the property has been expressed. The following definition will be used to identify this

bunch.

Definition 4.8: Guaranteed low level equivalent bunch

We will write GP(τ,S) to identify the bunch of traces that property P

guarantees will be present for trace τ in System S. We will write Gp(τ) if

the system to which we are referring to is obvious from the context.

This bunch should not be confused with the bunch Blow(τ,S). Blow(τ,S) gives the

bunch of all traces with the same low level events. Gp(τ,S) is the bunch of traces that are

required to be present in the set T of the system for the system to satisfy P. Clearly, if a

system S satisfies a property P, Gp(τ,S) : Blow(τ,S)

We have been deliberately vague about how security properties can be expressed.

Beginning in the next section we examine some of the security properties that have been

presented in the literature. This discussion will be used to demonstrate how security

properties can be expressed. The security properties that we shall present here and

analyze in Chapter 5 are intended to illustrate the power of our framework and how other

frameworks and ad hoc approaches to security fail.

4.4.1. Noninference

Noninference was introduced by O’Halloran [O’Halloran90]. It attempts to

separate the low level activity from the high level activity. Informally, Noninference

- 35 -

requires that for any trace of the system removing all high level events results in a trace

that is still valid.

Noninference is too strong for systems that have a high level output without a high

level input. As an example consider a system the only function of which is to keep a

journal of all low level events on a high level device. This system is secure. The low

level user does not know anything about what high level users are doing. This system,

however, does not satisfy the Noninference property.

McLean [McLean94] extends Noninference as follows. For any trace τ, it must be

possible to find another trace σ such that the low level events of τ are equal to σ and σ has

no high level inputs. McLean calls this stronger property Generalized Noninference.

Consider the following:

∀τ:traces(S)|L⋅GN(Blow(τ,S))

GN(B) ≡ ∃t:B⋅t|HI=<>
This satisfies the definition of a security property. The GN predicate ensures that

the trace without any high level inputs is always possible for any low level observation.

Therefore, for all possible low level observations a trace can be found with the same low

level events but with no high level inputs.

In the chapters that follow it will be required to determine all the traces that are

guaranteed to be indistinguishable to the low level user. For Generalized Noninference this

bunch can be expressed as:

GGN(τ,S) = §s:traces(S)⋅⋅s|L = τ|L ∧ s|HI = <>

4.4.2. Noninterference

Noninterference is a security property introduced by Goguen and Meseguer

[Goguen & Meseguer82] [Goguen & Meseguer84]. It captures the attractive notion that

system security is preserved whenever high level users are prevented from influencing the

behaviour of low level users. Goguen and Meseguer’s original definition of

Noninterference was only applicable to deterministic systems. McCullough

[McCullough87] [McCullough88] extended the definition to encompass non-deterministic

systems.

- 36 -

McCullough's definition of Generalized Noninterference (GNI) can be informally

defined as follows: Given a trace τ, modifying it by inserting or deleting high level inputs

results in a sequence σ, which is not necessarily a valid trace. This is referred to as a

perturbation of τ. It must be possible to construct a valid trace τ' from σ by inserting or

deleting high level outputs. This is called a correction to the perturbation.

We will now formally define Generalized Noninterference.

∀τ:traces(S)|L⋅⋅ GNI(Blow(τ))

GNI(A) ≡ ∀t:interleave(HI*,τlow)⋅∃s: A⋅t=s|(L∪HI)
To simplify the presentation of the GNI predicate, we used τlow to represent the

low level trace. This can be extracted from any member of A.

Once the security predicate has been written the bunch of traces that are

guaranteed to look like a particular trace τlow to the low level user can be formed:

GGNI(τ,S) = §s:traces(S)⋅⋅∃t:interleave(HI*,τ|L)⋅ s|(L∪HI) = t

4.4.2.1. Forward Correctability

The above definition of Generalized Noninterference is different than

McCullough’s original definition. The above definition allows a correction to a

perturbation to occur at any point in the trace, even before the perturbation. McCullough

called the possibility of correcting before the perturbation a “violation of causality.” We

will show in section 7.5.1 that this violation can only occur in a non-deterministic system.

We can also define a causal or Forward Correctable version of GNI where corrections can

only occur after the perturbation. Unless otherwise specified when referring to

Generalized Noninterference we will refer to the one defined in the previous section.

4.4.3. Non-Deducible Output Security

The previous two examples were of security properties are founded on the notion

of preventing a LLU from deducing anything about high level inputs. Our definition of

security is not limited to this type of security. To illustrate a different form of security we

present Guttman and Nadel's Non-Deducible Output Security [Guttman & Nadel88]. In

this example we start with the formal description of the property and demonstrate how it

can be analyzed. Non-Deducible Output Security can be expressed as:

- 37 -

∀τ:traces(S)|L⋅⋅NDO(Blow(τ))

NDO(A) ≡ ∀t:traces(S)⋅t|LI=τlow|LI⇒∃s: A ⋅s|(H∪LI)=t|(H∪LI)
Once again we have used τlow to simplify the notation. This can be extracted from

any trace of the bunch A.

The analysis of a property begins by writing the security property in a form where

it is obvious which traces look like a trace τ to a LLU.

GNDO(τ,S) = §s:traces(S)⋅⋅∃t:traces(S)⋅⋅t|LI=τ|LI ∧ s|L=t|L ∧ s|(H∪LI) = t|(H∪LI)

If the LLU sees a trace τlow he can determine the bunch Blow(τlow,S). All of these

traces are indistinguishable to a low level user from a trace s that has the same low level

events as τ but the high level events come from another trace that has the same low level

input events. Since the low level user cannot determine which high level events were

chosen the observation of τlow gives the user no new information about high inputs or

outputs. Furthermore, since the merging was performed arbitrarily, the low observation is

also compatible with all interleavings and so give no information about which interleaving

occurred.

Output Non-Deducibility cannot be expressed in McLean’s Selective Interleaving

Framework. This property is not the interleavings of two traces (see section 6.2).

4.4.4. Separability

Separability is an example of perfect security [McLean94]. Separability is perfect

security because no interaction is allowed between high level and low level events. It is

like having two separate systems, one running the high level processes and one running the

low level processes. Separability can be defined as follows. For every pair of traces τ1

and τ2 the trace τ such that τ|L=τ1|L and τ|H=τ2|H is a valid trace.

No matter what the low level user observes, every possible sequence of high level

events is possible. Therefore, the low level user cannot gain any new information.

This property can be formalized as:

∀τ:traces(S)|L⋅⋅ SEPARABILITY(Blow(τ))

SEPARABILITY(A) ≡ ∀t:traces(S)|H⋅interleave(t,τlow):A

GSEPARABILITY(τ,S) = §s:traces(S)⋅⋅∃t:traces(S)|H⋅⋅s|L=τlow∧s:interleave(t,τlow)

- 38 -

4.5. Comparing Security Properties

Before we can compare security properties we must decide what it means to

compare them. Consider any component C1 that satisfies property P1 and any component

C2 that satisfies P2. We can ask does C1 always satisfy P2? If it does then property P2 is

weaker than P1. If C2 always satisfies P1 then P1 is weaker than P2
4. If neither is true then

P1 and P2 are not comparable. By performing the above comparison between all

properties a partial ordering of properties can be constructed.

Our formalism provides a mechanical method of evaluating the relative strengths of

security properties. Since we have a logical expression for our properties the comparison

is simple. To compare properties P and Q evaluate P⇒Q and Q⇒P. If the first statement

is true then P is stronger then Q. If the second statement is true then Q is stronger than P.

If both are true the properties are equal and if neither is true they are not comparable.

Example 4.2: We will compare Generalized Noninference to Generalized

Noninterference:

We reproduce the definition of Generalized Noninference and Generalized

Noninterference here:

GN(B)= ∃t:B⋅t|HI=<>

GNI(B) ≡ ∀t:interleave(HI*,τlow)⋅∃s:B⋅t=s|(L∪HI)

First we will show that GNI implies Generalized Noninference:

∀τ:traces(S)|L⋅GNI(Blow(τ,S)) Definition of GNI

= ∀τ:traces(S)|L⋅∀t:interleave(HI*,τlow)⋅∃s:Blow(τ,S)⋅t=s|(L∪HI) Specialization with t=τ
⇒ ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅τ=s|(L∪HI) Distributive

⇒ ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅τ|L = s|L ∧ τ|HI = s|HI Definition of Blow(τ,S)

= ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅τ|HI = s|HI τ has no high level events

= ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅<> = s|HI Definition of GN

= ∀τ:traces(S)|L⋅GN(Blow(τ,S))

Now we show that Generalized Noninference does not imply GNI:

∀τ:traces(S)|L⋅GN(Blow(τ,S)) ⇒ ∀τ:traces(S)|L⋅GNI(Blow(τ,S))

Definition of GNI & GN

4 If both cases are true then P1 is equal to P2.

- 39 -

= ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅s|HI = <> ⇒
∀τ:traces(S)|L⋅∀t:interleave(HI*,τlow)⋅∃s:Blow(τ,S)⋅t=s|(L∪HI)

Specialization such that t|HI≠<>

⇒ ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅s|HI = <> ⇒ ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅t = s|(L ∪ HI)

Distributive, Definition of Blow(τ,S) and the Specialization condition

⇒ ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅s|HI = <> ⇒ ∀τ:traces(S)|L⋅∃s:Blow(τ,S)⋅¬s|HI = <>

= ⊥

Therefore, GN does not imply GNI and GN is a weaker property than GNI. q

By applying the above technique to the security properties presented above the

following lattice can be constructed.

Separability

Generalized
Noninterference Noninference

Generalized Noninference

Output Non-
Deducibility

PSP

Figure 4.1: A Partial Ordering of Security Properties

The arrows in the lattice indicate which property implies which other. For example

PSP implies Generalized Noninterference and by transitivity Generalized Noninference.

An instructive way to represent part of the above lattice is to only consider the elements

that can be totally ordered.

Figure 4.2 shows the ordering of most of the security properties that have been

presented in the literature. First notice that, for example, Separability secure systems are

both GNI secure and Generalized Noninference secure. Therefore, if a system designer

wishes the system to be Generalized Noninference secure and it is known that it is GNI

secure then it is also Generalized Noninference secure. Also notice that PSP, defined in

section 4.3.1, partitions the figure into two. This can be used to determine the strength of

- 40 -

the properties. We can see that Separability is a stronger property than PSP. Therefore,

systems with no information flow are being unnecessarily rejected.

Most security properties defined in the literature are weaker than PSP. This may

be surprising but can be explained because high level interleavings are not considered by

any of the weaker properties. Example 4.1 on page 29 was used to demonstrate that the

interleavings of traces can be used to transmit information from high level users to low

level users. It can be shown that the component of Example 4.1 is Restrictiveness secure

[Lee et. al 92]. From Figure 4.2 it can be seen that this component also satisfies most of

the other properties presented in the literature. Therefore, all weaker properties than PSP

allow systems to be called secure which are not.

4.6. PSP Security Proofs

In this section we prove that PSP allows no information flow between high level

users and low level users. We also prove that it is the weakest such property.

Theorem 4.1:PSP does not allow any information to flow from high level users to low

level users.

Separability

GNI

Generalized
Noninference

All Systems

PSP

Restrictiveness
n-Forward Correctability

0

∞

Figure 4.2: A Total Ordering of Most Possibilistic Properties

- 41 -

Proof:

Assume that there is a system S that satisfies PSP and allows high level information to

flow to low level users. By the definition of information flow there must be some high

level sequence that is not possible. By construction all possible high level input sequences

and high level input sequence interleavings are possible. Furthermore, all possible

interleavings of high level outputs are present. The low level equivalent bunch for τlow

contains all sequences that could give the low level users any information about high level

activity.

q

Theorem 4.2:PSP is the weakest security property that does not allow information flow

from high level users to low level users.

Proof:

Theorem 4.1 proved that PSP does not allow information to flow from high level users to

low level users. We must therefore prove that any weaker property must allow flows from

high level users to low level users.

Assume that there exists a property, P, that is weaker than PSP and that does not have any

unauthorized information flows. Let S be a system that does not satisfy PSP but satisfies

P. Let µ be a trace such that ¬µ:GP(µ,S). Such a trace exists because P is weaker than

PSP.

When the low level user observes τlow he knows that the trace µ is not possible. We now

show that the absence of this trace gives the low level user additional knowledge about

high level activity. Since µ is not a possible trace one of the following must be true:

1. The high level input sequence of τ is not consistent with the τlow observation

2. A high level output event that does not depend on input events must occur before

some low level trace τlow because it influences the subsequent behaviour of the trace.

3. The interleaving of high level events given by µ is not possible with the observation of

τlow. By the construction of µ the sequence of events µ|H is a valid for some τlow. The

- 42 -

absence of this interleaving with the observed τlow gives the low level user the

knowledge of some aspect of high level state.

In all the cases the absence of the trace µ gives the low level user additional knowledge

about high level activity. q

4.7. Security Properties vs. Safety/Liveness Properties

In section 2.4.2 we presented the Alpern and Schneider safety/liveness model of

properties. This model is currently the dominant model in the specification of analysis of

programs [McLean94]. Properties are regarded as sets of traces and a component satisfies

a property if its set of traces is a subset of the property’s set. With this notion of

refinement and Abadi and Lamport’s composition principle it would be desirable to be able

to express security properties in this manner. Security properties, however, are not

preserved by this type of refinement [McLean92b] [McLean94].

