Noninterference and the Composability of Security Properties

Daryl Mc Cullough

Odyssey Research Associates, Ithaca, NY

In this paper, I discuss the problem of composability of
multi-level security properties, particularly the noninterfer-
ence property and some of its generalizations. Through ex-
amples I attempt to show that some of these security prop-
erties do not compose—it is possible to connect two sys-
tems, both of which are judged to be secure, such that the
composite system is not secure. Although the examples are
“cooked up” to make a point, there is nothing especially
tricky done; I make sure that outputs from one system be-
come inputs to the other machine at the same security level,
and use a standard notion of parallel composition of systems
(see [Hoare 85]).

The final property I introduce, which I call restrictiveness
(formerly it was called “hook-up security”), is generally com-
posable, so that two restrictive systems connected legally
results in a new restrictive composite system. (For those in-
terested in the proof, see [McC 88]). A new feature in the
brief discussion of restrictiveness is a state-machine version
of the property.

1 Why Care About Composabil-
ity?

There are several reasons that a security engineer should care
about having a definition of security that is composable:

o Few systems are entirely stand-alone; there are always
incentives to hook small systems together into net-
works in order to share information or computational
resources. In anticipation of future connections, the
security engineer should make sure that whatever con-
fidence he has in the security of his system carries over
to the new composite system.

e Even for a single computer system, there are in general
components which are partially independent, such as
the disk drives, the CPU, terminals and printers. An

!This work was supported by the Air Force Systems Command at
Rome Air Development Center under Contract No. F30602-85-C-0098

CH2558-5/88/0000/0177$01.00 © 1988 IEEE

177

accurate treatment of any system might require con-
sidering the interactions of several concurrent compo-
nents.

e In the design of a large, complex system it may be
easier to break up the system design into smaller sub-
systems and analyze the security of the components
rather than try to prove the security of the system as
a whole. For this “divide and conquer” approach is to
be successful, one needs a criterion for the security of
the pieces which is sufficient to guarantee the security
of the whole.

Through time-slicing, concurrency is simulated on a
single processor, and so a useful model for a system is
that of several user processes and the operating system
running “semi-concurrently”. From the viewpoint of
this model, it is not enough to consider the security of
the operating system alone; it is necessary to consider
the interactions of the operating system with the other
programs. Protection against “Trojan horse” programs
can thus be enhanced by considering the security of the
operating system in the context of being hooked-up
to a collection of other, possibly malicious processes.
(The idea connecting composability of security with
protection against Trojan horses is due to John Millen

of Mitre.)

Given that it is important to consider composability in the
security of a system, the question becomes: what is a com-
posable model of security?

I will distinguish between two kinds of insecure systems.
The first kind contains some security loop-hole or trap door
which allows the spy to bypass normal access controls and to
directly receive classified data. The Bell-LaPadula security
model[BLP 76] is intended to prevent this kind of insecurity;
for a system to be secure in the sense of Bell-LaPadula, ev-
ery possible sequence of system state transitions must result
in a secure state; i.e., one in which no user has access to
classified data unless he is officially authorized to have that
access.

The second kind of insecure system is one which disallows
direct access of data by unauthorized users, but neverthe-
less allows for covert channels. A covert channel is an in-
direct communication path between users. For the second
kind of insecure system, it is often necessary for the spy to
have a partner which is privileged to see classified data and
can signal this information to the spy. The partner in high
places can either be a human, (in which case it is unneces-
sary to communicate through the system at all; the two can
pass notes in the cafeteria), or a Trojan horse program. An
important thing to realize about the Trojan horse program
is that it does not necessarily violate any rules of security;
it may even be proven to be secure according to some for-
mal model of security. However, if the system on which the
program is running is insecure, it may be possible for the
Trojan horse to communicate classified information to the
spy through the side effects of perfectly normal innocuous
operations. The prevention of low-level side effects of the
behavior of high-level programs is the goal of various ver-
sions of noninterference requirements on systems, including
the Goguen—Meseguer noninterference property[GoMes 84]
and the Bell-LaPadula “star” property (which disallow the
writing of low-level data by high-level programs.)

