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Abstract

The principal aim of this paper is to give an analysis
of some recent combinatorial theories of computer se-
curity from the perspective of information theory. The
theories analyzed are information-flow theories based
on the concept of nondeducibility. They are intended
to be applicable to nondeterministic systems that may
be networked.

1 Introduction

In our view Shannon’s information theory offers the
best way to approach the foundations of computer se-
curity. Fundamentally, security should be concerned
with the control of the transmission of information be-
tween users or more precisely user processes, in par-
ticular, the prevention of information transmission be-
tween processes that, as a matter of policy, are not
supposed to communicate. Ideally a completely se-
cure computer system should have no covert channels,
though in practice it is virtually impossible to elimi-
nate all covert channels. The paper gives an analysis
of certain recent combinatorial theories of computer
security essentially from an information-theoretic per-
spective. The combinatorial theories considered are
based on information flow and are intended primarily
for nondeterministic systems. The theories are founded
on the concept of nondeducibility and are largely aimed
at dealing with the problems of securely hooking up or
networking components to build larger systems. Re-
cent combinatorial theories of information flow for non-
deterministic systems have provided a variety of im-
portant insights into the problems of computer secu-
rity, especially because of their intended applicability
to networked and distributed systems. Yet in our view
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they do not deal with certain security problems in a
satisfactory way. Rather we think that information
theory offers a more insightful way to approach com-
puter security.

Recent theoretical work in computer security has
often focused on trying to generalize the well-known
and quite successful theory of noninterference—a the-
ory that was intended for computing systems modeled
as deterministic state machines [2,3]. Nondeterminism
has normally been built into the models for the behav-
ior of networked and distributed systems. It is highly
desirable to have a security theory for nondeterministic
systems. Moreover, for modeling networked systems it
is useful to have a ‘hook-up’ or composable property,
whereby secure component subsystems when hooked
up appropriately yield a secure system.

I. Sutherland {12] initiated the search for an ad-
equate general theory of information flow by devel-
oping his security theory based on nondeducibility.
D. McCullough {6,9] critiqued Sutherland’s theory and
took up the problem of hooking up or composability,
yielding his theory of restrictiveness. Several others
have gone in this direction of research. For example,
one of the authors and F. J. Thayer [5] introduced for-
ward correctability as a simplification of restrictiveness
(cf. also [4]).

Theories such as Sutherland’s and McCullough’s
have considerable merits. However, they also have
some significant shortcomings. In this paper we present
some critical examples to illustrate some strengths
and weaknesses of these recent combinatorial theo-
ries of computer security. We argue that taking an
information-theoretic approach to computer security
promises a better way to attack the inherently diffi-
cult problems of security in computer systems.

In this paper we treat computer security in the
sense of the protection of information from unautho-
rized disclosure. This form of the security problem



is often designated with the terms ‘confidentiality’ or
‘nondisclosure.”! We may distinguish two methodolog-
ical views of this form of security:

1. According to the first view, there are users of sys-
tems, or more precisely, processes (i-e., running
programs, acting on behalf of the users), which
may attempt to read directly or deduce indirectly
information that they are not authorized to ob-
tain. Under this view, the processes are trying
to get this information without the help of others
on the system, i.e., they do not have cooperating
agents with access to the information they want
to get. They are merely attempting to receive in-
formation, perhaps by using some clever forms of
deduction. This kind of attempted breach of se-
curity may be termed ‘eavesdropping,’ or ‘wire-
tapping.” The view of communications security is
of this type. The requirement of ‘no read up’ in
the classical Bell-La Padula model [1] typifies this
methodological view.

2. According to the second methodological view of
security, there are malicious spy processes using
computing mechanisms to {ransmit information
to cooperating agent-processes. In this case, we
have Trojan horses attempting to communicate to
confederates through the processing mechanisms
of the system. The second view may be termed
‘transmission’ or ‘communication.” This commu-
nication view of the security problem is much
harder to cope with than the eavesdropping view.
Most theories of security can treat eavesdropping
more easily than communication. For example,
the Bell-La Padula security model [1] is not so
effective in dealing with covert channels—though
with the inclusion of the %-property it is partially
successful in countering certain Trojan horse at-
tacks. The SRI noninterference theory of security
was proposed to deal more directly with transmis-
sion and not just eavesdropping.

The recent combinatorial theories of security consid-
ered in this paperare aimed at dealing with both eaves-
dropping and trahsmission. They attempt to guaran-
tee that the low user or spy processes should not be
able to deduce high information indirectly as well as
not read it directly. In this way they cover some kinds
of covert channels. However, because they are based on
logical deduction as the means for treating the security

1This problem is distinguished from the integrity problem or
the problem of assured service.
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problem, they do not adequately address the transmis-
sion problem. Thus, we contend that they fall short
of a full treatment of security as confidentiality. De-
veloping this contention is the task of the rest of this
paper.

We should like to emphasize at the outset that the
question of whether or not two processes sharing a ma-
chine can communicate with one another is a property
of the machine and the two interfaces to the machine.
The resolution of this question does not depend on the
introduction of security labels, nor does it even benefit
from their introduction. Security policies should deter-
mine which of the interfaces are to be precluded from
communicating.

Nondeterminism has a significant role in the systems
discussed in this paper. There are at least two ap-
proaches to describing the dynamics of nondeterminis-
tic systems:

1. The possibilistic approach;

2. The probabilistic approach.

In the possibilistic approach one specifies a system by
giving the joint ‘possibility’ distribution of all the vari-
ables of interest. In the probabilistic approach one
specifies a system by describing the joint probability
distributions of all the variables of interest. To give
the probability distributions is a big task, but the ef-
fort required for it is compensated by the fact that
one can often make precise assertions about the sta-
tistical behavior of the associated system. Which of
the two approaches one uses is really dictated by the
types of questions about the system that are to be an-
swered. For instance, if ¢ and j are two states of a
Markov chain, then the question of whether j is reach-
able from i involves possibilistic information about the
chain (i.e., knowing the location of the zeros in Pij).
However, determining the average first passage time
from i to j requires knowledge of all the Pij. A pri-
mary aim of this paper is to convince the reader that
possibilistic specification for computer systems is inad-
equate for addressing the main problems of computer
security.

The subsequent sections of the paper are organized
in the following way. In Section 2 a critical analysis
is made of certain combinatorial theories. In Subsec-
tion 2.1 a critique of Sutherland’s particular interpreta-
tion of his general theory of nondeducibility is given by
means of an abstract ‘encryption’ example. In Subsec-
tion 2.2 an alternative interpretation of Sutherland’s




nondeducibility, called ‘nondeducibility on strategies,’
is introduced, using a simple basis of synchronized state
machines. An explanation is offered of why we think
nondeducibility with respect to strategy is a better way
to instantiate Sutherland’s general theory. In Subsec-
tion 2.3 a brief comparison is made between nonde-
ducibility on strategies and forward correctability (a
weak version of McCullough’s restrictiveness). In Sec-
tion 3 the information-theoretic approach is brought to
bear on the combinatorial theories of security. Its effec-
tiveness is shown through a set of critical examples that
provide comparisons with the combinatorial theories
considered. In Subsection 3.1 resource contention sys-
tems are introduced as a class of simple shared systems
from which to construct examples. In Subsection 3.2
resource contention systems are modeled as synchro-
nized state machines, in order to apply the various
combinatorial notions of security. In Subsection 3.3
it is shown that for each resource contention system
it is natural to associate a collection of discrete mem-
oryless channels. Then the main examples are given
showing the deficiencies in the combinatorial theories
of security. In Section 4 some conclusions are briefly
drawn.