In this section we demonstrate that security properties cannot be expressed in the

Alpern and Schneider framework. McLean has demonstrated this in “A General Theory of

Composition for Trace Sets Closed Under Selective Interleaving Functions” [McLean94]

but for a different model of components. We will prove this for the event systems we are

considering.

Before we can prove the required result we must define the notion of one

component being a subset of another.

Definition 4.9: Event System Space

An event system space is a 4-tuple <E,I,O,T> where E, I, O, T are

defined as in the definition of an event system (see Definition 3.3 page

16) with T=E*. We will write Š for the event system space.

Definition 4.10:An Element of a System Space.

A system S=<E1,I1,O1,T1> is a subset of the system space Š=<E,I,O,T> if

and only if E1⊆E, I1⊆I, O1⊆O, T1⊆T.

Theorem 4.3:Security properties are not expressible as sets of traces.

Proof:

- 43 -

Let T be the subset of the set of traces of Š that satisfy a security property P. Any subset

S of Š whose set of traces are a subset of T satisfies P. The satisfaction of a security

property ensures that a system has certain behaviours. A security property is defined as all

low level equivalent bunches of a system satisfying a predicate. For a property to be

satisfied the required traces of the bunch must be present. Construct a system S whose

traces are a subset of T and the security property predicate is false for some low level

observation τlow. Such a system exists because removing one of the traces required to

make P true will still result in the set of traces being a subset of T. The set of traces of S

does not satisfy the security property P but is a subset of T. This yields a contradiction.

Therefore, P cannot be expressed as a set of traces. q

The proof demonstrates that the refinement step may eliminate some possible

behaviours of the system. Eliminating these behaviours means that the security property

might no longer hold.

4.8. Conclusions

In this section we have presented the notion of security properties. This definition

is general and intuitively appealing. We also demonstrated that security properties do not

fall within the safety/liveness framework of Alpern and Schneider. In the next section we

begin our discussion on the composition of components that satisfy security properties.

- 44 -

5. Composition And The Emergence Of
Security Properties

Others find their intellectual pleasure lies in the theory, not the
practice.

Patrick White (1912-1990)
Australian novelist

5.1. Introduction

The purpose of modeling a system is to be able to predict its behaviour. To be

able to predict the behaviour of a system, rules for the effects of interconnecting

components are required. These rules should allow the system designer to know what

property the system satisfies given the properties of each component. If the property of

interest falls within the safety-liveness framework then the Abadi and Lamport

composition principle may be used. If not, the system designer must evaluate the system

to determine what properties it enforces.

In the previous chapter we demonstrated that security properties do not fall within

the safety-liveness framework. Therefore, Abadi and Lamport’s composition principle

cannot be applied. In this chapter we present composition results for security properties.

This gives the system designer the ability to predict the resulting security property of a

composition given the property of each of the components.

There are two different approaches a system designer can take. The system

designer may want to know what property two or more of the components must satisfy so

that when they are interconnected the system satisfies a property P. The other approach is

to determine what properties are satisfied by the system that results from the composition

of two (or more) components with given properties.

The approaches can be seen to be duals of each other. In the first approach the

system is decomposed to determine what its constituent parts must satisfy. In the other

approach the system is composed to determine what the resulting system satisfies.

- 45 -

Both approaches are required because they satisfy different needs. If a desired

property of the system might not be preserved under composition then it is required to

decompose the system to determine what each component must satisfy. If the system

designer is composing several components then he wishes to know what properties the

resulting system will satisfy. Notice that if a property is always preserved under

composition then both approaches will uncover it.

5.2. Classification of Properties

When several components that satisfy a particular property P are composed one of

three things may happen:

1. The resulting system will satisfy the property P.

2. The resulting system might satisfy the property P.

3. The resulting system will never satisfy the property P.

The distinctions have important implications for the system designer.

It is desirable to identify properties such that the composition of several

components that satisfy a property always result in a system that satisfies that property.

We will call such properties component independent properties. With components that

satisfy component independence the system designer is free to interconnect them and need

not be concerned about the property not holding. Unfortunately, not all properties are

component independent.

Components that satisfy some property may be composed so that the resulting

system might not satisfy the property. Special attention is required from the system

designer to ensure the resulting system satisfies the desired property. If no theory of

component composition were available the system designer would have to reevaluate the

system after every newly added component. Fortunately, we can show that this is not

required. In the following sections we present criteria that will allow the system designer

to know if the composition will preserve the property or not. We will call properties that

might not be preserved by composition component dependent properties.

The last possible behaviour of a property is such that the composition of

components that satisfy a property invariably results in a system that never satisfies the

- 46 -

property. In this case the system designer knows that these components must never be

interconnected.

The system designer also needs to be able to determine under what circumstances

a property emerges on composition. An emergent property is one that is not satisfied

individually by every constituent component but is satisfied by their composition. We will

provide criteria to determine when and how a property may emerge on composition.

5.3. Interconnections of Components

In this work we examine what effect the interconnection of systems has on security

properties. We are interested in two types of interconnections: cascade composition and

feedback composition. It can be shown that these are sufficient to perform general

composition5.

Cascades are formed by taking two components S1 and S2 and passing some of

S1’s output events to S2’s input events (see Figure 5.1). We assume that S1’s output

meets any environment restrictions expected by S2’s input. That is, S1’s outputs are

acceptable inputs for S2. The resulting system can now be considered a new component

and another component can be added. In this fashion larger and larger cascade systems

can be constructed.

S1 S2

The overall System S

Figure 5.1: Cascade Composition
The cascade composition of components S1 and S2. Some of S1’s output
events are fed into S2 as inputs.

5 McLean [McLean94] demonstrates this with product composition (cascade composition with no

internal events) and feedback composition. The ability to perform general composition from

cascade and feedback composition was noted by Millen [Millen90] who attributes it to Rushby.

- 47 -

The other type of composition involves feedback. In a system that is composed

with feedback some of S2’s outputs in Figure 5.1 are directed to become inputs at S1. See

Figure 5.2. With these two types of composition any system can be constructed.

S1 S2

The overall System S

Figure 5.2: Feedback Composition
The difference between cascade composition and feedback composition is
that in feedback composition some of S2’s outputs are directed to become
inputs at S1.

5.3.1. Cascade Composition

The definition of composition presented in section 3.4 (page 18) was for general

composition. Since we will begin our investigation of composition by examining cascade

composition we will formally define the cascade composition operation.

It can be seen from Figure 5.1 that all input events of the first component, S1, are

also input events of the composed system. All of the input events to S1 are also input

events of S. Since all possible inputs can occur for the S1 component all the traces of S1

are possible. For the second component (component S2 in Figure 5.1) not all input

combinations are necessarily possible. The outputs of S1 may not generate all possible

input sequences to S2, therefore, not all traces of S2 may be possible. This leads us to the

following definition of cascade composition.

Definition 5.1: Cascade Composition

Given S1=<E1,I1,O1,T1> and S2=<E2,I2,O2,T2> that satisfy
I1 ∩ I2 = ∅

O1 ∩ O2 = ∅
(E1 \ (I1 ∪ O1)) ∩ E2 = ∅
(E2 \ (I2 ∪ O2)) ∩ E1 = ∅

- 48 -

then the compostion of S1 and S2 produces a new component

S=<E,I,O,T> such that:
E = E1 ∪ E2

I = I1 ∪ (I2 \ O1)
O = (O1 \ I2) ∪ O2

and T = { a∈E* such that a|E1∈T1 ∧ a|E2 ∈T2}

Notice that the cascade composition is not a symmetric operation. The cascade

composition of S1 and S2 is not equal to the cascade composition of S2 and S1. In this

work we will use the convention that component S1 will be the left component of Figure

5.1 and component S2 will be the right component.

The definition of cascade composition implies the following:

O1 ∩ I2 = C
HI = HI1 ∪ HI2\HO1

HO = HO1\HI2 ∪ HO2

T1 = T|E1

T2 ⊆ T|E2

Given components S1 and S2 that satisfy properties P1 and P2 respectively, we can

ask “what property does the cascade composition of S1 and S2 satisfy?” The definition of

cascade composition yields:

∀τ1:traces(S1)⋅P1(Blow(τ1,S1))∧∀τ2:traces(S2)⋅P2(Blow(τ2,S2)) Distributive Laws

= ∀τ1:traces(S1)⋅∀τ2:traces(S2)⋅P1(Blow(τ1,S1))∧ P2(Blow(τ2,S2))
traces(S) : interleave(traces(S1),traces(S2))

⇒ ∀τ:traces(S)⋅P1(Blow(τ|Ε1,S1))∧ P2(Blow(τ|E2,S2))

To proceed further we must substitute the expressions for each of the properties.

The resulting expression will indicate the property that the composed system satisfies. A

special case of the above is when P1=P2=P. If after the simplification the composed system

can be seen to satisfy P then the property is a component independent property. If the

resulting expression does not yield that the composed system satisfies P then the system

satisfies a component dependent property. We will continue by demonstrating how to

proceed by a series of examples.

 The following lemma is useful in determining the effect of cascade composition.

It states that if there exists a trace in each component’s low level equivalent bunch such

- 49 -

that the communication events are the same and the traces satisfy some predicate then

there exists a trace in the low level equivalent bunch of the composite system that satisfies

the same predicate.

Lemma 5.1: ∃t1:Blow(τ|L1,S1)⋅∃t2:Blow(τ|L2,S2)⋅t1|C∩H=t2|C∩H∧b(t1,t2) ⇔ ∃t:Blow(τ,S)⋅
b(t|E1,t|E2), where b is any predicate

Proof:

∃t1:Blow(τ|L1,S1)⋅∃t2:Blow(τ|L2,S2)⋅t1|C∩H=t2|C∩H∧b(t1,t2) Definition of Blow

= ∃t1:[§s1:traces(S1)⋅τ|L1=s1|L1]⋅∃t1:[§s2:traces(S2)⋅τ|L2=s2|L2]⋅ t1|C∩H=t2|C∩H∧b(t1,t2)
Definition of §

= ∃t1:traces(S1)⋅∃t2:traces(S2)⋅ τ|L1=t1|L1∧ τ|L2=t2|L2∧ t1|C∩H=t2|C∩H∧b(t1,t2)
Since t1|C∩L = t2|C∩L

= ∃t1:traces(S1)⋅∃t2:traces(S2)⋅ τ|L1=t1|L1∧ τ|L2=t2|L2∧ t1|C =t2|C∧b(t1,t2)
t1|C =t2|C and interleave(t1,t2):traces(S)

= ∃t:traces(S)⋅ τ|L=t|L ∧ b(t|E1,t|E2) Definition of §

= ∃t:[§s:traces(S)⋅τ|L=s|L]⋅b(t|E1,t|E2) Definition of Blow

= ∃t:Blow(τ,S)⋅b(t|E1,t|E2) q

The first example we present proves that Generalized Noninterference is cascade

composable. This result is not new and has already been proven [McLean94] [Zakinthinos

& Lee95]. We present it here because Generalized Noninterference has been extensively

studied and no work would be complete without demonstrating that it can duplicate

known results.

Example 5.1: In this example we will prove that the cascade composition of two

components that satisfy the Generalized Noninterference property will also satisfy this

property.

∀τ1:traces(S1)|L⋅∀t1:interleave(HI1
*,τ1)⋅∃s1:Blow(τ1,S1)⋅t1=s1|L1∪HI1 ∧

∀τ2:traces(S2)|L⋅∀t2:interleave(HI2
*,τ2)⋅∃s2:Blow(τ2,S2)⋅t2=s2|L2∪HI2

traces(S) : interleave(traces(S1),traces(S2))

⇒ ∀τ:traces(S)|L⋅∀t1:interleave(HI1
*,τ|E1)⋅∃s1:Blow(τ1,S1)⋅t1=s1|L1∪HI1 ∧

∀t2:interleave(HI2
*,τ|E2)⋅∃s2:Blow(τ2,S2)⋅t2=s2|L2∪HI2 Distributive Law

⇒ ∀τ:traces(S)|L⋅∀t1:interleave(HI1
,τ|E1)⋅ ∀t2:interleave((HI2\C),τ|E2)⋅∃s1:Blow(τ1,S1)⋅

∃s2:Blow(τ2,S2)⋅ s1|HO1∩C=s2|HI2∩C ∧ t1=s1|L1∪HI1 ∧ t2=s2|L2∪HI2

Lemma 5.1 and Simplification

= ∀τ:traces(S)|L⋅∀t:interleave((HI1∪HI2\C)*,τ)⋅∃s:Blow(τ,S)⋅ t|E1=s|L1∪HI1 ∧
t|E2=s|L2∪HI2\C Cascade Composition and Distributive Law

- 50 -

= ∀τ:traces(S)|L⋅∀t:interleave(HI*,τ)⋅∃s:Blow(τ,S)⋅ t=s|L∪(HI1 ∪HI2\C)
Cascade Composition (HI=HI1∪HI2\C)

= ∀τ:traces(S)|L⋅∀t:interleave(HI*,τ)⋅ ∃s:Blow(τ,S)⋅ t=s|L∪HI

Therefore, the composition of two components that satisfy Generalized

Noninterference also satisfies Generalized Noninterference. q

Example 5.2: In this example we will determine if Generalized Noninference (section

4.4.1, page 34) is a composable security property. O’Halloran [O’Halloran90] has proven

that Noninference is composable and McLean [McLean94] has “proven” using Selective

Interleaving Functions that Generalized Noninference is cascade composable. As will be

shown McLean’s result is wrong. McLean’s error comes from the incorrect application of

one of his theorems.