2 Goguen—Meseguer : MLS Non-

interference

Goguen and Meseguer[GoMes 84] take the principal notion
behind security to be that of noninterference rather than
information flow. Noninterference can be used to give infor-
mation flow restrictions; rather than saying that person A
is not allowed to receive information from source B, one can
instead say that source B is not allowed, either directly or
indirectly, to interfere with person A. The link between the
two statements is the plausible assumption (which can be for-
malized and proved; this was done by Sutherland[Suth 86])
that A cannot learn anything about B unless B has some
effect (or interferes with) something visible to A.

To make the notion of noninterference more precise, Goguen
and Meseguer give an abstract model for a class of informa-
tion processing systems and define noninterference for that
class. Their original model was for state machines, and for
general noninterference policies (and not simply for multi-
level security). I will modify their treatment in two ways:

1. 1 will only consider MLS noninterference properties.

2. I will give the definition in terms of input and output
sequences rather than state machines.

178

m Lout CCoa1,u)
\u [
. N

. K W N :

—————1 Systen .
. A
, .
y
[Ty e— out (LIWI1,Un)
7
User Inputs Merged Outputs
Inputs

Figure 1: Goguen-Meseguer Machines

In their model, there is a collection of users, which I will call
Uy, Uz, ... Uy. They each issue a sequence of commands w,
wy, ... w, which are merged, forming the sequence w. The
system computes a function of its input sequence for each
user and the output is sent to the appropriate user. This
setup is illustrated in figure 1.

Each user u; has a security level assigned to him. If the
system obeys the MLS noninterference policy, then for every
pair of users u; and uj, if the level of u; is not less than
or equal to the level of uj, then the inputs of u; may not
interfere with the outputs of user u;.

Formally, letting out([[w]},u;) be the outputs to user u; re-
sulting from input sequence w, and letting PGy, (w) be the
result of purging from w all inputs from user u;, the require-
ment of noninterference becomes, for all 7, j, w:

level(u;) £ level(u;) — out({[w]], u;) = out([[PGuy;(w)]], u;)

2.1 Assumptions Behind the Model

The model of information processing assumed by Goguen
and Meseguer is not completely general. By assuming that
the output is a function of the input sequence, they have

restricted the set of systems to which their model applies in
at least two ways:

1. They only consider deterministic systems. For nonde-
terministic systems, the output is not a function of the
input sequence, since more than one output sequence
can result from the same input sequence.

2. They only consider uninterruptable systems. This re-
striction is closely related to the first, because a system
with interrupts will look nondeterministic when one
looks at the observable behavior. For example: con-
sider a system which allows the user to abort a com-
putation that is taking too long. For such a system,
the same input sequence, the start command followed
by the abort command, can give rise to two differ-
ent output sequences depending on whether the abort
command comes before or after the calculation is com-
pleted. (If it comes in time, the system may respond
with Ok. If it comes too late, the system may instead
respond with No processes running.) Note that inter-
rupts only lead to nondeterminism because time is not
explicitly considered in the model.

The above assumptions are not necessary, since many per-
fectly reasonable systems do not meet them, but they have
the very nice feature that if a system design is proved to be

MLS noninterfering, and if the output function really cap-
tures everything about the system that is visible to the user,
then any implementation will also be noninterfering, since
everything visible to the user would already be decided at
the design stage. If interrupts and nondeterminism were in-
cluded, then there would be the possibility that the imple-
mentation could affect the precise way that the interrupts or
the nondeterminism worked, thus possibly invalidating the
proof of security.

2.2 How to Make a System Deterministic

When inputs are coming from a human being, it may be plau-
sible to treat the system as infinitely fast; that is, the sys-
tem can complete any calculation between two inputs from
the user. However, when inputs come not from a human,
but from another machine, this is no longer a reasonable
assumption; the possibility arises that the system may be
given inputs faster than they can be handled. Since I am
ultimately going to be discussing the composition of several
machines, it’s necessary to give this matter a little thought.
On first analysis, there seem to be three ways of handling
the untimely arrival of inputs:

179

1. Assume that there is an unbounded input buffer. Then
it would be possible for the system to leisurely take
the inputs as it has time for them, and the result is
the same as if the inputs had come more slowly. This
solution has the disadvantage of being impossible to
implement in this finite world. However, there may be
situations in which a finite but very long buffer can be
treated as if it were infinite, if it is known that there is
a very small probability of the buffer becoming full.