2 Recent Combinatorial
Theories of Security

The combinatorial theories of security to be considered
share the following three properties. They start from
some basic notion of information flow and characterize
security in terms of legal and illegal information flows.
They ultimately derive from the notion of logical de-
duction; they are theories of nondeducibility. They are
intended to be applicable in nondeterministic environ-
ments. We begin with Sutherland’s theory.

2.1 Nondeducibility

In a paper of 1986 Sutherland [12] proposed a theory
of information flow based on logical deduction, which
he intended as a means of attacking the security prob-
lem. The broad theme of Sutherland’s work is that in
a secure computer system the users or processes at low
security levels should not be able to deduce with cer-
tainty anything about the activities of the high users or
processes. Formally, Sutherland’s theory begins with
the abstract set, T, of execution sequences or traces of a
computing system (or possible worlds, in Sutherland’s
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terms) and a set of information functions from T to a
set, V, of values. We can think of a given information
function f applied to an execution sequence or trace
t € T as providing a special view of the system or as
yielding a value that represents a history of values of
some variables. We then have the following definition
(equivalent to [12, page 176], but stated in a somewhat
different way):

2.1 Definition Let T be the set of traces of the sys-
tem, let fi, fo be two functions defined on T, and let
w € Image(f2), i.e., there exists a trace ¢t € T such that
f2(t) = w is a value for the trace. We say that infor-
mation flows from f; to fa on w if and only if there is
a value, v, of fi such that for all traces t € T,

fl(t) =v = fg(i) # w.

In general, information flows from f, to fo iff there is
some w € Image(f2) such that information flows from
f1 to fo on w.

The interpretation is straightforward: An observer of
f2 values will know something about f, values, namely,
fi # v, whenever he observes fo = w.

To apply this flow notion to computer security, let T
be the set of traces or executions of the system. Let fa
be a function that extracts the low observations in the
trace—the low view. Let f; be a function that extracts
the high behavior from a trace. Then a secure system
is required by definition to have no flow from f) to fa.
The choice for function f is absolutely crucial: The
function must characterize the high behavior in some
way. As we shall see, the strength of this definition of
security essentially depends on providing a good choice
for f;.

It is worth remarking that this definition of security
based on no information flow is equivalent ([12, page
176]) to the following one.

2.2 Definition Given T, f;, fo as above, information
does not flow from f to fs iff the joint function (fi, fa)
from T to the product of image sets of f; and f; is onto.

Note that this definition is the ‘possibilistic’ analogue
of the notion of statistical independence from proba-
bility. It is a purely combinatorial prerequisite for the
independence of two random variables, f; and f.

To elaborate the definition of security, we must think
of the information functions as associated with enti-



ties, such as users or processes. Then the flow of in-
formation from one function to another is associated
with a flow from one entity to another. A system
will be secure relative to the set, Z, of information
functions according to a policy defined by a 2-place
predicate legaltoget over pairs of the information func-
tions, if, whenever information flows from f; to fz, then

Iegaltoget(f2 ) fl)

Sutherland has an intended interpretation for his
theory based on the state machine mechanism; the de-
tails are in [12]. Essentially the traces are generated
by a nondeterministic state machine. Each trace is a
finite sequence of events. The set of events has disjoint
subsets of input events and output events. The events
are partially ordered according to security levels, but
for our purposes we need only consider that there are
high and low events. We then define the following in-
formation functions:

1. view is the function that returns the subsequence
of low events from given a trace.

2. hidden is the function that returns the subse-
quence of high input events.

Security is then defined by the requirement that the
predicate legaltoget(view, hidden) is false (or, equiva-
lently, its negation is true). In other words, there is
no information flow from hidden to view; users or pro-
cesses with the low view view should not be able to
deduce with certainty anything about the activities of
the high user processes hidden.

Sutherland’s general nondeducibility definition pro-
vides an intuitively appealing mathematical foundation
for deductive inference, though it does not cover sta-
tistical inference. It allows one to define a very broad
notion of information flow. Yet as mentioned above, in
order to apply this notion of information flow in a par-
ticular context, one has to appropriately interpret the
functions between which information flow is of inter-
est. The following example shows that the Sutherland
interpretation of the function f, as hidden has some
unwanted consequences.

2.3 Example Consider the following nondeterminis-
tic state machine, S. S has four states corresponding
to the four possible settings of a pair of keys K and K»
(K: € {0,1}). The (high) transmitter has three possi-
ble inputs {g,07, 1r}. The (low) receiver has only one
input {r}. Use of the system consists of a sequence of
trials. On each trial,
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1. Both players submit an input.

2. The machine calculates and delivers outputs for
each player. These outputs are functions of the
current state and the current inputs.

3. The machine makes a nondeterministic state tran-
sition based on the current state and the current
inputs.

Since the receiver has only one input, r, it suffices to
describe the outputs and state transitions in terms of
the current transmitter input z € {g,0r, 17} and the
current state (K1, K2).

1. When the transmitter uses z € {0, 17}:

(2) The transmitter gets a 0 for output.

(b) The receiver gets z&® K, for output (& stands
for xor).

(c) Both K; and K7 are randomly and indepen-
dently updated.

2. When transmitter uses ¢ for input:

(a) The transmitter gets K for output.
(b) The receiver gets K2 for output.

(c) K remains unchanged, K> gets updated ran-
domly.

The initial state of the system is chosen randomly from
the four possible system states. A trace ¢ of this system
will consist of an alternating sequence of states and
quadruples of input-output:

t = (KO, K9)(i1,dr, k1, 1)K}, K3) ...

(K21 K3 (in, G, ks 1n) (KT, K3),

where each i is a receiver input, each j is a transmit-
ter input, each k is a receiver output, and each lis a
transmitter output. Each trace must satisfy the rules
for input-output and state transitions described above.
The set. of traces is denotes by T'r.

Notice that on any given trial the transmitter can
learn the value of K; by asking ¢. Since asking ¢ does
not alter K, on the next trial, the transmitter will
know the current value of K;. He can then control
the output to the receiver, since he knows what key
value K, is being used to ‘encode’ his current input,
z € {Or, 17}. It is therefore clear that we can build a




noiseless covert channel by using the following coding-
decoding scheme. On odd trials, the transmitter learns
K, by asking ¢g. On even trials he sends the bit of his
choice, say ¢, by using the appropriate input, namely,
€ ® K;. The receiver simply ignores all bits that he
receives on odd numbered trials.

‘We now show that this system satisfies nondeducibil-
ity on transmitter input strings. First notice that all
strings of 0’s and 1’s are possible returns to the re-
ceiver. We must show that for all z € {¢,0r,17}"
and all y € {0,1}" there is a trace ¢ € Tr in which
z is the transmitter input string and y is the re-
ceiver output string. This can be done by induc-
tion on the length of the strings. For the induction
hypothesis we take the slightly stronger statement:
Ve € {¢,07,1:}" Yy € {0,1}" Vs € S3t € Tr that
ends in s and has z for transmitter input and y for
receiver output. S denotes the four possible system
states {(0,0),(0,1),(1,0),(1,1)}.

Proor. The base step is left to the reader. Let =
and y of length n > 1 be given. Let (A, 7) be the
desired final state of trace ¢ which has r for transmit-
ter input and y for receiver output. We consider two
cases: (1) 2, = ¢ and (2) z, € {Or,17}. In case
(1), let t be a trace which has z(*~1) for transmit-
ter input, y(®=1) for receiver output, and ends in state
(A yn). Then t(r,q, A, yn)(A, 7) is a trace with the de-
sired properties. In case (2), let ¢ be a trace which has
z(=1) for transmitter input, y(*~1) for receiver output,
and ends in any state with Ix’f"_l) Zpn & Yn. Then
t(r,zn,0,ys)(A, 7) is a trace with the desired proper-
ties. O

The example shows that the transmitter and receiver
can communicate noiselessly without the receiver ever
‘knowing anything’ about the transmitter input string.
The information that the receiver is ‘deducing’ is about
the transmitter input strategy, not about the transmit-
ter input string. In any system in which an input player
receives feedback, the correct specification of his ‘be-
havior’ is a strategy for inputs, not a string of inputs.
Of course, in the absence of feedback, a strategy is just
a string. When hidden is interpreted as the high input
string, a great deal of information about the high input
behavior is being ignored. This fact explains why the
interpretation of nondeducibility that Sutherland gave
explicitly should only be used in systems in which there
is no feedback to the transmitter. We have reexamined
Sutherland’s general definition and provided an alter-
native interpretation based on strategy, to which we
now turn.