∀τ1:traces(S1)|L⋅∃t1:Blow(τ1,S1)⋅t1|HI1=<> ∧ ∀τ1:traces(S1)|L⋅∃t2:Blow(τ2,S2)⋅t2|HI2=<>
traces(S) : interleave(traces(S1),traces(S2))

⇒ ∀τ:traces(S)|L⋅∃t1:Blow(τ|E1,S1)⋅t1|HI1=<> ∧ ∃t2:Blow(τ|L2,S2)⋅t2|HI2=<>
Distributive Law

= ∀τ:traces(S)|L⋅∃t1:Blow(τ|E1,S1)⋅ ∃t2:Blow(τ|L2,S2)⋅t1|HI1=<> ∧ t2|HI2=<>

We cannot progress any further. The high outputs of the first component may not

be <>. They may be. However, the property does not guarantee that such a trace exists.

Therefore, Generalized Noninference is not a component independent property. With this

analysis, however, we can easily determine what conditions are required for it to compose.

Since the second component requires the high level communication events to be <> we

can require the high level outputs of the first component be <>6. Notice that this is

Noninference which was proven by O’Halloran to be composable. With this requirement

the interface requirement can be satisfied. q

In the above example it was easy to see that the composition would not succeed

because nothing could be said about the behaviour of the component when the high level

input sequence was not <>. In a more complex property this type of observation may not

be as obvious. If compatible communication events cannot be guaranteed then the

property will not be composable. Therefore, compatible communication events are a

6 Only the high level communication events being <> would suffice.

- 51 -

necessary condition for a property to be component independent. The following steps can

be used to determine the conditions that are being imposed on the communication events.

1. For component S1 write the expression for all traces that look like a trace τlow of S1.

2. Take any trace r that looks like τlow and restrict the trace to the communication events.

Note that if the property does not specify a restriction on a particular class of events,

for example high level outputs, then it must be assumed that any sequence of events

from this class can occur7.

3. For component S2 write the expression for all traces that look like a trace τlow of S2.

4. Take any trace s that looks like τlow and list the properties satisfied by the

communication events. The same comment as the one is number 2 applies.

5. Compare the sequences generated by 2 and 4. The comparison will indicate what

additional restrictions are required.

Example 5.3: We will apply the above procedure to Generalized Noninference.

1. For the first component we know the bunch of traces that look like a trace τlow of S1 is:

§t:traces(S)⋅t|L=τlow|L∧HI=<>

2. Let r be any trace of this bunch. Restricting to its communication events it can be seen

that r|L∩C=τlow|L∩C. Since nothing is specified about the high level outputs we must

assume that they can be anything r|H∩C:(H∩C)*.

3. Proceeding in the same fashion for the second component:

§t:traces(S)⋅t|L=τlow|L∧HI=<>

4. Let s be any trace of this bunch. Restricting it to its communication events results in

s|L∩C=τlow|L∩C. Since some of the high level inputs of S2 are now communication

events t|H∩C=<>.

5. Comparing the communication events found in 2 and 4 we see that the low level

events are compatible8 but the high level outputs are not necessarily compatible.
The conclusions are the same as those found in Example 5.2. q

7 This is a pessimistic view. If other information is known about the class then that can be used

instead.
8 This will always be true of security properties.

- 52 -

This type of analysis performed in the previous example is quick and easy but the

benefits may not be obvious. The following conjecture will clarify why we believe this

analysis is useful.

Conjecture 5.1: If components S1 and S2 satisfy security properties P1 and P2

respectively, and P1 and P2 guarantee compatible communication

events, then the cascade composition of S1 and S2 will satisfy all

properties P such that P1⇒P and P2⇒P.

The following example will illustrate how to apply the techniques presented above

to determine what property will be satisfied by the composition of two components that

each satisfy different properties

Example 5.4: In this example we will determine what property the resulting system will

satisfy if component S1 satisfies Noninference and component S2 satisfies Generalized

Noninterference.

∀τ1:traces(S1)|L⋅∃t1:Blow(τ1,S1)⋅t1|H1=<> ∧
∀τ2:traces(S2)|L⋅∀t2:interleave(HI2

*,τ2)⋅∃s2:Blow(τ2,S2)⋅t2=s2|L2∪HI2

traces(S) : interleave(traces(S1),traces(S2))

⇒ ∀τ:traces(S)|L⋅∃t1:Blow(τ|E1,S1)⋅t1|H1=<> ∧
∀t2:interleave(HI2

*,τ2)⋅∃s2:Blow(τ2,S2)⋅t2=s2|L2∪HI2 Cascade Composition

= ∀τ:traces(S)|L⋅∃t1:Blow(τ|E1,S1)⋅t1|H1=<> ∧ ∀t2:interleave((HI2\C)*,τ2)⋅∃s2:Blow(τ2,S2)⋅
s2|H∩C=t1|H∩C ∧ t2=s2|L2∪HI2 Semicommutative Laws

⇒ ∀τ:traces(S)|L⋅∀t2:interleave((HI2\C)*,τ2)⋅ ∃t1:Blow(τ|E1,S1)⋅ ∃s2:Blow(τ2,S2)⋅
s2|H∩C=t1|H∩C ∧ t2=s2|L2∪HI2 ∧ t1|H1=<> Lemma 5.1

= ∀τ:traces(S)|L⋅∀t2:interleave((HI2\C)*,τ2)⋅ ∃t:Blow(τ,S)⋅ t2=s2|L2∪HI2 ∧ t|HI1=<>
Specialization with t2|HI2\C = <>

⇒ ∀τ:traces(S)|L⋅∃t:Blow(τ,S)⋅ t|HI=<>

Therefore, the composition of the two components satisfies the Generalized

Noninference Property.

We will now do the analysis by comparing communication events and applying

Conjecture 5.1.

1. For Noninference the high level communication events output from S1 are

guaranteed to be <>.

- 53 -

2. For Generalized Noninterference the high level communication events input to

S2 can be anything.

Clearly compatible communication events can be found. By Conjecture 5.1 the

system satisfies a property P such that Noninference ⇒ P and Generalized

Noninterference ⇒ P. From Figure 4.1 (page 39) we see that P can be Generalized

Noninference. This is the same conclusion demonstrated above.

Notice that in this example the resulting system satisfies a different property than

either of its components. We will discuss this further in section 5.4. q

Consider a property, P, that is known to be composable. What can be said about a

property P1 such that P1⇒P? The cascade composition of two components that satisfy P1

will satisfy P. This follows because both components satisfy P, which is composable. But

does the resulting system satisfy P1? We believe that it does.

Conjecture 5.2: Given a composable property P and properties P1 and P2 such that

P1⇒P and P2⇒P then the cascade composition of components S1 and

S2 that satisfy P1 and P2 respectively will satisfy a property Q such that

P1⇒Q, P2⇒Q and Q⇒P.

This conjecture follows from Conjecture 5.1 because the compatibility of the

communication events is guaranteed by the composable property.

Product composition is a special case of cascade composition. Product

composition is cascade composition without communication events (see Figure 5.3). All

of the above results can be applied to product composition. For product composition

Conjecture 5.1 reduces to:

Conjecture 5.3: Given components S1 and S2 that satisfy P1 and P2 respectively then the

product composition of S1 and S2 will satisfy a property P such that

P1⇒P and P2⇒P.

- 54 -

S1

S2

Figure 5.3: Product Composition
Product Composition is cascade composition but without internal events.

5.3.2. Consequences of Input Totality

One of the assumptions in the section Components and Systems (section 3, page

14) was that all of the components must be input total. That is, they must always accept

an input. This differs from most other models of event systems. Input totality sounds

more restrictive than it is. All that is required is that the input is recorded in the trace. It

does not necessarily have any effect on the state of the system; it might be ignored.

Input totality makes the presentation of the cascade results easier. If input totality

were not required then it would be possible to find two components such that their

cascade composition would not be allowed. Consider the communication events between

S1 and S2 in Figure 5.1. If the outputs of S1 were unacceptable as inputs at S2 or an input

event that must occur at S2 cannot be generated by S1 then the composition would not

succeed. The composition would cause deadlock. Input totality removes this problem.

McLean does not require input totality in his theory of Selective Interleaving

Functions [McLean94]. Instead, he has an interface requirement that ensures the

composition will succeed. The input totality requirement can be replaced with an interface

requirement. This would not change any of our results but would complicate their

presentation.

5.4. Emergent Properties

In the previous section we investigated how to determine the effects of composing

two components with known security properties in cascade. In this section we will

examine emergent properties. As mentioned in section 5.2 an emergent property is one

- 55 -

that is not satisfied by every constituent component but is satisfied by the overall system.

One fundamental question that has not been answered is whether emergent security

properties exist? As we shall show the answer is yes.

Example 5.4 demonstrated that the composition of a Noninference secure

component and a Generalized Noninterference secure component results in a system that

satisfied Generalized Noninference. We do not believe that this example proves the

existence of emergent properties. In this case the properties of the components both imply

Generalized Noninference. In Example 5.2 we demonstrated that Generalized

Noninference was not a composable property because it did not guarantee the existence of

compatible communication events. However, the existence of the compatible

communication events is guaranteed by Generalized Noninterference. Therefore we do

not consider this an example of emergence since both components also satisfy Generalized

Noninference.

We also want to eliminate from consideration the case where the components

satisfy more than one property. For example Generalized Noninterference does not imply

nor is implied by Noninference. But a component can be both Generalized

Noninterference secure and Noninference secure. In composing two Generalized

Noninterference components it might be that the resulting system satisfies Noninference.

If both components satisfied Noninference then this would not be a surprise. If one (or

both) of the components didn’t satisfy Noninference then this would be an example of an

emergent property. We will demonstrate that if a composed system satisfies Noninference

then each component must also satisfy Noninference.

We will demonstrate that there exists a security property such that two

components that both do not satisfy the property when composed result in a system that

does satisfy the property. We will not attempt to justify the usefulness of the property.

We only want to demonstrate that such properties exist.

Example 5.5: Consider the property EMERGENT:

∀τ:traces(S)|L⋅⋅ EMERGENT(Blow(τ,S))

EMERGENT(B) ≡ ∃s:B⋅s|HI=<>∧¬t|HO=<>
EMERGENT is Generalized Noninference with the added stipulation that the

output sequence cannot be empty. Consider the composition of two components such

- 56 -

that S1 satisfies Noninference and does not satisfy EMERGENT and S2 satisfies

EMERGENT. Notice that Noninference is neither implied by nor implies EMERGENT.

This follows because EMERGENT ensures that the high level output sequence is not

empty but Noninference requires it to be empty.

∀τ1:traces(S1)|L⋅∃t1:Blow(τ1,S1)⋅t1|H1=<> ∧
∀τ2:traces(S2)|L⋅∃t2:Blow(τ2,S2)⋅t2|HI2=<>∧¬t2|HO=<>

traces(S) : interleave(traces(S1),traces(S2))

⇒ ∀τ:traces(S)|L⋅∃t1:Blow(τ|E1,S1)⋅t1|H1=<> ∧ ∃t2:Blow(τ|E2,S2)⋅t2|HI2=<>∧¬t2|HO=<>
Distributive Law

= ∀τ:traces(S)|L⋅∃t1:Blow(τ|E1,S1)⋅∃t2:Blow(τ|E2,S2)⋅t1|H∩C=t2| H∩C ∧ t1|H1=<> ∧
t2|HI2=<>∧¬t2|HO=<> Lemma 5.1

= ∀τ:traces(S)|L⋅∃t:Blow(τ,S)⋅t1|H1=<> ∧ t2|HI2=<>∧¬t2|HO=<> Cascade Composition

= ∀τ:traces(S)|L⋅∃t:Blow(τ,S)⋅t|HI=<> ∧¬t|HO=<>

The resulting system satisfies EMERGENT but both components did not satisfy it.

Therefore, there exist emergent properties. This example does not violate Conjecture 5.1

because there does not exist a composable property, P, such that Noninference implies P

and EMERGENT implies P9. q

Now that we have demonstrated the existence of emergent properties we will

provide a criterion that allows the system designer to determine if a property might

emerge under composition. Before we present the criterion some definitions are required.

Definition 5.2: Event Removing Operator.

Given an event system S=<E,I,O,T> the operation S\α, α⊆E yields the

following system S’=<E’,I’,O’,T’> :
E’ = E\α
I’ = I\α

O’ = O\α
and T’ = { t | t|E’∈Τ }

9 If such a P existed then EMERGENT would be a composable property. But, EMERGENT is not

composable for the same reasons Generalised Noninference is not composable.

- 57 -

The above operator removes all occurrences of an event from the event system.

The following definition will use the above operator to give a condition on properties. We

will then show that this condition has an impact on the existence of emergent properties.

Definition 5.3: Stable Property.

A property P will be called stable if and only if for all systems S,

∀α:power_set(E)⋅P(S)⇒P(S\α).

A system that satisfies the stability property is such that removing any number of

the events will result in a system that still satisfies the property. How restrictive is the

stability requirement? All security properties presented in the literature satisfy this

requirement (see Appendix A). The security property EMERGENT of Example 5.5, that

was used to demonstrate the existence of emergent properties, does not satisfy the stability

requirement. We do not believe that the stability requirement imposes an unduly harsh

restriction on security properties. Furthermore, we are not forcing all security properties

to satisfy this property. If a desirable property does not satisfy the stability requirement

then the previous results can be used to determine composability. Unfortunately, no

general comment can be made about how a non stable property might emerge.