2. Assume that there is a finite buffer, and that the pro-
cess or person making the inputs will block; that is,
patiently wait for the buffer to have space before mak-
ing an input. The state of the process is unchanged by
blocking, so that when it becomes unblocked, it can-
not “know” how long it was blocked, or even whether
it was ever blocked. This solution is actually imple-
mented in such programming languages as Gypsy, and
as long as the inputing process does not “remember”
being blocked, the result will be the same as if the
buffer were infinite from the point of view of that pro-
cesses.

3. Assume that there is a finite buffer, and that if it is full,
the next “send” to the buffer will cause that message
or another to be dropped (it may or may not inform
the sender of this fact).

2.3 The Problem with Blocking Inputs:
Noncomposability of Noninterference

Although for some purposes blocking is an elegant solution
to the problem of finite buffers, it can produce headaches for
designers trying to make a secure system. The reason for this
is that, by introducing blocking, a designer also introduces
covert channels; ways to send information without sending
messages. If a buffer is full, then it is possible to receive
information from the buffer by sending to it; if the send is

successful, then the sending process learns that someone has
unblocked the buffer.

Now, it is possible to argue at this point that this is a pretty
small amount of information; after all, if the buffer never
becomes unblocked, then the sending process will never be-
come active again in order to pass along this fact. If the
buffer eventually does become unblocked, then the process
does not learn anything, either, since it will not “remember”
ever being blocked in the first place. The only information
available to the process is this: if it is not blocked, it knows
that it is not blocked.

This argument, however, is incorrect. In the context of sev-
eral concurrently executing processes. It is possible to ar-
range two processes which only receive information through
buffer blocking such that the resulting composite system al-

Unclassified Buffer BA

Process A

Buffer 8D
—

Secret [Buffer BE
]Prncess <

i
‘ Buffer BB s
| [Unclassified > 1

1 Process B

Buffer BC|

from secret

to unclassified source

USers

Figure 2: Using Buffer Blocking as a Channel

lows arbitrarily large amounts of information to leak. This
possibility is illustrated in figure 2.

In this figure, there are three processes, A, B, and S, the first
two being unclassified processes, and the third being a secret
process. There is one externally visible output buffer, B-U,
which can be read by unclassified users, and one externally
visible input buffer, B_S, which receives a sequence of zeros
and ones from some secret source.

The secret process has three input buffers: B_A, which pro-
cess A may write to, B_B, which B may write to, and B.C,
which both A and B may write to.

Considering process S together with its input buffers, one
sees that it outputs no messages at all. Therefore, it triv-
ially obeys the Goguen—Meseguer noninterference property.
Likewise, since A and B have no high-level inputs, there can-
not be any interference of low-level events. Thus, if all the
buffers were infinite, this set-up would certainly be secure,
since no information at all would leak from the secret input
buffer to the unclassified input buffer. If buffers /3.4 and
B_B are finite, though, things are much different.

I will look at the case in which buffers B_A and B_B each
have length one, and I will assume the following behavior
for the processes: Process A first sends a message to buffer

180

B_A, (filling it) and then tries to send one more. After it
sends the second message, it sends a zero to buffer B.U, and
then sends to buffer B-C (informing the secret process that A
has completed a cycle). Process B acts analogously, sending
twice to buffer B_B and then sending a one to buffer B-U,
and then to buffer B.C. A and B then cycle through the
above actions over and over again.

Process S repeatedly receives from B_S, receives from B_C
and then receives from either B_A or B_B depending on
whether it receives a zero or a one from the secret buffer

B_S.

When these processes are connected and allowed to run, the
first thing that happens is that A and B fill up buffers B-A
and B_B, respectively, while process S receives instructions
from buffer B_S. Process S then unblocks one or the other of
the buffers by receiving from it, the choice being determined
by what it received from B_S. This releases the corresponding
process to send to buffer B_S and then to B.C. Process &
waits for something to appear in buffer B.C (indicating that
process A or B has just completed a “send” to B-U. Then it
starts over, with S receiving from B_S.