148

j I

T Im ———-T
. A k

R im ™R

Figure 1: Synchronized State Machine A.

2.2 Nondeducibility on Strategies

The alternative interpretation of Sutherland’s security
theory to include strategies has some interesting con-
sequences. It provides a stronger concept of security
than the original, though it still suffers from the diffi-
culties of combinatorial theories. One special feature
of the alternative interpretation is that it has the hook-
up property, though we shall not go into this feature
in this paper.

We shall first introduce a state-machine model
of computation that provides a transmission-oriented
view of information flow. It is a convenient model for
illustrating our points. In particular, the kind of syn-
chronization information we want is incorporated in
the model. The model is by no means the only one
conceivable, but it is sufficient for presenting our cri-
tique of the combinatorial information flow theories.

The model consists of a nondeterministic state ma-
chine, controlled by two users or user processes with
separate inputs and outputs. These processes are a
high transmitter, 7', and low receiver, R. Use of the
system consists of a sequence of trials. For a trial start-
ing in some state, inputs to the machine come from
both the high transmitter and the low receiver. Af-
terwards separate outputs are delivered both to the
transmitter and to the receiver, and the machine goes
into a new state, which is chosen nondeterministically
from a set of possible next states. The inputs, the
outputs, and the transitions to new states are synchro-
nized. The outputs are given deterministically, while
the next states are given nondeterministically. Let us
call a state machine of the form described a synchro-
nized state machine. Figure 1 illustrates the general
structure of a synchronized state machine.

The following sets and functions formally character-

ize the model of computation:

o S, Set of states of the machine, with Sy C S, the
set of initial states;



IR, Set of inputs from receiver R;

Ir, Set of inputs from transmitter T’

OR, Set of outputs to receiver R;

Or, Set of outputs to transmitter T

Nezt : S x Ig x It — P(S) — 0, Next-state func-
tion;

e Outg : S x Ir x It — Op, Output function for R;

e Outr : S x Ig x It — O, Output function for T}

We define the dynamic operation of the state machine
as follows. The machine starts in an initial state, so €
So, and proceeds by moves of the form:

Sm—1 (im s Jmy km, Im)sm;

where $;,-1,5m € S,im € IR, jm € IT,km € OR,Im €
Or, such that

1. sm € Nezt(sm—1,im,jm);
2. Outn(sm_l,im,jm) =km.

3. OutT(sm—lyim;jm) =lm.

A trace (or execution) of the state machine is a finite
sequence of moves of this type:

so(i1, 31, k1,01)s1 .. . Sn—1(in, Jns Ky ln)sn.

For convenience we shall use this notation as standard.
Thus typically iy, € Ir,Jm € Ir,km € Or,Im € Or.
We shall call this a trace of length n. Moreover, the
projections of the trace of all transmitter inputs, out-
puts, or inputs and outputs, or of all receiver inputs,
outputs, or inputs and outputs will all be said to be of
length n.

A strategy for one of the user processes or players
determines an input to be used from a given history
(sequence) of its previous inputs and outputs. Thus, a
strategy for a user process is a collection of functions
from its input/output histories to its next inputs. For-
mally we have the following definition:

2.4 Definition A strategy of length n for a user pro-
cess U (either T or R) is a sequence of n functions
7= (n',...,7"), where for each 7,1 < i < n,

o (IU X Ou)i—l — Iy
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As a preliminary we need the following:

2.5 Definition Let
t = so(i1, J1, k1, 11)51 .. . 3n—1(in, 3n, kn, 1n)Sn

be a trace of length n, let = = (!, ...,7") be a strat-
egy of length n, and let A = i1ky ... ink, be alow view

of length n.

1. ) is compatible with ¢ iff 3, = i, and k, = k.
(1 € r < n), ie., Ais the low projection of ¢.
iff, each

2. w is compatible with ¢ for

W'(jl,ll,. . .,jr...l,l,-_l) = jr-

r

3. )is consistent with = iff there exists a trace ¢ such
that X is compatible with ¢ and 7 is compatible
with t.

Nondeducibility on strategies is now defined in the fol-
lowing way.

2.6 Definition We say that a synchronized state ma-
chine is nondeducible on strategies iff, for any n, any
low view of length n, A, is consistent with any high
transmitter strategy of length n, 7.

Nondeducibility on strategies means that regardless of
what view the low receiver has of the machine no strat-
egy is excluded from being used by the transmitter.

Nondeducibility on strategies is, in fact, an instance
of Sutherland’s general definition of nondeducibility.
The details of the interpretation are given in ap-
pendix A.

As mentioned earlier, it is possible to prove a hook-
up or composition theorem for nondeducibility on
strategies. We shall present the theorem and proof
in a subsequent paper.

2.3 Restrictiveness and Forward
Correctability

McCullough proposed his notion of security, which he
called ‘restrictiveness’ or ‘hook-up security,” partly as
a way to overcome the difficulties of Sutherland’s no-
tion of nondeducibility. He was especially concerned




with proving a hook-up or composable property, which
Sutherland’s notion failed to have.?

Finding McCullough’s restrictiveness somewhat
complex, Johnson and Thayer proposed forward
correctability [5] as a simplified notion of secu-
rity. Forward correctability is logically weaker than
McCullough’s restrictiveness, i.e., restrictiveness im-
plies forward correctability, but not conversely. More-
over, like restrictiveness, forward correctability is a
composable property; the hook up of two forwardly
correctable trace systems is forwardly correctable.

Rather than dealing directly with the models for
which McCullough’s or Johnson and Thayer’s notions
are given, we prefer to reinterpret forward correctabil-
ity for our synchronized state-machine model. Our cri-
tique is still applicable to the earlier notions. However,
in our model it is relatively easy to formulate the con-
cept of forward correctability, because of the synchro-
nization and sequencing requirements on inputs and
outputs. Forward correctability in terms of our model
is as follows (cf. [5, page 78]):

2.7 Definition A synchronized state machine is for-
wardly correctable iff for any trace ¢ of the machine®
and any perturbation ¢’ given by changing a single high
input, there exists a correction of /| i.e., some trace t”,
that differs from ¢t at most in its states or in high out-
puts that come after the changed high input.

A perturbation of a trace that is composed of several
high input changes can be corrected by repeatedly us-
ing this definition (going from right to left is the usual
sequential representation).

Forward correctability is a relatively strong prop-
erty: It implies, but is not implied by, nondeducibil-
ity on strategies. Let us analyze this situation infor-
mally. In the case of nondeducibility on strategies, for
every low view or input/output history that the re-
ceiver may have of the system, the low receiver cannot
deduce that any particular high strategy has definitely
not been used by the transmitter, or, in other words,
every high transmitter strategy is consistent with every

2 Actually McCullough has developed two closely related ver-
sions of restrictiveness, but apparently they are not equivalent.
He developed the first one in the context of modeling compu-
tation by trace systems [6,7,9]. It has a somewhat complicated
form of expression. His second version of restrictiveness, which
he devised rather later, is for state machines and has a relatively
simple form [9].