Consider the cascade composition of two components S1 and S2 such that their

composition results in a system S that satisfies a property P. If the property P satisfies the

stability requirement then we can conclude P(S\E2) and P(S\E1). This follows from the

stability condition that any subset of the events can be removed and the property still

holds. This result has obvious implications for the ability of the property P to emerge

under composition.

If a property, P, satisfies the stability requirement then a necessary condition for

the composition of two components S1=<E1,I1,O1,T1> and S2=<E2,I2,O2,T2> to yield a

system that satisfies P is if P(S1
*) and P(S2

*) where S1
*=<E1

*,I1
*,O1

*,T1
*> and

S2
*=<E2

*,I2
*,O2

*,T2
*> equal:

E1
* = E1 E2

* = E2

I1
* = I1 I2

* = I2\O1

O1
* = O1\I2 O2

* = O2

T1
* = T1 T2

* = T2

- 58 -

 This implies that one can determine a priori if the composition of two components might

result in a system that satisfies P. Unfortunately, stability is not a sufficient condition.

Generalized Noninference satisfies the stability definition but as demonstrated in Example

5.2 the composition of two Generalized Noninference secure components may not satisfy

Generalized Noninference

The stability requirement allows the system designer to determine under what

conditions a property may emerge. Consider, Generalized Noninterference. In Example

5.1 it was shown that GNI is a cascade composable security property. Therefore any two

systems that satisfy GNI when composed in cascade will result in a system that also

satisfies GNI. Since GNI is a stable property (see Appendix A) we can also conclude that

the only way a cascade system can satisfy GNI is if the externally visible parts satisfy GNI.

By externally visible we mean the system such that all internal events are removed.

5.5. Feedback Composition

In this section we examine systems that contain feedback. Most real systems do

exhibit some form of feedback. In the previous sections we have considered security

properties in general. In this section we will limit our discussion to a subset of security

properties. We do this for two reasons. First, we can provide much stronger results by

limiting the class of security properties we consider. Second, the class we are considering

encompasses nearly all security properties presented in the literature and appear to contain

the best candidates for a formal basis of security.

The class of properties that we will be considering include those that imply the

causal variant of GNI. Recall from section 4.4.2.1 on page 36 that the causal variant of GNI

requires that all corrections to perturbations occur after the perturbation. In this section

when referring to GNI we mean causal GNI. As can be seen from Figure 5.4 most security

properties that have been proposed as a basis for the foundations of computer security are

included.

- 59 -

Until 1987 it was thought that security properties could be composed such that the

resulting system also satisfies the property. Then McCullough [McCullough87]

[McCullough88] provided an example of two GNI secure systems such that their

composition resulted in a system that did not satisfy GNI. We will present a variation of

the example McCullough used to motivate our results.

Example 5.6: Machine A has one high level input in, and one high-level output out which

is a reply to in after some processing. There is a low-level cancel input, which cancels any

high-level processing that is underway, and a low-level ack output that acknowledges the

cancel input after some time interval. If there is high-level processing at the time of the

ack, that is, if the cumulative number of out events is less than the cumulative number of

in events, the high-level processing is terminated, and no out will occur until after the next

uncancelled in. If there is no high-level processing at the time of ack, then a low-level

error output may be produced at some time following the ack; however, the error output

is not guaranteed to occur.

Machine B is similar to A, but does not have an ack output. It cancels high-level

processing, if any, at the moment the cancel is received. If there is no high-level

Separability

PSP

∞

0

Generalized
Noninference

GNI

All Systems

Restrictiveness
n-Forward Correctability

Figure 5.4: Comparison between GNI other Properties.
Generalized Noninterference is implied by most of the security properties
presented in the literature.

- 60 -

processing at the time of the cancel, then a low-level error output may be produced at

some time following the cancel; however, the error output is not guaranteed to occur.

We will demonstrate that we can compose two components such that the resulting

system is not non-interference secure. We will hook up the machines as follows: A’s ack

output feeds into B’s cancel input, A’s out feeds into B’s in, and B’s out feeds into A’s in.

A’s in is also available as an external input besides receiving B’s out. Our model of an

event system and composition does not explicitly allow A’s in event to be both a

communication event and an input event. This is not a problem because we can use a

multiplexer as describe in section 3.4, page 18. Figure 5.5 shows this interconnection.

in

cancel

out

ack

error

in out

error

A B

cancel

M High Level Events

Low Level Events

Figure 5.5: Interconnections for Example 5.6.
A diagram of the interconnections between the Machine A and the Machine
B. M is a multiplexer required because our model of components does not
allow an event to be both an internal event and an input event.

Each trace in Figure 5.6 consists of a time line, running vertically, and events,

drawn as labeled arrows along the time line. Time flows up the time line; earlier events

are nearer the bottom of the time line. Dashed arrows signify high-level events, and solid

arrows are low-level events. An arrow directed at the time line is an input event, while an

arrow directed away denotes an output event. The composition of Figure 5.5 is not non-

interference secure because, for the trace shown in Figure 5.6(a) and the perturbation

shown in Figure 5.6(b), there is no correction. Any attempt to correct the trace in one of

the components results in the other component requiring a correction also. q

- 61 -

Error

Error

Cancel

Error

Error

Cancel

(b)(a)

In

Figure 5.6: Demonstration that the Component of Figure 5.5 does not satisfy GNI.
Trace (a) is a trace of the composite machine that does not have a
correction for the perturbation shown in part (b).

5.5.1. Low Level Preconditions and System State

We have used an event system model for components because it eliminates the

need for specifying a model of computation. However, even without specifying a model

of computation we can still examine how a system behaves as it processes events. As the

system accepts and processes new events the state of the system changes. Events might

be dependent on the state of the system. That is the occurrence of an event might be

dependent on some condition being true. These conditions are called preconditions for an

event. The event system model presented in Chapter 3 does not explicitly contain these

preconditions. The preconditions are implicit and embedded in the set of all traces. In

proving our results for feedback composition we do not explicitly require these

preconditions for each event. However, we will refer to them and therefore deal with the

preconditions if they exist.

In this work we are only interested in the preconditions of a low level event that

requires a condition on high level state. It might seem strange that low level events can be

dependent on high level state but consider the informal definition of precondition given in

the preceding paragraph. Since the state of the component is dependent on both the low

level users actions in τ and the high level users actions in τ, the condition for λ to occur

may be dependent on the actions of high level users.

Definition 5.4: Low Level Preconditions
A low level event requiring condition φ to be true for its occurrence

means either one (or both) of the following are true:

- 62 -

1. The condition must be true of the high level state for the low level

event to occur

2. The condition must be true of the high level state for some future low

level event to occur.

The only exception to the above is that a low level input event may never depend

on high level state for it to occur.

5.5.2. Theorems on Feedback Composition

Example 5.6 demonstrates that a property that is cascade composable might not be

composable in the presence of feedback. The question that has not been addressed in any

work on composability is what structures of the system cause this failure to occur.

Example 5.6 demonstrates the failure of GNI to compose using two components with

feedback. Is it possible to construct such an example with three (or more) components in

the feedback path? As we shall prove the answer is no. The only case where feedback

composition can fail is in the composition of two components. How this can help the

system designer is discussed below.

To prove that the only interconnection that causes feedback composition to fail is

in the interconnection of two components, a characterization of why the composition fails

is required. The following Lemma proves that the failure is due to a low level event

whose preconditions cannot be satisfied. It does not, however, give any indication to

which low level event or how the failure will occur. The determination of which event and

why it fails is presented below.

Lemma 5.1: For a system composed of GNI secure components, if a trace τ exists such

that a perturbation σ has no correction then there exists a low level event

such that its conditions for occurring can not be satisfied.

Proof:

Given a trace τ and a perturbation σ such that no correction exists, assume all low

level event conditions can be satisfied.

From σ remove all high level non inputs. Apply the following procedure to each

low level event beginning with the first low level event in σ.

- 63 -

σ can be written as σ=αλβ where λ is the low level event that we are currently

considering. By assumption the conditions for λ to occur can be satisfied. Perform the

necessary corrections such that λ can occur in the trace. All remaining corrections can be

accomplished after λ.

After all low level events have been handled σ can be written as σ=αβ where β

contains only high level events and all required corrections can occur in β. Constructing a

valid trace from this point is straightforward. Without a feedback path the system would

have a correction to σ (event renaming will be required in general). If this correction is

then taken as the new σ and the feedback connections are made again then this will appear

as a new perturbation. The correction would not affect any events in α. This procedure

should then be repeated until all feedback events are handled. This is a contradiction

because it is given that no correction exists.

Therefore, there exists a low level event such that its conditions for occurring

cannot be met. q

Theorem 5.1:Given a composed system with k components that satisfy GNI construct the

system graph. If the graph has no 2-cycles then the system satisfies GNI.

Proof: Consider any trace τ of the system and a perturbation σ. By Lemma 5.1 the only

way a correction will not exist is if there exists a low level event such that its

preconditions can not be satisfied. Consider any low level event, λ, in σ. At worst λ can

occur only if all the components to which it is connected to satisfy their respective

conditions. Since there is no feedback between any two components that share

communication events (there are no 2-cycles) it is always possible to ensure the

precondition for λ can be satisfied. This can be accomplished because since there is no

feedback between the components they appear in cascade. It has been proven that

cascade composition of components satisfies GNI. Therefore, it is always possible to

construct a partial correction τ’=αβ where β only contains high level events and all

corrections can occur in β. The corrections to β can be accomplished by applying the

same technique that was used in Lemma 5.1. q

- 64 -

Notice that the proof uses a more general definition of composition than the one

presented in section 3.4. The definition in section 3.4 only allows an output of one

component to be connected to an input of another component. The above proof allows

the output to be connected to n components. This was done because it is a stronger

result. Clearly, this result applies if the definition of composition is that given in section

3.4.

The above theorem allows the system designer to quickly determine if the system

under consideration might not satisfy GNI. If the system graph does not contain any 2-

cycles then the system satisfies GNI and the system designer is done. The system is

guaranteed to satisfy GNI. If 2-cycles exist, then it is possible that the system does not

satisfy GNI. Some possible solutions are: 1) Reorganize the system to avoid 2-cycles or

2) insert a dummy component to break all 2-cycles. We will discuss 2-cycles and the

dummy component in section 5.5.3.

The above alternatives will work but once again they might cause unnecessary

work for the system designer. It is possible that the feedback connection is perfectly safe.

What is required are necessary and sufficient conditions for the composition of two GNI

secure components to compose.

Theorem 5.2 will give the necessary and sufficient conditions for a security

property to be composable. Before presenting the theorem there are some issues that

need clarifying. The theorem requires that certain conditions be true at certain times.

Since the event system model has no time component this statement may seem strange.

The idea in the proof is to capture the notion that two conditions are required to be true

simultaneously. The easiest way to capture this notion and to demonstrate that if it isn’t

true the property would be composable, was to introduce this artificial notion of time into

the model. Our use of temporal words is merely for expediency and does not violate the

event systems model.

Once again consider the composition that was used to demonstrate the failure of

GNI to compose in the presence of feedback (Figure 5.6). McCullough attributed this

failure of GNI to compose to the rapid exchange of high level events between the

components in the feedback loop [McCullough87]. Lemma 5.1 proved that if GNI fails to

- 65 -

compose it is because the preconditions to some low level event could not be satisfied.

This then implies that the rapid exchange of events referred to by McCullough was the

attempt by the components to satisfy the preconditions of a low level event. This can be

seen from Figure 5.6 by considering the low level trace <cancel, ack, error1, error2> and

the perturbation <in, cancel, ack, error1, error2>. Each attempt to satisfy the

precondition for ack in S1 caused the precondition in S2’s to become false and vice versa.

The most difficult aspect in presenting the necessary and sufficient conditions is to

capture the alternation of conditions that was observed in Example 5.6. An exact

definition of this alternation would require a model of computation for the components;

that is a formal model that can recognize (or generate) the set of traces. One such model

has been developed by Nestor [Nestor93]. Since we want the theorem to be as general as

possible we do not want to provide a specific model of computation. Also, the alternation

of conditions may cause the components to progress through a variety of states in which

the alternation may finally stop because the required conditions can be satisfied. For a

sufficient complex model of computation determining if the alternation of conditions stops

is undecidable10. As will be shown the usefulness of this theorem is not diminished

without a strict definition of the alternation.

Theorem 5.2:The composition of two GNI secure components S0 and S1 will yield a

system that is GNI secure if and only if for all low level outputs λ1 of one

component that are connected to low level inputs λ2 of the other, one or

more of the following is false:

1. For event λ1 to occur requires condition φ1 to be true at the occurrence

of λ1.

2. For event λ2 to occur requires condition φ2 to be true at the occurrence

of λ2.

3. If φ1 or φ2 become false they cannot both be made true simultaneously.

Proof:

10 It is equivalent to the halting problem.

- 66 -

⇒

We will prove the contrapositive statement. That is, if all of the conditions are false then a

correction does not exist.

Since λ1 and λ2 are connected rename this composite event to λ.

Let τ=αλβ be a trace of the composite system. Where a is a sequence of events λ is the

low level event defined above and β is a sequence of events that contains any low level

events such that φ1 and φ2 must be true at λ.

Consider a perturbation α’λβ that makes φ1 false.

Since there is no way to make both φ1 and φ2 true the preconditions for λ cannot be

satisfied.

∴No correction can be found for the trace

⇐

We will prove each case by contradiction. For each case below assume that for a trace t

and a perturbation s no correction exists. If no correction exists then by Lemma 5.1 there

must exist a low level event in t such that a perturbation has meant that the precondition

for it cannot be satisfied. Assume that the event whose condition can not be satisfied is f.