The net effect of all of this is to copy the sequence of ze-
ros and ones from the secret buffer B_S into the unclassified
buffer B_U, where they can be read by unclassified users,
which is about as blatant a security violation as can be imag-

ined.

The moral of this story is that, if you want to be able to
follow information flow through a system by simply watching
who sends to whom, then you cannot generally allow the
blocking of inputs. Thus, the blocking of inputs is not a way
to achieve the same level of security for the finite-buffer case
Goguen-Meseguer machine as held in the case of unbounded
buffers.

2.4 The Problem with Not Blocking In-
puts: Nondeterminism

An alternative to blocking inputs when a buffer is filled is
to respond with an error message Busy if a message arrives
when the system is not ready to take it. As shown in figure
3, this leads to nondeterminism, exactly as the existence of
interrupts did.

2.5 Parallel Composition Leads to Non-

determinism

<Cy,Cq> <f(Cy),$(C2)>
¥—~ System —l*i—%

R

<Cy,C2> <busy,f(Cq)>

3 Systen —

Figure 3: Not Blocking Inputs

Systen f
N <f(C1)>
7/
<Cy,C2> <f(Cy),g(Cg)>
<g(C2),f(C1)>
<g(Cqp)>
Systen g
Split Merged
Inputs I;Luts Outputs Outputs

Figure 4: The Nondeterministic Composition of Determinis-
tic Machines

181

Even if we assume infinite buffers, nondeterminism creeps in
when we consider connecting several processes. This is illus-
trated in figure 4. Here, we see two processes f and g, each of
which is deterministic. However, they are connected together
in such a way that their outputs are merged. Two different
output sequences of the resulting composite system are pos-
sible, depending on which process, f or g, finishes first. Thus
the resulting system is nondeterministic (although determin-
ism would be restored if the relative processing speeds of f
and g were taken into account.)

2.6 When Noninterference is Composable

To preserve the MLS noninterference property when pro-
cesses are composed it is necessary to require the following:

* All processes must communicate through unbounded
buffers, since bounded buffers seem either to lead to
covert channels not easily analyzed or to nondetermin-
ism.

There must be no merging of the outputs of processes;
that is, two different processes may not both send to
the same process or buffer, since this leads to nondeter-
minism, which cannot be handled by the Goguen and
Meseguer definition of noninterference. This rules out

the kind of uses of multiprocessing in which the results
of many parallel computations are funneled into a cen-
tralized source, where they can be acted upon as they
arrive.

If these restrictions are bearable, then Goguen and Meseguer
can be used in composing systems. If they seem hard to live
with (or if the assumption of infinite buffers seems unrealis-
tic) then there is a motivation to look for a generalization of
Goguen and Meseguer noninterference. As I mentioned ear-
lier, the assumption of deterministic processes, which seems
to be at the root of the problems, is not apparently relevent
to security. I will turn next, then, to nondeterministic gen-
eralizations of noninterference.

3 Generalized Noninterference: In-
corporating Nondeterminism

To simplify the discussion of noninterfence, I will assume that
there are only two levels: high and a lower level, low. The
generalization to more than two levels is straight—forward.

If noninterference is generalized to incorporate nondetermin-
ism and interrupts, then it will no longer be p~ilile to talk

about the output as a function of the input sequence, for two
reasons:

1. There may be more than one output that may follow
from a given input sequence.

2. The outputs may depend not only on the sequence of
inputs, but also on the way the inputs are interleaved
with the system’s outputs.

For a nondeterministic system there is, in general, a set of
possible future possibilities at any given time. To say that
high-level users do not interfere with low-level users intu-
itively implies that:

e The input of a high-level signal may not alter the pos-
sible future sequences of low-level events.

Using a™y to mean the sequence of events in o followed by
the sequence in 7, I will say that v is a possible future for
if @’y is a possible history. If v, is the sequence of low-level
events occuring in some possible future of @, then -; will be
said to be a possible low-level future of a.

A system will have the generalized noninterference property
if for every history (sequence of inputs and outputs) of the
system «a,

e If 2 is a high-level input, then the set of possible low-
level futures of o™(z) is equal to the set of possible
low-level futures of a.