3Recall that a trace in this model includes states as well as
inputs and outputs.
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possible low view. Forward correctability takes a much
stronger position with respect to deduction. The en-
tire input/ouiput history up to the point at which the
high input is changed is taken into account for the de-
duction, not merely the low view. All the inputs and
outputs, both high and low, up to the perturbed high
input must be the same in the original trace and in the
correction. Thus conceptually the entire input/output
history including the high events up to the change is
available to the low receiver for deduction purposes.

Let us consider an example to see the distinction be-
tween nondeducibility on strategies and forward cor-
rectability.

2.8 Example Consider a synchronized state machine
M; with a set, S, of states consisting of ordered pairs,
(u,v), where u,v € {0,1,t}. Any one of the nine states
can be initial, i.e, Sp = S. For input and output sets
we have: Ip = {r},Ir = Or = {0,1},07 = {0,1,t}.
The machine moves in the following way. From state
to state the value of the first coordinate of the state
can change nondeterministically to any other value.
However, the value of the second coordinate of the
state saves the value of the first coordinate of the
previous state, except for the initial state whose co-
ordinates may have any values. Hence, for consec-
utive states, sm-1 = (Um—1,Vm-1)5m = (Um,Um),
it 1s required that v,, = um_,. Given the machine
in state S;o1 = (Um—1,Um-1), if ¥m-1 = 0, then
Outp(Sm—1,%m,jm) = km = 0, the output to R is
0; if vy = 1, then Outp(sm—1,im,jm) = km =
1, the output to R is 1; and if v,_; = t, then
OutR(Sm=1,1m,Jm) = km = jm, the output to R is
Jm. Moreover, Outy(Sm—-1,%m, jm) = Um-1, i.e.,, T is
returned the value of the first coordinate of the state.
Thus, T knows that, when ¢ is delivered as output, its
next input will be given as output to R.

Now let us show that AM; is not forwardly cor-
rectable. Consider the trace:

(¢,0)(»,0,0,¢)(0,2)(r,1,1,0)(1,0)
with the perturbation:
(¢,0)(r,0,0,¢)(0,1)(r,0,1,0)(1,0)

(the second T input changes from 1 to 0). The possi-
ble ‘correction,” which is needed to avoid changing the
output to R,

(1,0)(»,0,0,1)(0,1)(»,0,1,0)(1,0),

is not an acceptable correction satisfying the conditions
of forward correctability, since it is necessary to correct




an earlier T output before the perturbed T input. Yet
this is the kind of correction required by the pertur-
bation, because there is a mismatch, 0,1, between T
input and R output.

Where is the deduction about transmitter behavior?
There is none! However, forward correctability is ob-
Jjecting to a conditional deduction about transmitter
behavior—a deduction that the receiver could make in
the presence of transmitier output history. That is, if
the receiver knew that the transmitter got a f, then
he would know that the transmitter’s input matched
the output to the receiver. Forward correctability ob-
jects to deductions that can be made by the receiver
relative to the entire input/output history (not just
the receiver input/output history). Nondeducibility on
strategies only objects to those deductions that can be
made relative to the receiver’s input/output history.

It is easy to see that the machine M, is nondeducible
on strategies. In effect, any strategy is consistent with
any low view. Indeed any low view, i.e., any string of
0’s and 1’s, can be produced by adjusting the sequence
of states to disregard the T inputs.

As further evidence that forward correctability is
too strong, consider a small modification of the ma-
chine M;, the machine M,. Machine M, has the
same set of states and set of initial states and also
the same input and output sets. It also moves from
state to state the same as before. However, the
outputs to R are changed so that they are deter-
mined by the first coordinate of the state rather than
the second coordinate. Hence, given the machine
in state s;p—1 = (Um-1,Ym-1), if Um-1 = 0, then
Outp(Sm—1,tm,Jm) = km = 0, the output to R is
0; if um_1 = 1, then Outr(sm-1,im,Jm) = km =
1, the output to R is 1; and if u,_; = ¢, then
Outr(Sm—1,%m,Jm) = km = jm, the output to R is
Jm. As before, Outp(sm—1,im,jm) = Um-1, i.e., T is
returned the value of the first coordinate of the state.

It is easy to see that machine M, is both nonde-
ducible on strategies and forwardly correctable. Any
correction for a perturbation of a trace only needs to
be made at the given move of the machine.

In terms of their operation and the ability of T to
transmit information with certainty to R, machines M,
and M; are virtually the same. For machine M, the
transmitter T sometimes knows that his next input
is directly transmitted to R. However, T cannot ef-
fectively use this information to transmit to R. R
can never rule out any high behavior based on his
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input/output history. Similarly for machine M;, R
can never rule out any high behavior. Nonetheless,
forward correctability distinguishes between these two
machines.

We should remark that on the basis of statistical
reasoning, it is possible for T to communicate with R
through either machine M; or M>, provided that the
probability that the first coordinate u = t is positive.

We may now state formally the result that we have
been discussing informally.

2.9 Proposition On the class of synchronized state
machines forward correctability timplies nondeducibility
on siralegies.

This is proved in appendix B.

3 Approaching Security by
Information Theory

In this section we shall highlight the difference between
the combinatorial notions of information flow and sta-
tistical inference. We shall define a class of prioritized
contention systems, C. The example systems that we
analyze for channels will all be instances of this class.
On the one hand, we shall show that for each con-
tention system, S € C, there is a naturally associated
nondeterministic synchronized state machine, M(S),
to which we can apply the various nonprobabilistic no-
tions of information flow. On the other hand, we shall
also see that to each contention system, S, we can as-
sign a parameterized collection of discrete memoryless
channels, DM C(S). We can then consider the secu-
rity questions for S from two perspectives: (1) apply
information-flow concepts to the nondeterministic ma-
chine M (S) and (2) apply Shannon’s information the-
ory to the collection of channels DM C(S). We shall
show by example that, although the information-flow
notions are useful for detecting certain types of covert
channels in synchronized state machines, they are com-
pletely inadequate for addressing the general problem
of statistical inference.

3.1 Resource Contention Systems

We define a simple class of shared input/output sys-
tems associated with resource contention. While this




class of systems is overly simplified for most purposes,
it is well suited to our needs for two reasons:

o The nondeterministic state-machine, M(S), asso-
ciated with S is readily computed from the combi-
natorial data of S. Furthermore, the information-
flow questions associated with M(S) are easily an-
swered.

e It is possible to provide a complete analysis of the
covert channel structure of S. This analysis is
achievable, because contention systems are mem-
oryless (i.e. the current outputs are determined
by the current inputs and are independent of the
history of system behavior).

Contention systems can be described as follows. The
system has three active players or processes, T' (trans-
mitter), N (noise), and R (receiver). T and R should
be thought of as corrupted players whose programs are
supplied by a spy. N should be thought of as an in-
dependent third process which also contends for the
resources shared by T and R and consequently adds
noise to the relation between T input and R output.
The system & contains a finite number of resources
Z ={21,25,...Z1}. T, N, and R each have instruc-
tion sets Ir,In,Ig. Each instruction, 7, is really a
request to lock a particular set of resources, Q; C Z,
for a unit of time. Time is discrete, and at each time
unit the system accepts one input instruction from each
player and decides how to allocate resources for the
current time-slot. A player’s instruction is processed
only if it is allocated all of the resources requested. If
the system processes an instruction it returns a 1 to
the associated player, otherwise it returns a 0. Thus,
at each unit of time, a vector of three instructions is
submitted to the system and each player is returned a
1 or a 0. It remains to describe how to resolve con-
tention for a resource that is needed by more than one
player. Resolution is based on a simple priority proto-
col, N > T > R. This means that if @Qn,Q7, and Qg
are the resource sets requested by the three players, we
have:

The resources in Qy are dedicated to N for
the current trial and N receives a 1.