Case 1: f is not a communication event.

Assume f is an event of component S0. The following is applicable if f is an event of S1 by

changing the appropriate subscripts. Since f is not a communication event any correction

to f need only effect events in S0. The addition or removal of events might involve

communication events. These will appear as a perturbation to S1. The corrections for

these perturbations can be postponed until after f. This leads to a contradiction that the

condition for f could not be satisfied.

- 67 -

Case 2: One (or both) of the conditions required for the low level event to occur are not

satisfied at the occurrence of the event but some time before it.

Assume f1 is to be evaluated before the occurrence of f. Once again with the appropriate

changes this is applicable to the other case. The correction to make φ1 true must occur

before the point φ1
 will be evaluated. This correction may make φ2 false but the correction

for this can wait until after φ1 is evaluated but before f. When φ2 is corrected φ1 may have

been made false but φ1 has already been evaluated and hence f can occur. All remaining

corrections can wait until after f. This lead to a contradiction that the condition for f

could not be satisfied.

Case 3: If φ1 or φ2 is made false it is always possible to make φ1 and φ2 true
simultaneously.

The existence of a trace follows immediately since the conditions for f are

guaranteed to be satisfied.

Since for each case we have reached a contradiction if a trace does not have a correction

then the conditions of the theorem must hold. q

The system designer now has all the tools required to determine if a system

composed of GNI secure components is GNI secure. The following procedure can be used

to determine if the system is GNI secure.

1. Construct the system graph.

2. If the graph has no 2-cycles then the system is GNI secure.

3. For each 2-cycle examine the low level connections to see if the low level output event

of one component must satisfy a condition at its occurrence while the low level input

event of the other must also satisfy a condition at its occurrence.

4. If no such case exists then the system is GNI secure.

5. For all cases that do exist ensure that the conditions required for the low level events

can be satisfied.

The checking to ensure that the alternation of conditions does not occur may not

be trivial in a complex component. Therefore, we suggest that if it is discovered that the

- 68 -

composition of two low level events requires two conditions to be satisfied for the event

to occur, a dummy component be inserted in the feedback path.

5.5.3. Why Dummy Components?

In this section we wish to investigate why a three cycle in the system graph is

sufficient for the system to satisfy GNI. Specifically, why does inserting a dummy

component, a component that does nothing except copy its inputs to its outputs, ensures

that the system satisfies GNI?

The definition of composition requires that an output of one component

immediately becomes an input at the other. Inserting another component between the two

components allows other system events to occur between the output event of one

component and the corresponding input event. One may argue that the timing of events in

the system is important. If the dummy component copies the event as quickly as it can

then no other system event would be able to occur. This might be true but since GNI is a

possibilistic property the dummy component provides the possibility of a correction. That

is not to say that in a system with processing delays the system will have a correction.

However, it can be argued that any possibilistic property has this problem since processing

delays are not considered in the models of the properties. This leads to the situation

where a system is pronounced secure but really is not secure. The pros and cons of

possibilistic properties are beyond the scope of this work.

Another way to view the effects of the dummy component is that it breaks the

synchronization between the components it is connected to. The definition of composition

only allows for synchronized communication. Since the composition with the dummy

component allows other system events to occur between the output and the corresponding

input event it can be viewed as non-synchronized communication.

As mentioned in section 3.4 both forms of communication might be required. If

non-synchronized communication is required, then the component depicted in Figure 5.7

can be used. The benefits of using this form of communication are obvious. If all

components use this form of communication and all components satisfy GNI, then the

whole system satisfies GNI.

- 69 -

α β
Dummy

SD=<{α,β},{ α},{ β},{ αβ}>

Figure 5.7: A Component that can be used to Model Non-Synchronized
Communication.

5.5.4. Emergent Properties in the Presence of Feedback

In section 5.4 we discussed the conditions under which a property may emerge

under composition. In that section it was shown that if the property satisfied a stability

requirement then very specific predictions could be make about its emergent potential. The

necessary condition presented in that section applies here also. The externally visible

portion must satisfy the property. In the feedback case, however, it is much more difficult

to ensure that the communication events are compatible.

5.5.5. Why Certain Properties Compose

With the necessary and sufficient conditions for GNI to compose, some insight can

be gained into why certain properties and techniques ensure that the composition of two

components preserves the property. This insight will give system designers and

researchers a better understanding of what the security property is attempting to

accomplish.

After McCullough demonstrated that GNI was not a composable security property

he proposed a property he called Restrictiveness. Restrictiveness is GNI with the added

stipulation that high level outputs cannot be fixed up arbitrarily soon after a modified high

level input. High level output correcting must wait until any immediately following low

level inputs. Examining the Restrictiveness condition on GNI it can be seen why it

composes. Restrictiveness ensures that low level inputs never require a condition to be

true for future low level events to be possible11. The condition of the theorem above

11 The possibility of a low-level input can never be dependent on the high level state. The only

condition possible is for future low level events to be dependent on the high level state at the

occurrence of the low level input.

- 70 -

requires that an input event have a condition associated with it. Since Restrictiveness does

not allow such a condition it is composable.

Johnson and Thayer’s [Johnson & Thayer88] n-Forward Correctability composes

for the exact same reason as Restrictiveness. This should not be a surprise since

Restrictiveness and n-Forward Correctability are so similar. The only difference being that

while Restrictiveness must wait until after all low level inputs following a perturbation to

begin a correction n-Forward Correctability need only wait n low level input events.

Notice that 1-Forward Correctability is the weakest condition of any property that solely

eliminates the possible of there being a condition on a low level input event. This follows

immediately from the theorem because the synchronization affects at most one low-level

event at a time.

Both Restrictiveness and n-Forward Correctability rely on eliminating all

components that require input conditions on the low level events. With Theorem 5.2 it is

possible to construct many security properties that are composable. It is also possible to

construct a composable security property stronger than 1-Forward Correctability. GNI

secure components can be used, but in interconnecting them a check must be done to

ensure that two low level events are not connected such that each satisfies a condition at

the time of its occurrence. This property enforces the same rule (albeit differently) as 1-

Forward Correctability but only in the cases where a problem may exist.

Zakinthinos and Lee [Zakinthinos & Lee95] proposed a technique that allows GNI

secure systems to be composed with feedback. This technique is based on the use of non-

synchronized communication for communication events. This is modeled by using a delay

component in the feedback path. The reason why this technique works follows from

Theorem 5.1. Since the delay component is inserted in the feedback path, the feedback

path contains three components. Theorem 5.1 also gives guidance as to how long the

delay should be. In Zakinthinos and Lee’s paper a feedback event must be delayed until

the next low level event. Theorem 5.1 indicates that any (even a fixed) delay is sufficient.

- 71 -

5.6. Summary and Conclusions

We began this chapter by considering how to determine the result of composing

two components with known security properties. We demonstrate how to use our

formalism to determine what property the resulting system satisfies. Then we considered

under what conditions a property may emerge under composition. We showed that if the

property satisfies a stability requirement then specific predictions can be made about the

emergence of the property.

After considering cascade composition we examined feedback composition. We

proved that the only structures of a system that can cause Generalized Noninterference to

fail are those that involved feedback between two components. We then presented

necessary and sufficient conditions for Generalized Noninterference to compose with

feedback. These results were then used to analyzed why certain properties and techniques

were composable and others were not.

- 72 -

6. Comparison To Selective Interleaving
Functions

Science moves, but slowly slowly, creeping on from point to point.
Alfred, Lord Tennyson (1809-1892)

English Poet.

6.1. Introduction

The only other general framework for the specification and analysis of security

properties is McLean’s Selective Interleaving Functions. In this chapter we compare our

framework to McLean’s. Specifically, we will compare the expressability of the two

frameworks and the results one can obtain from each.

McLean defines a framework for the analysis of Selective Interleaving Functions

(SIF). Selective Interleaving Functions can be used to express properties that are an

interleaving of two traces of the system. The justification for using SIFs is McLean’s

observation that certain security properties are “a closure property with respect to some

function that takes two traces and interleaves them to form a third trace” [McLean94]. If

a security property cannot be so expressed, then the results of McLean’s work are not

applicable. It may be argued that if the security properties that cannot be handled by SIFs

are “uninteresting” then SIFs are all that is required. We will show that at least one of the

security properties presented in the literature cannot be handled by SIFs.

Definition 6.1 defines SIF. Our definition is different than McLean’s because our

model of components is different then McLean’s.

Definition 6.1: Selective Interleaving Functions

Let S=<E,I,O,T> be a component. Partition the set of input events I

into m disjoint subsets. Ix will be used to refer to the xth subset. Similarly,

partition the set of output events O into n disjoint subsets. Ox will be

used to refer to the xth subset. Let i∈{0,1,2}m
, and j∈{0,1,2}n, the

notation i[x], j[x] will be used to refer to the xth coordinate of i or j

- 73 -

respectively. A function f: T×T → T is a selective interleaving function

of type Fi,j if and only if f(t1,t2) = t implies:

for all x such that i[x] = 1 : t|Ix = t1|αIx,

for all x such that i[x] = 2 : t|Ix = t2|αIx,

for all x such that j[x] = 1 : t|Ox = t1|αOx and

for all x such that j[x] = 2 : t|Ox = t2|αOx.

The definition of SIFs is intended to be general and encompasses more than

security properties. This can be seen from examining the partitioning of I and O. The

definition allows an arbitrary partitioning. In the case of security properties this

partitioning will be into high and low level event classes. In demonstrating that SIFs can

be expressed in our framework we will partition I and O into two sets, the set high level

events and the set of low level events. This partitioning is also used by McLean in

demonstrating the use of SIFs.

6.2. Comparison of Expressability

We will now consider the expressability of our framework versus SIFs. First,

consider the following examples of the Separability property (section 4.4.4) as defined in

our framework and McLean’s:

∀τ:traces(S)|L⋅⋅SEPARABILITY(Blow(τ,S))

SEPARABILITY(B) ≡ ∀t:traces(S)|H⋅interleave(t,τlow):B

vs.

F<1H
 :2L

 >,<1H
 :2L

 >: T × T → T, which expands to
interleave: T × T → T, such that interleave(t1,t2) = t implies

highin(t) = highin(t1)
lowin(t) = lowin(t2)

highout(t) = highout(t1)
lowout(t) = lowout(t2)

if a system is closed under interleave then it satisfies Separability

Expressing the property as a SIF (F<1H
 :2L

 >,<1H
 :2L

 >) requires the system designer to

take many steps before he arrives at such a definition. Also, the intent of the property is

not clear when expressed as an SIF. The intended property is clearer, however, in the

expanded version. We believe that neither form captures the notion of a security property.

- 74 -

We believe our formalism, which is based on what the low level user can infer from an

observation, is more natural.

We will now demonstrate that SIFs can be expressed in our formalism. We will do

this for the subset of SIFs that have the lowin and lowout from one trace and the highin

and highout from the other. All of the security properties examined by McLean have this

property. Furthermore, it is not clear how the events can come from different traces and

still have a useful system.

Given a SIF of type F<xH
 :2L

 >,<yH
 :2L

 > x, y∈{0,1} consider the following property:

∀τ:traces(S)|L⋅⋅ P(Blow(τ,S))

P(B) ≡ ∀t:traces(S)|Z⋅interleave(t,τlow):B

The implication of the above is that only 4 types of security properties can be

achieved using SIF. This is partially true. To achieve others the domain of the interleave

can be restricted. For example, Generalized Noninference is the SIF F<1H
 :2L

 >,<1H
 :2L

 >

restricted to the domain {<>} × T. Also, as mentioned above the definition of SIF is more

general then that considered here. The partitioning can be more complex then the simple

high and low level events. However, all these extensions can be handled in much the same

way as above.

The above result demonstrates that all security properties that SIFs can express

can also be expressed in our framework. We will demonstrate that there are other security

properties that cannot be expressed using SIFs but can be using our framework. The

argument that all “interesting” security properties can be expressed is naïve. First, we will

show that SIFs cannot represent all security properties presented in the literature. What is

considered interesting today may not be interesting the future. A framework should not

place limits on what types of properties can be expressed.

Consider Guttman and Nadal’s Output Non-Deductibility (section 4.4.3, page 36)

reproduced here:

∀τ:traces(S)|L⋅⋅NDO(Blow(τ))

Z x y
∅ 0 0

HO 0 1
HI 1 0
H 1 1

- 75 -

NDO(B) ≡ ∀t:traces(S)⋅t|LI=τlow|LI⇒∃s:B⋅s|(H∪LI)=t|(H∪LI)

Informally, for every pair of valid traces a,p ∈T, if event sequence s ∈ E* satisfies

s|L = a|L
s|(H∪LI) = p|(H∪LI)

then s is a trace.

This property appears that it should be possible to fit into the SIF format since the

final trace s has all low level events from one trace and all high level events from the other.

A problem, however, is that the interleaving is dependent on the position of low level

input events. This type of condition cannot be expressed in SIFs.

Another example of a property that can be expressed in our formalism but cannot

using SIFs is the PSP property presented in section 4.3.1, page 30. Recall that PSP is

similar to Separability but allows high level outputs to be dependent on low level events.

This type of dependency is not expressible using SIFs.

6.3. Comparison of Results

McLean examines three types of composition. Product, cascade and feedback. In

this work we consider product composition a special case of our definition of cascade

composition. McLean’s definition of cascade composition is different than ours. In his

definition of cascade composition all of the output events of the first component and all

input events of the second are involved in the composition. In this definition the only

inputs to the system are the inputs to the first component and the only outputs are the

outputs from the second component. To achieve the type of cascade composition that we

describe, identity components must be introduced by McLean. An identity component

copies its inputs to its outputs. Figure 6.1 demonstrates this type of composition.

McLean calls this type of composition general cascade composition.

- 76 -

I

I
S1

S2

Figure 6.1: General Composition
The two identity components (I) are first composed with S1 and S2 using
product composition. Then cascade composition is used to connect the
composed S1 and S2 components. In this fashion general cascade
composition can be achieved.

McLean’s results on product and cascade composition are, not surprisingly, similar

to our own. The main difference is our assumption of input totality. McLean requires the

a priori knowledge of compatible traces for the composition. Our assumption of input

totality removes this requirement. See section 5.3.1 for further discussion of the input

totality assumption.

Next McLean considers Feedback composition. McLean’s definition of feedback

is more restrictive than ours. McLean defines an interface condition which is essentially

the requirement that both components involved in the feedback agree on the timing of the

events. We feel that this requirement is overly restrictive and requires work by the system

designer to determine if the required condition exists.

6.4. Summary

McLean’s SIFs were a step forward in defining a general framework for the

expression and analysis of security properties. However, they can only be used to analyze

a subset of possible security properties. One of the greatest weakness, however, is that if

the application of the theorem yields that the composition of two components will not

satisfy the desired property, the result yields no information as to why.

- 77 -

7. Implementation Issues

All theory, dear friend, is gray but the golden tree of actual life sprints
evergreen.

Johann Wolfgang von Goethe (1749-1832)
German poet, novelist and playwright.

7.1. Introduction

The previous chapters dealt with the issue of composability. With the tools

provided the system designer can quickly determine if a property is composable. If it is

not composable then he can determine why. What is missing is a procedure or mechanism

for the system designer to determine if a component satisfies a particular property.

The framework we presented in chapter 3 was a trace based formalism for

components. This formalism allows for the easy expression of security properties but

makes the procedure of validating a component more difficult. While some systems may

be specified directly in terms of their possible traces (see [Zwiers & Roever89] or

[McLean92a] for an example), program code and other formal specification approaches

assume a state-transition model and specify individual state transitions [Millen94].

Therefore, it would be helpful if we could transform our trace based approach to security

to a condition on individual states. A theorem stating the equivalence of a trace-based

security condition with a transition-based security condition is called an unwinding

theorem.

To date unwinding theorems have only dealt with specific trace based security

specifications [Goguen & Meseguer84] [McCullough90] [Bevier & Young94] [Millen94].

No general approach to constructing an unwinding theorem has been presented. In this

chapter we will present an approach to construct an unwinding theorem for a class of

security properties.

- 78 -

7.2. Event System Acceptors

In this work we have not relied on any model of computation to generate or

recognize the traces of an event system. Thus our composition theorems can be applied to

any model of computation. In presenting an unwinding theorem we need to fix the model

of computation. All unwinding theorems in the literature have used some form of state

machine. The differences between the various models are whether the machines are non-

deterministic and whether they must have a finite number of states. A state machine with

an infinite number of states may be of theoretical interest but analyzing such a machine is

often impractical. Therefore, we have chosen to use non-deterministic finite state

automata (NFA) for our model of computation. Using NFAs as the model of computation

does limit the class of machines that can be analyzed but we believe that the usefulness of

having an understanding of unwinding theorems out weighs any limitation. The analysis of

more general models might be possible.

Millen [Millen94] has shown the equivalence of an infinite state machine and an

event system as defined in chapter 3. We will also show this equivalence and as corollary

how a NFA can be used to represent event systems. The main difference between our

construction of the state machine and Millen’s is that Millen’s machines may require an

infinite number of states even though our construction may not. Our construction will

never require more states than Millen’s. The difference in number of states is a result of

Millen’s desire to prove the existence of the state machine rather than finding a compact

representation.

A NFA defines a language over its symbols. We will interpret this language as the

set of traces of a system. To be able to use NFAs as a model of computation we must

demonstrate their equivalence to a class of event systems.

We begin by showing how to construct a possibly infinite state machine for a given

event system. Given an event system S={E,I,O,T} consider the following equivalence

relation (see Appendix B for a proof that it is an equivalence relation) on the set of traces

T.

s∈T, t∈T s≡t iff ∀r:E*⋅ ŝ r∈T⇔ t ̂r∈T (7.1)

- 79 -

The above relation partitions the set T into equivalence classes such that two traces

are in the same class if and only if they share the same possible futures. These equivalence

classes correspond to the states of the event system. An informal argument for this is as

follows: Assume the execution of all the traces of an equivalence class arrive at m

different states such that all possible futures are the same. Since all m states have the same

possible futures they are indistinguishable and can be considered one state [Wood87,

pg128]. The above relation will result in a finite number of equivalence classes if T is

finite. If T is infinite then the number of equivalence classes may be infinite. The number of

equivalence classes is finite for the class of machines in which we are interested12.

The events of an event system are partitioned into two classes. These are the high

level events and the low level events. Security policy typically requires that low level

users can see only low level events, while high level users can see all events. This

classification can be applied to the set Σ of the NFA. When such a classification is used

we can also define the views of each user level.

A user’s view of the system is that portion of the system state that could

potentially influence his activities [Bevier & Young94]. The unwinding technique

presented below constructs the view of the low level user and the unwinding conditions

give the conditions on how high level activity can influence the low level view. An

unwinding theorem can be thought of as giving conditions on how high level users can

influence a low level user’s view.

The following definitions will be central to our presentation of a a state machine

that can be used to represent certain classes of event systems.

The projection operator is used to determine the possible low level futures from a

state. There are two versions of this operator. The one in Definition 7.1 will be used in

those properties where high level outputs can be inserted to ensure that a correction for a

perturbation exists (see section 7.3). The version given in Definition 7.2 will be use for

those properties were high level outputs cannot be inserted to ensure a correction exists.

12 The existence of event systems that require an infinite number of states follows immediatly from

the existstance of languages that can not be recognized by a NFA.

- 80 -

An algorithmic approach to determining the projection of an NFA can be found in

[Ginzburg68].

Definition 7.1: Projection Operator.

The projection of a state13, q, where high level outputs do not affect the

projection written π(q) is the set of possible low level futures from q :

π(q) = { t | s∈q ∧ s^t∈T ∧ t|HI=<>}|L

Definition 7.2: Projection Operator II.

The projection of a state, q, written π’(q) is the set of possible low level

futures from q:

π’(q) = { t | s∈q ∧ s^t∈T ∧ t|H=<>}|L

Definition 7.3: The After Operator.

The after operator returns the tail of a trace after the execution of its

prefix. Formally, If r⊆E* is a set of event sequences and σ∈E*

r/σ = { p | σ^p∈r }

Definition 7.4: λ Events

λ is an event with the following behaviour:

r/λ = r For all r.

The following definition describes the equivalence between event systems and an

non-deterministic infinite state automata. For the purposes of this work we will only

consider state machines that have a finite number of states.

Definition 7.5: Event System Acceptor.

An event system acceptor for an event system S={E,I,O,T} is a quintuple

M={Q,Σ,δ,s,F} where:

Q is an alphabet of the state symbols. Each state will correspond to a different

equivalence class generated by relation 7.1.

13 By state we mean an equivalence class. This is formalized in Definition 7.5.

- 81 -

Σ is an alphabet of symbols for the NFA. This corresponds to the set of events

E. Therefore, for each member of Σ there is a corresponding unique member

of E.

δ⊆Q×(Σ∪λ)×Q is a transition relation such that (q,e,q’) if and only if π(q)/e = π(q’).

The transitions are called moves of the state machine.

s in Q is the start state

F⊆Q is the set of final states.

In this work the set of final states F will be equal to the set of states Q. This

implies that the set of traces is prefix closed. The prefix-closedness is consistent with the

intuitive interpretation of an event sequence as a temporal ordering of events [Lee et al.

92]. The implication of this is that there are no inseparable events. That is, there is never

a state where the system must wait exclusively for a particular event to occur. The

assumption of prefix-closure simplifies the presentation of the results. The extension to a

non prefix-closed set of traces is straightforward.

Theorem 7.1 If M is the event system acceptor for S, M accepts σ iff σ∈Τ.

Proof:

⇒ M accepts σ if σ∈T

We will prove this by induction on the length of sequences produced by the state machine.

Base Case:

The zero length sequence corresponds to the empty trace. The empty trace is a

trace of all event systems.

Induction Hypothesis:

A sequence σ of length n is a trace of S.

Induction Step:

Consider a sequence σe where σ is a sequence of n symbols and e is a possible

event after σ. Since σ is a trace of S the relation 7.1 above places σ in an equivalence

class. The event e is possible iff there is a trace σ' such that σe≡σ'.

Therefore, by induction if M accepts σ then σ∈T

- 82 -

⇐ if σ∈T then M accepts σ

The proof is similar to the above and follows from the construction of M.q

7.3. Security Properties

The definition of a security property given in Chapter 4 imposes few restrictions on

the form of a property. This lack of structure makes providing a general transformation

routine from security property to unwinding theorem difficult. In this work we will

provide a set of rules that can be used to transform a class of security properties into

unwinding conditions.

To simplify the presentation of the results we will split the unwinding theorems

into three classes. The first class we will consider are those expressible in the N-Forward

Correctable Hierarchy and Generalized Noninterference. We will define N-Forward

Correctability below. We will then show how the unwinding theorem for N-Forward

Correctability can be applied to PSP. Finally, we will demonstrate that a special case of

the unwinding theorem can be used to handle Noninference and Generalized

Noninference. The unshaded area of Figure 7.1 shows the classes of security properties

we will provide unwinding theorems for.

- 83 -

PSP

∞

0

Generalized
Noninference

Separability

GNI

All Systems

Restrictiveness
n-Forward Correctability

Figure 7.1: The Class of Properties Our Unwinding Theorems Cover.
The unshaded area shows the classes of security properties that our
unwinding theorems can handle.

It may seem strange that Separability is not included in these theorems. Our

unwinding theorems will be expressed in terms of states that are reachable from any given

state. Separability requires all high level traces to be possible with all low level traces.

This is an expression over the whole state machine and cannot be expressed in terms of

reachable states from a state.

7.4. Unwinding Theorems

Ideally, an unwinding theorem has two properties:

1) The required conditions are an expression between a state and those one move away.

2) The system satisfies the desired property if and only if the unwinding condition is true

for all states.

 It is not always possible for the unwinding theorem condition to be expressed

between adjacent states. For example, the unwinding theorem given by Goguen and

Meseguer for non-interference can be expressed between a state and all adjacent states.

Millen’s unwinding theorem for 1-Forward Correctability, cannot be so expressed. We

will not restrict ourselves to those unwinding theorems that are expressible between

- 84 -

adjacent states. We will, however, only want unwinding theorems such that if the

conditions are true on all states the system does satisfy the property and conversely. This

will ensure our unwinding theorems are sound and complete.

7.5. Unwinding Theorem for GNI and N-Forward Correctability

In this section we will provide an unwinding theorem for Generalized

Noninterference and N-Forward Correctability. Before we present the unwinding

conditions we will define these properties in terms that will simplify the proofs of the

theorems. The following definitions are due to Millen [Millen94].

Definition 7.6: Simple Perturbation.

δ is a simple perturbation of τ before γ if there exists a high level input

event x such that for some β:
1. τ=βγ and δ=βxγ (x is inserted into α before γ)

2. τ=βxγ and δ=βγ (x is deleted from α before γ)

Definition 7.7: Correction.

τ’ is a correction of δ in γ if δ=φγ and τ’=φγ’ such that

γ|(L∪HI)=γ’|(L∪HI).

Thus, a correction in γ is a modification of high level non-inputs in γ. We are now

ready to define N-Forward Correctability in the above terms.

Definition 7.8: N-Forward Correctability.

An event system, S=<E,I,O,T> is N-Forward Correctable if for all traces

τ∈T and for all α∈LIn, if δ is a simple perturbation of τ before either γ or

αγ, and γ|HI=<> (γ contains no high level input events), then there exists

a correction τ’ of δ in γ such that τ’∈T.

We note that ∞-Forward Correctability is Restrictiveness and 0-Forward

Correctability is forward correctable Generalized Noninterference. We will now prove (in

Theorem 7.3) that the non-forward correctable GNI is equivalent to the forward

correctable version in deterministic systems. That is, a correction can only occur before a

perturbation in a non-deterministic system. Furthermore, we will demonstrate how to

- 85 -

transform the NFA into one such that the forward correctable definition of the security

property can be applied.

7.5.1. Forward Correctable versus Non-Forward Correctable GNI

The non-forward correctable version is more difficult to handle than the forward

correctable one. For the forward correctable one only the possible futures need to be

considered. If the system designer is evaluating state q then only the states reachable from

q need to be considered since a correction to a perturbation can only affect future events.

In a non-forward correctable system a change to a trace may change the path through the

state machine. Therefore, if one is considering state q a change in the path from the start

state may result in the system being in a state q’, q≠q’. The following theorem proves

that we can always transform the state machine into one which causal techniques apply.

Theorem 7.2:Given a NFA, M, by
1. replacing all high level output transitions with λ transitions,
2. transforming the NFA to remove λ transitions
3. transforming the NFA to eliminate non-determinism
will result in a deterministic finite automata (DFA), M’, such that the
causal version GNI may be used to evaluate the system.