1. If the remaining resources, Z — Qu, in-
clude all of those requested by T, 1.e.,
Z — QN D Qr, then these resources are
dedicated to T for the current trial and
T receives a 1.
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(a) If the remaining resources, Z —Qn—
Qr, include all of those requested by
R, i.e., Z - QN - QT 2 Qn, then
these are dedicated to R and R re-
ceives a 1.

(b) Otherwise, R receives a 0 and the
resources Z — QN — Qr go unused.

2. If the remaining resources, Z — Qn, do
not include all of those requested by T,
ie, Qr N Qn # 0, then T receives a 0
and no resources are allocated to T on
this trial.

(a) If the remaining resources, Z — Qu,
include all of those requested by R,
ie., Z— QN 2 Qr, then these are
dedicated to R and R receives a 1.

(b) Otherwise, R receives a 0 and the
resources Z — @Qn go unused.

Thus a contention system is a quadruple, S
(Z,Ir, Iy, IR), where:

1. Z={21,Z,...Z1}, finite set of shared resources.

2. It = {U1,Us,... Uy}, transmitter instructions,
Un C 2.

3. Iy = {V4, V2,...Vn}, noise instructions, V;, C Z.

{W,,Wa,... Wk}, receiver instructions,
W C Z.

In order to understand how such systems can be
used to build channels between the transmitter and
receiver one must consider how the receiver’s output
depends on the transmitter’s input. But the output
to the receiver depends upon which instruction the re-
ceiver uses. If we fix a Wy, we can define a matrix,
A®) | which summarizes how the receiver output de-
pends jointly on the T" and N inputs. AF) = 1iff the
receiver instruction Wj, is successfully processed when
T submits U,,, and N submits V;,. Of course, the other
entries in A®) are 0. A%) is called the &'* reception
matriz and is also denoted A[W}].

To make these ideas more concrete we describe a par-
ticular contention system, &, and calculate the AG)g,

3.1 Example The system S; has five resources
{1,2,3,4,5}. The contention instructions are summa-
rized in figure 2.



LT [N | R |
Ul = {2,4} V] = {3,4} W1 = {l}
Up={s} |W={25)|W.={2}
Us = {3} Ws = {3}

Figure 2: Contention Instructions for System S

[ AW] [vi={3,4]V.={25}]
U, = {2,4} 1 1
U; = {5} 1 1
Us = {3} 1 1

Figure 3: The S; Reception Matrix A[W;]

Since neither T nor N ever requires resource 1, the
reception matrix A[W)], given in figure 3, has only 1’s
for entries. Clearly, W; = {1} is not a very useful
‘eavesdropping’ instruction for R. The signal that the
receiver ‘hears’ when he ‘listens’ via {1} is a constant.

The situation is slightly more interesting when the
receiver listens with the instruction {2}, since this is a
resource for which there is contention from T and N.
The reception matrix A[W5)] is given in figure 4. Notice
that the columns of A[W;] are constant. This means
that when R listens with {2}, what he hears depends
only on the noise process and is not even statistically
influenced by the T process. Thus listening with {2}
is a waste of time for the receiver, if he is interested
in building a channel with source T. However, if N’s
contention process is known to be correlated with some
high data, then listening to channel {2} may well be
of value to R. It is exactly the purpose of the Trojan
horse, T', to provide a useful correlation between high
data and receiver observables.

Finally, we consider what happens when the receiver
listens on channel {3}. The reception matrix A[W3] is
given in figure 5. In this case there is a positive ca-
pacity noiseless channel from T to R. Notice that the
bottom row of the reception matrix A[Wj3] consists en-
tirely of 0’s. This is because of the fact that, regardless
of what N does, R does not get resource 3 when T con-
tends with {3}. In one case, N locks the 3 and in the

[ AW2] [[Va=1{3,4} [ Va={2,5}]
U, = {2,4} 1 0
U, = {5} 1 0
Us = {3} 1 0

Figure 4: The S; Reception Matrix A[W>]
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[ AWs] [[Vi={3,4} [ Va={25} ]
Uy = {2,4) 0 1
Us = {3} 0 0

Figure 5: The 8; Reception Matrix A[W3]

other, T locks the 3. On the other hand, when T uses
{5}, it is possible for R to lock 3, and this will happen
whenever N uses {2,5}.

A channel coding scheme can be described as fol-
lows. On every trial, R contends with {3}. As long
as T contends with {3}, the receiver will never get the
output symbol 1. T will signal even or odd to the
receiver. He does this as follows. If T' wants to send
even, then he permits 1’s to appear on even trials and
precludes 1’s on odd trials. Thus on even trials T uses
{5} and on odd trials he uses {3}. On some even trial,
N will contend with {2,5} and a 1 will appear for R on
an even trial. If T wants to send odd, then he permits
1’s to appear on odd trials and precludes 1’s on even
trials. Thus on odd trials T uses {5} and on even trials
he uses {3}. Again, eventually on some odd trial, N
will contend with {2,5} and a 1 will appear for R on
an odd trial. The receiver simply waits until he hears a
1 and writes down the parity of the trial number. It is
important to notice that the transmitter ‘knows’ when
the receiver has seen a 1. This allows him to commence
transmission of his next even or odd bit and maintain
synchronization with the receiver. The reason that T
‘knows’ when he has transmitted a 1 is that his feed-
back from the system tells him whether or not the {5}
request was processed. If it was, then N must have
used {3,4} and consequently R got a 0. If it wasn’t,
then N must have used {2,5} and consequently R got
a 1. This should be contrasted with the situation in
which the transmitter permits 1’s by contending with
{2,4}. Here, the returned symbol to the transmitter is
0 regardless of what was delivered to the receiver.

This is a noiseless coding scheme which transmits
data at a rate of one bit per 2x trials, where 2 is simply

the average number of trials between consecutive uses
of {2,5} by N.

Channels of the above type are precisely the ones
which result from a failure of nondeducibility on strate-
gies. They support noiseless communication at a rate
which is proportional to the ‘failure rate of nonde-
ducibility.” These channels were first discussed by
McCullough (8] in relation to restrictiveness.




3.2 S M(S)

In this subsection we construct the nondeterministic
synchronized state machine, M (S), that is naturally
associated with the contention system S. We are then
able to characterize the security of M(S) in terms of
the reception matrices of S. Furthermore, we assert
that, for the state machines associated with contention
systems, all four notions of information flow coincide.

Consider the general contention system S

(Z,Ir,In, IR}, where:

Z = {21,2y,...21}
IT = {UI,UZ,...UA{}
In = {V1,Va,...Vn}
In = {W),Wa,.. Wk}

Then the only additional information required to deter-
mine transmitter and receiver outputs, once transmit-
ter and receiver inputs have been fixed, is the current
value of N input. For when we know the resources
locked by N, the contention rules uniquely determine
outputs to T and R as functions of T and R inputs.
This suggests that we take the value of N input as
state in our state machine, M(S). Now we must define
Outp(s,1,7), Outp(s,t, j) and Nezt(s,i,7). The Next
function is trivial, for all s,7,j we set Nezt(s,7,7) =
Iy = {V1,Va,...Vn}. This reflects the fact that the
current value of N input imposes no constraint on
the succeeding value of N input. Similarly, we define
Outg(s,1,7) in the obvious way, namely: if s = V,,,i =
Wi and j = Up, then Outg(s,7,j) = 1 iff R gets re-
sources designated by instruction Wy when T contends
with U,,, N contends with V,,, and R contends with
Wi, and Outg(s,t,j) = 0 otherwise. A similar defini-
tion is made for Outr.