Proof:

In M replace high level output transitions with λ transitions and eliminate the λ

transitions and the non-determinism. Call this new DFA M’. The transformation can be

accomplished and does not change the language of M [Wood87 pg. 118]. We must prove

that if M’ satisfies the causal version of the property then M satisfied the non-causal

version.

Let τ be a trace that will place the system in state q∈Q (of M) such that for a

simple perturbation after τ a correction would modify events in τ. After the modification

of the events in τ M will be in a state q’. By definition only High Level Output events may

be changed. Consider the effects on the states q and q’ by replacing in M all High Level

Output transitions with λ transitions. The projections from the two states must be equal

by definition. If q=q’ then we are done since eliminating non-determinism will not affect

this equality. If q and q’ are different then there exists a non-deterministic choice that

causes the path through the state machine to diverge. If this were not the case then the

- 86 -

execution of τ (after replacing the High Level Output transitions with λ transitions) would

be in state q. Transforming the NFA to a DFA will result in the non-determinism being

removed. Since there is no longer any non-determinism the execution of τ (after replacing

High Level Output transitions with λ transitions) will place the system in state q=q’ and

only future events from q need be considered. q

Theorem 7.2 demonstrates that a non-causal property can be transformed into a

causal one by eliminating λ transitions and transforming the NFA to a DFA. If the

property is causal then the elimination of the λ transitions could be done. It is not

required since the calculation of the projection from a state will implicitly remove them.

However, the transformation from a NFA to a DFA must not be done. In a causal system

the nature of the non-determinism is important. This will be demonstrated below. If the

non-determinism is eliminated then the property is transformed into its non-causal

equivalent.

7.5.2. Unwinding Theorems

Theorem 7.3:If M is the event system acceptor for the event system S, S is N-Forward

Correctable if and only if

∀x:HI⋅∀α:LI n⋅∀q:Q

π(q)=π(q/x) and π(q/y)=π(q/x/α)

Proof:

There are four parts to this proof corresponding to the two directions of the implication

and either the two state equivalencies above, or whether or not the low inputs are present

before γ in the definition of N-Forward Correctability.

Suppose S is N-Forward Correctable. Assume x∈HI and q∈Q. We will show that

π(q)=π(q/x) in two steps. First we will show that π(q/x)⊆π(q). Let γ∈{ t | s∈(q/x) ∧

s^t∈T ∧ t|HI=<> }. By definitions there exists a σ such that σxγ∈T. So σγ is a simple

perturbation of σxγ before γ. Also γ has no high level input events. By N-Forward

Correctability there exists a γ’ such that σγ’∈T and γ’|L∪HI=γ|L∪HI. Therefore

π(q/x)⊆π(q). The proof that π(q)⊆π(q/x) are identical to this one since inserting an event

- 87 -

is also a simple perturbation. The proof that π(q/y)=π(q/x/α) is the same as above. The

same proof methods are used.

Assume π(q)=π(q/x) and π(q/y)=π(q/x/α). Consider a trace τ∈T such that βxγ∈T

where γ∈π(q/x), by definition γ|HI=<>. From the equivalence π(q)=π(q/x) and

π(q/y)=π(q/x/α) there exists a γ’∈π(q) such that βγ’∈T. Therefore, βγ which is the

simple perturbation of βxγ has a correction βγ’. Similarly we can construct corrections

for βxγ a simple perturbation of βγ, βαγ a simple perturbation of βxαγ and βxαγ a simple

perturbation of βαγ. Therefore the state machine satisfies N-Forward Correctability.q

We will demonstrate how to apply the above unwinding theorem with an example.

Figure 7.2 illustrates the system under consideration. The usefulness or the function of this

system in unimportant. We will demonstrate that the state machine is Generalized

Noninterference secure but is not 0-Forward Correctability secure.

HI,
HO

HI,
HO

HI,
HO

HI,
HO

HI,
HO

L

L

L1

L1L2
L2

HI
1

0

2

3 4

5

Figure 7.2: A State Machine Used to Demonstrate the Unwinding Theorem.

Since we want to determine if it satisfies both forward correctable and non-

forward correctable GNI we must transform the state machine such that the forward

correctable version is applicable. Figure 7.3(a) shows the results of replacing the high

level output transitions with λ transitions. Figure 7.3(b) shows the transformation to

remove the λ transitions and Figure 7.3(c) removes the non-determinism.

- 88 -

HI, λ

HI, λ

L

L

L1

L1L2
L2

HI
HI, λ

HI, λ

HI, λ
HI

HI

L

L

L1,
L2

L1L2

HI
HI

HI

HI

L1, L2

L

(a) (b)

⇒

HI

HI

L

L

L1,
L2

L1, LsL1,L2

HI
HI

HI

HI

L1, L2

(c)

⇒

Figure 7.3: Transforming a State Machine.
The state machine is transformed so that forward correctable GNI can be
applied to it. Part (a) shows the replacing of high level output transitions
with λ transitions. (b) shows the elimination of the λ transitions and (c)
shows the elimination of non-determinism.

After the high level output transitions have been replaced with λ transitions the

high level input transitions should be removed from the state machine. The state machine

at this point will only have states with low level event transitions. Now the projections

from each state must be calculated. The projection indicates the possible futures that the

low level user in that state. Figure 7.4(a) and Figure 7.4(b) show this transformation

given causal and non-causal GNI respectively.

- 89 -

L

L

L1,
L2

L1 L1, L2

L1, L2

L

(a)

0

1 2

3 4

5

L

L

L1,
L2

L1, L2L2

L1, L2

(b)

0

1 2

3 4

5

Figure 7.4: State Machines to be used to Calculate Projections.
Figure (a) is the state machine for forward correctable GNI and (b) is the
state machine to be used for non-forward correctable GNI.

We will now calculate the projections from each state. For the state machine in

part (a) of Figure 7.4 (Note: ‘+’ means OR):

π(q0) = [L(L1 + L2)
]

π(q1) = null + L(L1 + L2)
*

π(q2) = null + (L1 + L2) [L(L 1 + L2)
]

π(q3) = null + (L1 + L2) [L(L 1 + L2)
]

π(q4) = null + L1[L(L 1 + L2)
]

π(q5) = null + L2[L(L 1 + L2)
]

For the state machine in part (b) of Figure 7.4:

π(q0) = [L(L1 + L2)
]

π(q1) = null + L(L1 + L2)
*

π(q2) = null + (L1 + L2) [L(L 1 + L2)
]

π(q3) = null + (L1 + L2) [L(L 1 + L2)
]

π(q4) = null + (L1 + L2) [L(L 1 + L2)
]

π(q5) = null + (L1 + L2) [L(L 1 + L2)
]

We are ready to apply the unwinding conditions to see if the state machines satisfy

GNI. For the first state machine notice that π(q3) = null + (L1 + L2) [L(L 1 + L2)
] ≠

π(q3/HI) = π(q5) = null + L2[L(L 1 + L2)
]. Therefore this system does not satisfy GNI.

Another way of seeing this is to consider the trace <L,L2> and the perturbation

<L,HI,L2>. This perturbation does not have a causal correction. This can be seen by

examining state 5 of Figure 7.2. There is no L2 transition from this state and all high level

events do not change the state of the system.

- 90 -

Now we will examine the state machine in part (b) of Figure 7.4:

π(q0) = [L(L1 + L2)
] = π(q0/HI) = π(q1)

π(q1) = π(q1/HI) = π(q1)
π(q2) = null + (L1 + L2) [L(L 1 + L2)

] = π(q2/HI) = π(q4)
π(q3) = null + (L1 + L2) [L(L 1 + L2)

] = π(q3/HI) = π(q5)
π(q4) = π(q4/HI) = π(q4)
π(q5) = π(q5/HI) = π(q5)

Therefore the state machine in part (b) of Figure 7.4 satisfies Forward Correctable

Generalized Noninterference. But, we have transformed the state machine and hence the

original state machine satisfies Generalized Noninterference. The trace the gives Forward

Correctable Generalized Noninterference problems, namely <L,L2>, and the perturbation

<L,HI,L2> has a correction <HO,L,HI,L2>.

7.6. Unwinding Theorem for PSP

The unwinding theorem for PSP is similar to the one for N-Forward Correctability.

The difference being that in PSP high level outputs cannot be freely inserted to ensure a

correction exists. Therefore the unwinding theorem for PSP is

Theorem 7.4:If M is the event system acceptor for the event system S, S satisfies PSP if

and only if ∀x:H⋅∀q:Q⋅π’ (q)=π’ (q/x)

Proof:

This follows immediately from the definition of PSP. PSP is defined by saying that a

possible high level event can be inserted or not at any point in the trace and the low level

events must stay the same. This is exactly what is happening here. In any state of the

system, performing a possible high level event must not change the low level users view.q

The unwinding theorem for PSP is simpler than that for the other class of security

properties. This should not be a surprise since it is also more restrictive then the other

class of properties. The unwinding condition is simple enough that an automated tool can

easily take a description of the state machine under consideration and quickly determine if

it satisfies PSP.

- 91 -

7.7. Unwinding Theorem for Generalized Noninterference.

The properties considered above ensure that any high level that occurs will not

affect the low level users view of the system. Generalized Noninterference requires that

for any trace the trace without any high level input events be a trace of the system. The

unwinding theorem for Generalized Noninterference is similar to the one for N-Forward

Correctability. The difference can be illustrated as follows: If a low level user is in a state

of the state machine he sees a projection π1. If no high level input events occur then all

traces in π1 are possible. Consider a high level input occurring and the system moving to a

new state with projection π2. The property indicates that removing this event must not

decrease the possible futures, therefore, π2⊆π1. If this is not true then a possible trace

after the occurrence of the high level event is not possible if it does not occur. The

projections do not have to be equal (i.e. π2=π1) since the property merely requires the

removing of high level inputs to result in valid traces. Therefore, the unwinding theorem

for properties like Generalized Noninference is:

∀x:HI⋅∀q:Q⋅π(q)⊆π(q/x)

The proof that this is the unwinding theorem for Generalized Noninference is

identical to the proof above except the proof of π(q/x)⊆π(q) must be removed.

As a special case of the unwinding theorem for Generalized Noninference we can

give an unwinding theorem for Noninference. The difference between the unwinding

theorem for Noninference and Generalized Noninference is that high level outputs can not

be freely inserted to ensure a trace exists. Therefore we must use the second version of

the projection operator. The unwinding theorem becomes: ∀x:H⋅∀q:Q⋅π’(q)⊆π’(q/x)

7.8. Conclusions

In this chapter we have presented a technique to construct an unwinding theorem

for a class of security properties. This result and the composition theorems give the

system designer all the tools to construct secure systems.

- 92 -

8. Summary and Conclusions

Nothing is worth doing unless the consequences may be serious
George Bernard Shaw (1865-1950)

Anglo-Irish Playwright, critic.

8.1. Summary

In this work we have presented and examined a framework for expressing and

analyzing security properties. The use of this framework will allow the system designer to

reason about security properties both abstractly and in the design of systems.

Furthermore, it provides a means to ensure that the system begin designed enforces the

desired security property.

We began by examining how low level users can infer possibilistic information

from high level activity. We then defined a property that has no possibilistic information

flows and is the weakest such property. Examining this property led us to the definition of

a security property. A security property enforces the existence of certain high level traces

for every possible low level observation.

We then examined the composition of security properties. We began our

examination of secure composition with cascade composition. We demonstrate how to

determine the effects of interconnecting two components with known properties. We next

turned to determining under what conditions a property may emerge under composition.

We demonstrated that if a property satisfies a stability requirement then it may only

emerge in a very specific fashion. Finally, we turned to composition in the presence of

feedback. Our investigation of feedback began by considering what structures of the

system caused feedback to fail. We discovered that it was when the system graph had a

two cycle. We then presented necessary and sufficient conditions for the feedback

composition to succeed.

- 93 -

That last thing we presented was an unwinding theorem. The unwinding theorem

can be used to determine if a component expressed as a non-deterministic finite automata

satisfies a property.

8.2. Conclusions

The ability to construct large complex systems from smaller independently

designed and verified components is a requisite in building affordable secure systems. In

this work we have presented the foundations required to build such systems. Even though

our results have been applied directly to the design and analysis of secure computer

systems we conjecture that what we call a property can be broadly extended beyond

security to many other system features. Several such areas are fault tolerance, availability

and data integrity. It may be possible in the future to incorporate some of these ideas into

the software engineering area.

8.3. Future Work

The previous sections have summarized the results of this thesis. However, as in

every research effort, the results have indicated a number of areas where further work

could lead to other important conclusions. Some of these areas include:

• Developing a software-base tool that will take a state based definition of a system and

a property and determine if the system satisfies the property. Such a tool could also be

used to construct systems with a known property from individual components.

• Work must be done on developing a secure refinement theorem. System designers

must know at each step of the design process if the system satisfies the desired secure

property. Waiting until the design is done to verify the system might result in a large

redesign effort if the desired security property is not satisfied.

• It would be interesting to examine what other types of properties can be handled by

our approach. In this work a security property was defined as a predicate over a

bunch of traces that look the same to the low level user. A fault tolerant property

might be defined as a predicate over a bunch of traces with the same external visible

behaviour.

- 94 -

Appendix A - Proof of Stability for Various Security

Properties

In this Appendix we will demonstrate that the stability requirement is satisfied by

most of the security properties presented in the literature. Recall the definition of a stable

property:

Definition 5.3: Stable Property.

A property P will be called stable if and only if for all systems S,

∀α:power_set(E)⋅P(S)⇒P(S\α).