3.2 Proposition Let S be a coniention system, then
the following are equivalent:

1. M(S8) is forwardly correctable.
2. M(S) is nondeducible on strategies.
3. M(S) is nondeducible on input strings.

4. Each row of each non-constant reception mairiz of
S contains both 0’s and 1’s.

The proof is not difficult, so we leave it to the reader.
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If we reconsider S in light of the above proposition,
we see that this system is insecure. This is in accord
with our intuition, since we were able to build a positive
capacity covert channel in this system. In contrast, if
we consider the subsystem S’ which remains when we
remove the contention instruction {3} from Ig, then
the resulting subsystem is secure. Again, this accords
with our intuition, since in S’ the receiver output signal
depends only on N.

3.3 S— DMC(S)

In this subsection we shall consider how to associate
discrete memoryless channels with a contention sys-
tem, §. Before doing so, we shall provide a quick re-
view of some concepts and results of Shannon that are
fundamental to information theory. For further expo-
sition the reader is referred to [11,13].

In the theory of communication, a transmitter ex-
ercises statistical control over a receiver observable.
The transmitter has a set of M inputs (choices, be-
haviors) I = {z1,z2,...,zm} and the receiver has a
set of N possible observations O = {y,¥2,...,Yn}-
A channel is specified by describing the statistical de-
pendence of the receiver’s observation on the transmit-
ter’s input. For each fixed transmitter input X = z;
there is an associated probability distribution on re-
ceiver observables, p;1, pia,...pin. The interpretation
1s simple; p;; represents the conditional probability
that y; is observed, given that x; was sent. The ma-
trix whose rows are these conditional probability dis-
tributions is called the channel probability matrix. Let
X = i1i3...1, € I™ be an input string for the trans-
mitter. The channel induces a probability distribution
on output strings ¥ € O™ by the equation:

PrlY =jija.. . JnlX =d1ia .. in] = Diyj\Pisa - Pinja

This equation expresses the memorylessness of the
noise process, i.e., all symbol transmissions experi-
ence independent corruptions. The way to communi-
cate through a discrete memoryless channel is by using
codes. Roughly speaking, a code is a set of input be-
haviors for the transmitter which, with high probabil-
ity, are distinguishable by the receiver. More precisely,
a block code of length n and size N is a set of N ordered
pairs,

(II)Al)a(xglA?)) .- '(INyAN):

where

1. {z}, 2% ...2V} C I" is a set of codewords;




2. Ay, Az, ... AN is a partition of O™,

The algorithm for communication works as follows: A
fixed correspondence between a set of N messages and
the N codewords is adopted. When the transmitter
wishes to send message i, he inputs the n sequence zf =
zizh...z% to the channel. The receiver will observe
some n sequence Yy = y1y2...Ya. ¥ is in a unique A;
and the receiver then concludes that message j has
been sent. Now the observed sequence y = Y(2*) has
a probability distribution that is determined by the
input string z* and the channel matrix. An error occurs
whenever Y(z') ¢ A;. Thus the probability of error
when message i is sent is

Az') = PriY (') ¢ AJ).
We define the probability of error for the code as
Amaz = ma.x{/\(:c')}

A code of length n with N codewords and Mgz < A
is called an (n, N,A) code. The rate of an (n,N,})
code is (log,N)/n. In general, one might suspect that
there is a trade-off between the rate and the probability
of error. Shannon’s fundamental theorem shows that
this is not so for rates less than a certain nonnegative
number C, called the capacity of the channel. The
number C depends only the channel probability matrix
P = [P;;] and so there is a function:

C : {Channe] Matrices} — [0, c0).

For our purposes, we need not describe C in detail;
however, we shall need the following two facts about
C:

1. C : {Channel Matrices} — [0, 00) is continuous;

2. C(P) =0 iff all rows of P are identical.

Property 1 asserts that channels with nearly the same
statistics have nearly the same capacity. Property 2
asserts that the only way a channel can have zero
capacity is if all transmitter input symbols give rise
to the same probability distribution for output sym-
bols, i.e., the receiver output symbol is statistically
independent of the transmitter input symbol. Chan-
nels satisfying property 2 are completely uninteresting
from the perspective of information theory. They can-
not be used to correlate transmitter behavior with re-
ceiver observable. However, if the channel matrix P
has C = C(P) > 0, then we can apply Shannon’s the-
orem:
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3.3 Theorem (SHANNON) Let P = [P;j] be a channel
matriz with capacity C > 0. Then for alle, X > 0 there
15 a code for the channel with

Amaz <A and rate > C —e.

This result can be restated as follows: By an appro-
priate choice of coding, arbitrarily reliable communi-
cation is possible at any bit rate less than the channel
capacity C. From the perspective of computer security
this means that the spies can steal information at C
bits per trial by employing appropriate encoding and
decoding strategies.

With the preceding as background we can now show
how to associate channels with a contention system,
S. In order to make this association, however, one
must adopt a statistical model for the noise process
N. For the purposes of this paper, we assume that
N can be modeled as an independent trials process.
This means that there is a probability distribution
B = (B1,P2,...,Bn) for the N contention instructions
Wi, V2, ... Vn such that if N, denotes the value of N’s
contention instruction at time s, then

'Nt = V]!] = ﬁ]lﬁ]} '“ﬁju

for all ¢,341,72,...7:. We can now identify a
noise process with a probability distribution g =
(B1,P2,...,Bn) € AN-1, where?

AN = {(By, B2, BN) D Ba =1, B 20} C R,

PT[N1 :Vj“Ng =Vj._.,..

Now suppose that we have fixed both a receiver
sampling instruction Wi, and a noise distribution
B € AN-1_ With this data we can associate a unique
discrete memoryless channel, dmc(Wy,8). The in-
put symbols for dmc(Wy, B) are the transmitter con-
tention instructions {Uy, U,, . .., Uas}; the output sym-
bols are simply 0 and 1. Consider the M x N recep-
tion matrix A[Wi]. The m,n entry of this matrix,
Amn[Wi] = A, is a 1 or a 0 depending on whether
or not the receiver acquires the resources designated by
W), when the transmitter uses U,, and the noise pro-
cess uses V,,. For each row index m we can partition
the column indices into two classes Jém) and Jl(m). We
let Jém) contain all those column indices n for which

the receiver gets 0, i.e. A%, = 0. We let J™ be the
complementary set of column indices. Now consider

4AN=1 genotes the (N — 1)-dimensional closed standard sim-
plex. For example, A2 is a closed triangle, A% is a closed tetra-
hedron, etc. We need the fact later that these are compact sets.




A[Wi] Vi Va VN P[Wy, 6] 0 1
Uy AL | A% Ain U I':(B) | 1-T5(8)
Uz Agl Aéz A%N hand U2 I‘_]g(ﬂ) 1-— F_]o?(ﬂ)
Un | Abnn | Ao ANN Un Lym(B) | 1-Tym(B)
[ B B2 Bn

Figure 6: Weighted Reception Matrix — Channel Matrix

the question: What is the probability that the receiver
gets a 0, given that the transmitter sends U, ? When
the transmitter sends a Uy, the receiver gets a 0 iff
the index, n, of the current noise contention instruc-
tion is in Jém). The probability of this event is just
Yon eI B,. Therefore,

Prlreceiver gets 0 | transmitter sends U] =

nesim Ba-
Clearly,

Prlreceiver gets 1| transmitter sends U,,] =
ZnEJ:"‘) ﬁn =1- zne_]é"‘) ,8n~

We have, therefore, obtained the M x 2 channel ma-
trix, P[Wg, B], whose m,0 entry is Znej(m) Bn and
[

whose m, 1 entry is 1— (m} Bn. This is the discrete
ne.lo

memoryless channel, dmc(Wy, B), associated with the
sampling instruction W) and the noise distribution £.
We let DM C(S) denote the set of such channels for all
Wy, B for the contention system S.

Notice that the entries in the channel matrix
P[Wy, B8] are linear functions of 3. For any set of col-
umn indices E C {1,2,... N}, let TE(8) = )", cpbn-
Then with this notation we can give a simple graphical
representation of the transformation of the weighted
reception matrices, (A{W;], B), into the M x 2 channel
matrices (see figure 6).

To make these ideas more concrete we consider an
example.

3.4 Example The system S2 has three resources
{1,2,3}, and the contention instructions are summa-
rized in the table in figure 7. Notice that in this ex-
ample there is only one way for the receiver to collect
information, i.e., his only contention instruction is {1}.
Hence, there is only one reception matrix, A[W;], given
in figure 8. The channel matrix P[W}, §] is then given
in figure 9. Readers familiar with information theory
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LT [N [R ]
U, ={1,3} [ i={2} | W1 = {1}
U, :{1)2} V2:{3}

Figure 7: Contention Instructions for System S,

[ Aawm] [vi={2}][V>={3}]
UI=+1a3} 0 1
U, ={1,2} 1 0

Figure 8: The S2 Reception Matrix A[W)]

will recognize the channel P{W;, f] as the binary sym-
metric channel with error probability #2. Recall from
above that each channel matrix has a capacity. In this
simple case we can express the capacity of P[Wy,f] in
terms of (3, namely,

C(P[W1,H)) 1 — Entropy{8, 82}

1 — {—B1 logy(B1) — B2 logy(B2)}
Notice that since B; + f» = 1 this is a function of the

single variable 2. The graph of this function is given
in figure 10.

From this graph we see that our example system
will contain a positive capacity covert channel, unless
the noise process N is governed by the distribution
B = (B1,B2) = (1/2,1/2). Indeed, if 8 = (1/2,1/2),
then the noise process is a one-time pad which en-
crypts the transmitter input. Thus, from the per-
spective of information theory, this system is secure
iff 8 = (1/2,1/2). Notice, however, that the nonde-
terministic state machine M(S) associated with this
contention system has property 4 of Proposition 3.2
regardless of what 8 € Al governs the noise. (We

[ Pw, Bl JO]1]
Uy ={0,1} || 1 | B2
Uy =1{0,2} || B2 | B

Figure 9: The 8> Channel Matrix P[W1, ]




0.2 0.4 0.6 0.8

Figure 10: C(P[B]) : Capacity of Channel Matrix
P[Wll ﬁ]

need only require that g really does provide noise, i.e.,

B ¢ {01 1})

Since the models to which information-flow notions
are applied describe nondeterminism ‘possibilistically’
as opposed to probabilistically, it is not surprising that
they cannot ensure noise distributions which act like
encryption. However, one might conjecture:

3.5 Conjecture For any contenlion system, S, for
which the machine, M(S), has no illegal information
flow, there ezists a noise distribution for which all
channels have zero capacity.

Or perhaps one might make the weaker conjecture:

3.6 Conjecture For any contention system, S, for
which the machine, M(S), has no illegal information
flow, for each reception instruction, Wy, there is a
noise distribution § = B(Wy), such that the channel
P[Wy, B(Wh)] kas zero capacity.

In conjecture 3.5 we require the existence of one noise
distribution that simultaneously encrypts all channels.
In conjecture 3.6 we weaken the requirement by allow-
ing the noise distribution that encrypts the channel
to depend on the channel. Both of these conjectures
are true for the examples thus far considered. Con-
jectures of this form were first suggested by J. Millen
(unpublished work) in an attempt to relate the various
information-flow notions to information theory. Covert
channel analysis would be made considerably simpler,
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(PWe Bl 0 | 1 ]

U, Lp(B) | 1-T5(B)
U, Ty2(B8) | 1-T,2(8)
o [T (B | 1T ()

Figure 11: The Channel P(Wy, f]

if either of these conjectures were true. Unfortunately
for computer security, both of these conjectures are
false. We can show this by means of one counterexam-
ple for conjecture 3.6.

To construct our counterexample we will build a con-
tention system with only one receiver contention in-
struction Wy, and hence with only one covert channel.
The example system S must have two properties:

1. Each row of the reception matrix A[W;] contains
both 0’s and 1’s.

2. No matter what noise distribution, B, is selected,
the associated channel probability matrix has pos-
itive capacity.’

The first property ensures that our system will be
information-flow secure. The second property guar-
antees that our system will be insecure according to
information theory.

Consider the general channel matrix associated with
the reception instruction W;. given in figure 11.

Recall that a channel has capacity zero iff all rows
of the channel matrix are equal. This means that each
column contains only one number. Hence, P[Wg, ]
has zero capacity iff 3 satisfies the following system of
linear equations:

T = Ty
Ip(B) = Ts(8)
(@) = T;u(8)

Therefore, we need only to produce a contention sys-
tem for which this system of equations is mfeasible (at
least infeasible for # € AN=1). This is easily done.

SNotice that, since the space of probability distributions is
compact and C is continuous, it follows that thereis a ¢ > 0
such that all channel matrices have capacity > ¢ > 0.




LT [N R |
U1 = {0,1} V] = {1,2,3} "Vl = {0}
Uy ={0,2} | Vo = {2}

Us ={0,3} | V3 = {3,4}
U, = {0,4}

Figure 12: Contention Instructions for System Ss

L AW [Vi={1,2,3} [ Va={2} [ Va={3,4} |
U1={0,1} 1 0 0
U3=1{0, 2} 1 1 0
U;={0,3} 1 0 1
U, =1{0,4} 0 0 1

Figure 13: The S3 Reception Matrix A[W)]

3.7 Example Consider the contention system with
five shared resources, {0,1,2,3,4}, and contention in-
structions summarized in the table in figure 12.

The reception matrix associated with ¥ is then
given in figure 13. From the reception matrix it is clear
that M(S) is information-flow secure, since each row
contains both 0’s and 1’s. We now calculate the chan-
nel matrix, P[Wy, B8], as in figure 14. If we insist that
this channel matrix has zero capacity, we are left with
the system of three linear equations in three unkowns:

B2 + B3 B3
Pat+PBs = P
Pa+B3 = B+ pa

We leave it to the reader to check that g = (0,0,0)
is the only solution to these equations, which means
that there are no solutions in A2. Hence, as desired,
no matter what distribution 8 € A? governs the noise
process, the channel P{W), (] has positive capacity.

4 Conclusion

In Section 2 three information-flow theories of security
are compared: nondeducibility on transmitter inputs,

LPwmp [ o [ 1 ]
Uy ={0,1} || B2+ 55 2
U, ={0,2} B3 B+ P
Us = {0, 3} B2 B+ B3
Uy = {0,4} || 51 + - B3

Figure 14: The 83 Channel Matrix P[IV}, (]
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nondeducibility on strategies, and forward correctabil-
ity. Example 2.3 was put forward to show that nonde-
ducibility on transmitter inputs or input strings is not
sufficient for protecting a system against transmission
from high to low. The transmitter is able to commu-
nicate noiselessly to the receiver, even though the re-
ceiver cannot deduce anything about the transmitter
input string. There is feedback from the system to
the transmitter. Though the receiver cannot directly
find out the transmitter inputs per se, still the trans-
mitter can choose to send any information it wants to
the receiver. The channel is wide open for a pair of
conspiring spies to exploit.

It is not surprising that nondeducibility on trans-
mitter inputs fails to be a composable property. With
hook-up there is a possibility of feedback, and thus
an example similar to ours can be constructed. When
feedback is not permitted, then nondeducibility on high
inputs is sufficiently strong to yield a hook-up result.