Separability

In a Separability secure system all interleavings of high level traces and low level

traces are present. Removing an event, be it high level or low level, might reduce the

number of traces but all interleavings are still possible.

PSP, GNI and N-Forward Correctability

All of these properties are very similar and hence a similar argument demonstrates

that they are stable properties. Consider a system, S, that satisfies one of the above

properties. Removing a low level event from S will result in a system that still satisfies the

property since all perturbations of low level traces still have a correction but there are

fewer low level traces to consider. Removing a high level input event is not a problem

because this can be viewed as a perturbation to the traces S . We will now examine

removing a high level output event from S. We will argue that this results in a system that

still satisfies the property. Consider a trace τ of S such that a perturbation σ requires some

particular high level output event to have a correction τ’. The trace τ’ with the high level

outputs removed is a trace of the new system and is a correction to the σ perturbation.

Therefore all of the properties are stable.

Noninference and Generalized Noninference

Removing low level events and high level input events from a system that satisfies

either of these properties will result in a system that still satisfies the property. Also

removing high level outputs for a Noninference secure system is acceptable since the

- 95 -

property requires the trace with no high level events to be trace of the original system. By

the same argument as that given for the PSP, GNI and N-Forward Correctability class of

property Generalized Noninference is a stable property.

- 96 -

Appendix B - Proof that ≡≡ is an equivalence relation

In this appendix we prove that the following expression is an equivalence relation

on the set of traces, T, of an event system:

s∈T, t∈T s≡t iff ∀r:E*⋅s^r∈τ⇔t^r∈τ (1)

Reflexive

Let s be an element of T. We must show s≡s.

Assume ¬s≡s

= ¬∀r:E*⋅s^r∈T⇔s ∈̂T

= ∃r:E*⋅¬(s^r∈T⇔s ∈̂T)

= ⊥

Symmetric

Let s∈T and t∈T. We must show s≡t ⇒ t≡s

s≡t

= ∀r:E*⋅s^r∈T⇔t^∈T

= ∀r:E*⋅t^r∈T⇔s ∈̂T

= t≡s

Transitive

Let s,t,u∈T we must show s≡t∧t≡u⇒s≡u

s≡t∧t≡u

= ∀r:E*⋅s^r∈T⇔t^∈T ∧ ∀r:E*⋅t^r∈T⇔u^∈T

= ∀r:E*⋅s^r∈T⇔t^∈T ∧ t^r∈T⇔u^∈T

= ∀r:E*⋅s^r∈T⇔u^∈T

= s≡u

Therefore, the relation defined in (1) is an equivalence relation and partitions the

set of traces of an event system into equivalence classes.

- 97 -

List of References

[Abadi & Lamport90] Martin Abadi and Leslie Lamport. “Composing
Specifications,” Technical Report 66, Digital Equipment
Corporation Systems Research Center, Palo Alto, CA, 1990.

[Allen91] P.G. Allen. “A Comparison of Non-Interference and Non-
Deducibility using CSP,” Proceedings of the Computer
Security Foundations Workshop IV, pages 43-54. IEEE
Press. June 1991.

[Alpern & Schneider85] Bowen Alpern and Fred Schneider. “Defining Liveness,”
Informatin Processing Letters, 21(4), pages 181-185.
October 1985.

[Bell & LaPadula75] D. Elliott Bell and Leonard J. LaPadula. “Secure Computer
Systems: Mathematical Foundations,” Technical Report TR-
2547, MITRE Corporation, Bedford, MA, 1975]

[Bevier & Young94] William R. Bevier and William D. Young. “A State-Based
Approach to Noninterference,” Proceedings of the
Computer Security Foundations Workshop VII, pages 11-21.
IEEE Computer Society, June 1994.

[Brzozowski64] J. A. Brzozowski. “Derivatives of Regular Expressions,”
Journal of the ACM, Vol. 11, No. 4, pages 481-494.
October 1964.

[Cover91] Thomas M. Cover and Joy A. Thomas. “Elements of
Information Theory.” John Wiely & Sons, Inc. Toronto,
1991.

[CTCPEC90] Canadian System Security Centre. “The Canadian Trusted
Computer Product Evaluation Criteria Version 2.0,” Ottawa,
December 1990.

[CTCPEC92] Canadian System Security Centre. “The Canadian Trusted
Computer Product Evaluation Criteria Version 3.0e,”
Ottawa, April 1992.

[Cuppens & Cuppens94] N. Boulahia-Cuppens and F. Cuppens. “Asynchronous
composition and required security conditions,” Proceedings
of the 1994 IEEE Computer Security Symposium on
Research and Privacy, pages 68-78. IEEE Press. 1994.

- 98 -

[Denning76] Dorothy E. Denning. “A Lattice Model of Secure
Information Flow,” Communications of the ACM, pages
236-242. May 1976, Volume 19, Number 5.

[Foley87] Simon N. Foley. “A Universal Theory of Information Flow,”
Proceding of the 1987 IEEE Symposium on Research in
Security and Privacy, pages 116-121. IEEE Press. 1994.

[Garcia89] Alberto Leon-Garcia. “Probability and Random Processes
for Electrical Engineering.” Addison-Wesley Publishing
Company, New York, 1989.

[Ginzburg68] A. Ginzburg. “Algebraic Theory of Automata,” Academic
Press, 1968.

[Goguen & Meseguer82] Joseph A. Goguen and José Meseguer. “Security Policies
and Security Models,” Proceedings of the 1982 IEEE
Symposium on Research in Security and Privacy, pages 11-
20. IEEE Press. April 1982.

[Goguen & Meseguer84] Joseph A. Goguen and José Meseguer. “Unwinding and
Inference Control,” Proceedings of the Symposium on
Security and Privacy, pages 75-86. IEEE Computer
Society, May 1984.

[Gray90] James W. Gray III. “Probabilistic Interference,”
Proceedings of the 1990 IEEE Symposium on Research in
Security and Privacy. IEEE Press. May 1990.

[Gray92] James W. Gray III. “Mathematical Foundations for
Information Flow Security,” The Journal of Computer
Science, Volume 1, Number 3,4. 1992.

[Guttman & Nadel88] J. D. Guttman and M. E. Nadal. “What Needs Securing?”,
Proceedings of the Computer Security Foundations
Workshop, IEEE Computer Society, June 1988, pages 34-
57. June 12-15 1988.

[Hemenway & Gambel91] Judith Hemenway and Dan Gambel. “Issues in the
Specification of Composite Trustworthy Systems,”
Grumman Data Systems.

[Hinton96] Heather M. Hinton. “Properties and Meta-Properties of
Secure Composable Systems,” Ph.D. dissertation,
University of Toronto, Toronto, Ontario. 1996.

- 99 -

[Hoare85] C. A. R. Hoare. “Communicating Sequential Process.”
London: Prentice-Hall International, UK, LTD., 1985.

[Jacob88] J. Jacob. “Security Specifications,” Proceedings of the 1988
IEEE Symposium on Research in Security and Privacy,
pages 14-23. IEEE Press. May 1988.

[Johnson & Thayer88] Dale M. Johnson and F. Javier Thayer. “Security and the
Composition of Machines,” Proceedings of the Security
Foundations Workshop, Franconia, NH, pages 72-89. June
1988.

[Lee et al. 92] E.S. Lee, P.I.P. Boulton, B.W. Thomson, and R.E. Soper.
“Composable Trusted Systems,” Technical Report 272,
Computer Systems Research Institute, University of
Toronto, Toronto, Ontario. May 1992.

[Marcus88] Leo Marcus and Timothy Redmond. “A model-theoretic
approach to specifying, verifying, and hooking up security
policies,” Proceedings of the 1988 IEEE Symposium on
Research in Security and Privacy, pages 127-138. IEEE
Press. May 1988.

[Mazurkiewicz] Antoni Mazurkiewicz. “Trace Theory,” Lecture Notes in
Computer Science, Vol. 255, pages 279-324. Springer-
Verlag.

[McCullough87] Daryl McCullough. “Specifications for Multi-Level Security
and a Hook-Up Property,” Proceedings of the 1987 IEEE
Symposium on Research in Security and Privacy. IEEE
Press, May 1987.

[McCullough88] Daryl McCullough. “Noninterference and the Composability
of Security Properties,” Proceedings of the 1988 IEEE
Symposium on Research in Security and Privacy, pages 177-
186. IEEE Press, May 1988.

[McCullough90] Daryl McCullough. “A Hookup Theorem for Multilevel
Security,” IEEE Transactions on Software Engineering,
Vol. 16, No. 6, pages 563-568. IEEE Press, June 1990.

[McLean87] John McLean. “Reasoning about Security Models,”
Proceedings of the 1987 Symposium on Research in
Security and Privacy, pages 123-131. IEEE Press. April
1987.

- 100 -

[McLean88] John McLean. “The Algebra of Security,” Proceedings of
the 1988 IEEE Symposium on Research in Security and
Privacy. IEEE Press. 1988.

[McLean90] John McLean. “Security Models and Information Flow,”
Proceedings of the 1990 IEEE Symposium on Research in
Security and Privacy, pages 177-186. IEEE Press. May
1990.

[McLean92a] John McLean. “Proving Noninterference and Functional
Correctness Using Traces,” Journal of Computer Security,
Vol. 1, No. 1, pages 37-58. IOS Press 1992.

[McLean92b] John McLean. “Models of Confidentiality: Past, Present,
and Future,” Proceedings of the Computer Security
Foundations Workshop VI. IEEE Press. June 1993.

[McLean94] John McLean. “A General Theory of Composition for Trace
Sets Closed Under Selective Interleaving Functions,”
Proceedings of the 1994 IEEE Symposium on Security and
Privacy, pages 79-93. IEEE Press. May 1994.

[Millen90] Jonathan Millen. “Hookup Security for Synchronous
Machines,” Proceedings of the Computer Security
Foundations Workshop III. IEEE Press. June 1990.

[Millen94] Jonathan K. Millen. “Unwinding Forward Correctability,”
Proceedings of the Computer Security Foundations
Workshop VII, pages 2-10. IEEE Computer Society, June
1994.

[Milner80] R. Milner. “A Calculus of Communicating Systems,”
Lecture Notes in Computer Science 92, Springer Verlag,
1980.

[Moore90] Andrew P. Moore. “The Specification and Verified
Decomposition of System Requirements Using CSP,” IEEE
Transactions on Software Engineering, pages 932-948.
September 1990, Volume 16, Number 9.

[Moore90] Andrew P. Moore. “The Specification and Verified
Decomposition of System Requirements Using CSP,” IEEE
Transactions on Software Engineering, Volume 16, Number
9. September 1990.

- 101 -

[Murata89] Tadao Murata. “Petri Nets: Properties, Analysis and
Applications,” Proceedings of the IEEE, pages 541-580.
April 1989, Volume 77, Number 4.

[Nestor93] John Paul Nestor and E. Stewart Lee. “The Composition of
Property-Preserving Event Systems,” Technical Report
CSRI-290, Computer Systems Research Institute, University
of Toronto, Toronto, Ontario. November 1993.

[O’Halloran90] Colin O’Halloran. “A Calculus of Information Flow,”
Proceedings of the European Symposium on Research in
Computer Security. Toulouse, France. 1990.

[Peterson81] J. L. Peterson. “Petri net theory and the modeling of
systems,” Prentice-Hall, 1981.

[Rushby91] John Rushby. “Composing Trustworthy Systems. A
Position Paper,” SRI International. 1991.

[Sutherland86] David Sutherland. “A Model of Information,” Proceedings
of the 9th National Computer Security Conference, pages
175-183. 1986.

[TCSEC85] National Computer Security Center. “Department of
Defense Trusted Computer Security Evaluation Criteria,”
DOD 5200.28-STD, December 1985.

[Thomson88] B. Thomson, E.S. Lee, P.I.P. Boulton, M. Stumm and D.M.
Lewis. “A trusted Network Architecture.” Technical Report
CSRI-228, Computer Systems Research Institute, University
of Toronto, Toronto, Ontario. October 1988.

[Varadharajan90] Vijay Varadharajan. “Petri Net Based Modeling of
Information Flow Security Requirements,” Proceedings of
the Computer Security Foundations Workshop III, pages 51-
60. IEEE Press. June 1990.

[Winskel] Glynn Winskel. “Event Structures,: Lecture Notes in
Computer Science 255.

[Wittbold & Johnson90] J. Todd Wittbold and Dale Johnson. “Information Flow in
Nondeterministic Systems,” Proceedings of the 1990 IEEE
Symposium on Research in Security and Privacy. IEEE
Press. May 1990.

- 102 -

[Wood87] Derick Wood. “Theory of Computation,” New York:
Harper & Row, Publishers, Inc., 1987.

[Zakinthinos & Lee] A. Zakinthinos and E. S. Lee. “The Composability of Non-
Interference,” To Appear in the Journal of Computer
Security. IOS Press.

[Zakinthinos & Lee95] A. Zakinthinos and E. S. Lee. “The Composability of Non-
Interference,” Proceedings of the Computer Security
Foundations Workshop VIII. IEEE Press. June 1995.

[Zakinthinos & Lee96] A. Zakinthinos and E. S. Lee. “How and Why Feedback
Composition Fails,” Proceedings of the Computer Security
Foundations Workshop IX. IEEE Press. June 1996.

[Zwiers & Roever89] Job Zwiers and Willem-P. de Roever. “Compositionality and
Modularity in Process Specification and Design: A Trace-
State Based Approach,” Lecture Notes in Computer
Science, Vol. 398, Temporal Logic in Specification, pages
351-374. Springer-Verlag, 1989.