We introduced nondeducibility on strategies, in or-
der to deal with the problem of feedback. Example 2.3
fails to be nondeducible on strategies. In general, a
failure of nondeducibility on strategies provides a way
to create noiseless channels between a transmitter and
a receiver. In a system, if there exists a transmitter
strategy m that is able to exclude some receiver view
A, then the transmitter can use 7 to signal to the re-
ceiver by controlling the occurrences of A for the re-
ceiver. If a system has the property of nondeducibility
on strategies, then noiseless communication between
transmitter and receiver is eliminated.

Example 2.8 was intended to show that forward cor-
rectability is really too strong a concept for exclud-
ing logical deduction. While the first system given in
the example is nondeducible on strategies, 1t fails to
be forwardly correctable. Yet no noiseless communica-
tion can occur from transmitter to receiver. Forward
correctability requires too much. It assumes that for
deduction purposes the receiver can take into account
the entire history of inputs and outputs, both high and
low, up to the point where the high input is changed.
If forward correctability fails, then supposedly the re-
ceiver can make a deduction on the basis of the entire
previous history. This is too strong an assumption, be-
cause the receiver does not know the entire history, but
only its inputs and outputs. Forward correctability is
‘overkill.” We think that nondeducibility on strategies
is sufficient for eliminating noiseless communication.
Moreover, it is possible to prove a hook-up result for
the property, as we shall show in a subsequent paper.
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Figure 15: Strategies with Low Views, Possible or Im-
possible

In Section 3 our intent was to demonstrate the short-
comings of all of the combinatorial theories of security.
We introduced resource contention systems to provide
examples. Our examples show the intrinsic inadequacy
of defining security properties solely through possibilis-
tic specifications. In particular, we examined two con-
jectures, which, if true, might offer ways to save the
combinatorial theories. The conjectures essentially re-
quire that, given one of the combinatorial properties
for security, it should be possible to arrange to have a
noise distribution that makes the communication chan-
nels have zero capacity. Example 3.7 shows that the
conjectures are, in fact, false. It is possible to have a
resource contention system that satisfies every one of
the combinatorial security properties, but nevertheless
must have channels of positive capacity.

Overall, the possibilistic view of security only offers
limited protection for a system. A system that is, for
example, nondeducible on strategies has no noiseless
communication channels. However, a deeper view of
the channels of a system can only come with a prob-
abilistic view. The matrices of figures 15 and 16 can
be used to distinguish the two viewpoints. Each entry,
e;j, in the matrix in figure 15 indicates whether the
transmitter strategy, ;, makes the receiver view, A;,
possible (p) or impossible (7). A system will be nond-
educible on strategies iff there are no i entries in the
matrix. From a probabilistic viewpoint this means that
no matter what strategy might be used by the trans-
mitter all receiver views have a positive probability of
occurring. Consider now the matrix in figure 16. Each
of its entries, p;;, gives the probability of the receiver
view, A;, occurring given the use of the transmitter
strategy, m;. To ensure that all channels have capac-
ity zero, it is necessary that the rows of the matrix be
identical. It is certainly not sufficient for the matrix of
the system merely to satisfy the condition that all its
entries are positive.
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Figure 16: Joint Probabilities of Strategies and Low

Views
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General Nondeducibility
Interpreted as
Nondeducibility on
Strategies

We now provide a particular interpretation of
Sutherland’s general definition of no information flow
or security for nondeducibility on strategies. On in-
tuitive grounds nondeducibility on strategies should
clearly be regarded as a form of general nondeducibil-
ity. However, to interpret Sutherland’s formal defini-
tion as nondeducibility on strategies is not so straight-
forward.

For the formal interpretation we first need to define
the traces of the system and the functions f; and fa.
Then we need to prove that the crucial definition 2.1
and its application to no information flow and security
hold in the interpretation. Our basic model for nond-
educibility on strategies is the synchronized state ma-
chine, so we interpret the set of traces for Sutherland’s
definition naturally as the set of traces of such a ma-
chine. We need a preliminary definition, in order to
give the interpretation for f;.

A.1 Definition We say that a high transmitter strat-
egy, 7, of length n is excluding iff there exists a low re-
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ceiver view, A, that is inconsistent with the transmitter
using .

Let
t= SD(illeykll 11)51 . -5n—1(in;jn: kn, In)sn

be a trace of length n of the given synchronized state
machine. We define fi(t) as the set of excluding strate-
gies compatible with ¢, i.e.,

f1(t)={=|r, anexcluding strategy compatible with ¢}.

The function f; determines the set of excluding strate-
gies relative to a trace. If such strategies exist, they can
be used to show the failure of nondeducibility on strate-
gies. We define fy(t) as the sequence of low events
projected from the trace ¢, i.e.,

fo(t) =diky .. ink,.
We must prove:

A.2 Proposition Given the preceding interpretations
of trace set, T, and functions, f1, f2, definition 2.1 for
wformation flow holds iff there is a failure of nonde-
ducibility on strategies for the state machine.

ProOOF. First, assume there is a failure of nonde-
ducibility on strategies for the state machine. Thus we
have a low view, A, of length n that is part of a pos-
sible trace, and a transmitter strategy, w, of length n
such that, when strategy = is used by the transmitter,
A can never be the low view for the receiver. Consider
a trace, tg, of length n such that 7 is compatible with
to. Let fi(to) = vo. Strategy = is excluding and ac-
tually excludes A. Hence, m € vg and vg is nonempty.
To satisfy the basic condition of flow from f; to fo in
definition 2.1 choose vy as v and A as w. Hence, for
every trace, t, if fi(t) = vo, then the members of v,
in particular, =, must be compatible with ¢, and so

f2(t) # A

Second, assume there is a formal flow in the sense
of definition 2.1. Hence, there is a low view, A, of
length n that is part of a possible trace and there is
an fy value, a set of excluding strategies, such that the
basic condition of the definition is satisfied. We argue
from the basic condition of the definition that not all
of the f; values are empty sets. Suppose they were,
then for every trace, t, f1(t) = 8. In particular, for
a trace that includes A, say ty, fo(tx) # A, which is
a contradiction. Hence, at least one of the f; values



is a nonempty set, i.e., there exists a strategy that
excludes some low view. Thus we have a failure of
nondeducibility on strategies. O

B Forward Correctability
Implies Nondeducibility on
Strategies

B.1 Proposition On the class of synchronized state
machines forward correctability implies nondeducibility
on sirategies.

PROOF. Assume that for a given synchronized state
machine nondeducibility on strategies fails. We need to
show that forward correctability also must fail. Thus,
by assumption there is a possible low view A (which is a
projection of the low inputs and outputs of a full trace,
t) and a strategy for the high transmitter that is not
consistent with . We may further assume that the low
view ) is of minimal length, so that initial segments of
) are consistent with all high transmitter strategies.
To fix ideas, let

i= So(il,jl, kl, 11)31 .. -sn—l(in,jn, kn, l,,)s,,,

so that
A=1d1ky ... ink,.

Let 7 be a strategy that is not consistent with A,
though 7 must be consistent with the initial segments
of X. Without loss of generality we may suppose that
the high transmitter using strategy = and the low re-
ceiver providing appropriate inputs could yield the ini-
tial segment of t as a trace of the machine:

so(i1, J1, k1, 11)51 - 8n—2(in—1,dn=1, kn-1,ln—1)Sn-1.

By the inconsistency of 7w with A we must have
(1,0, - - dn=1:0n=1) = J # Jn, where 7" is the
appropriate function of the strategy and j, is the par-
ticular input value determined by this function of the
strategy. Hence, the perturbation of Z,

tl = sﬂ(illeyklyll)sl .. 'sﬂ—l(in;j:n kﬂvln)sﬂy

has no correction, i.e., the low output value k, must
change. Hence, forward correctability fails. O
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