Generalized Noninterference is not in
General Composable

3.1

Consider a system, called A, which has the following set
of traces: each trace starts with some number of high-level
inputs or outputs followed by the low-level output stop_count
followed by the low-level output odd (if there have been an
odd number of high-level events prior to stop_count) or even
(if there have been an even number of high-level events prior
to stop-count). The high-level outputs and the output of
stop_count leave via the right channel of the process, and the
events odd and even leave via the left channel. The high-
level outputs and the output of stop_count can happen at
any time.

A typical event sequence of system A is portrayed in the top
left corner of figure 5.

182

System R Systen B
/F
odd even 3

I
stop_count”

S
M stop-count

time | A
A & B Connected
8 A B
W\ s S N
PR — ——
™ odd even odd
N OR stop.count

stop.count

Figure 5: Noninterference is not Composable

System A actually obeys the generalized noninterference pol-
icy; regardless of high-level inputs, the possible low-level se-
quences are stop_count followed by odd or stop_count followed
by even. A high-level input does not affect these possibil-
ities, because it is always possible for such an input to be
followed by a high—level output, and the pair would leave
the low-level outputs unaffected.

System B behaves exactly like system A, except that:

e its high-level outputs are out its left channel
e its even and odd outputs are out its right channel.

e stop_count is an input to its left channel, rather than
an output.

A typical event sequence of system B is shown in the upper
right corner of figure 5.

If systems A and B are connected, so that the left channel
of B is connected to the right channel of A then we have
the situation pictured in the bottom of figure 5. Now we
see that the combined system no longer obeys the general-
ized noninterference policy: now, since the number of shared
high-level signals is the same for A and B, the fact that A
says odd while B says even (or vice-verse) means that there

has been at least one high-level input from outside. If all
high-level inputs are deleted, then systems A4 and B will
necessarily both say even or both say odd. Therefore, gen-
eralized noninterference is not composable for systems with
feedback (two-way communication between processes).

3.2 When Generalized Noninterference is

Composable

It turns out that this property is composable if there is no
feedback between systems; that is, if no two systems are
allowed to pass messages in both directions. An example
of such a composition without two-way communication is a
system connected up to an infinite buffer such that all its in-
puts come through the buffer. The communication between
buffer and system is one-way; from the buffer to the system.
Although the proof will not be given here, any collection
of noninterfering processes with buffered inputs can be con-
nected together to still have a composite system which has
the noninterference property.

4 Deducibility Security

Deducibility security (or information flow security) was in-
troduced by Sutherland[Suth 86]. It is more general than
deterministic noninterference, in that deterministic, uninter-
ruptable systems are noninterfering if and only if they are
deducibility secure, but the definition of deducibility secu-
rity does not require deterministic systems.

Informally, a system can be defined to be deducibility secure
if it is impossible for a user, through observing events visible
to him, to deduce anything about the sequence of inputs
made by a second user unless the level of the second user is
lower than the level of the first.

If inputs are never blocked, then it turns out that this def-
inition is equivalent to a simpler definition: a system is de-
ducibility secure if for every level I and every trace (or se-
quence of inputs and outputs possible for that system) there
is a second trace with the same behavior visible to users of
level | or less, but which has no inputs that are not less
than or equal to level I. This is a kind of noninterference
assertion—it is always possible to delete high-level inputs
and leave low-level inputs and outputs alone.

183

4.1 When Deducibility Security is Com-

posable

It is easily shown that a system which obeys generalized non-
interference is also deducibility secure. The converse does
not hold. Therefore, deducibility security is even less com-
posable than generalized noninterference. It is not even com-
posable for systems without feedback. However, if in addi-
tion to requiring that systems be deducibility secure, one
also requires that there be no “unsolicited write-ups” then
deducibility security becomes composable. An unsolicited
write-up occurs whenever the system makes a high-level
output at a time when there has been no high-level input
requesting it. Deducibility security, strengthened with this
additional restriction becomes a property which is sometimes
called strong noninterference. Doug Weber at Odyssey has
proved that this is a composable security property.

However, there are several undesirable features of strong non-
interference:

o It forbids some systems that are obviously secure.

To see this, consider a system which simply upgrades
information; it takes in low-level signals and outputs
high-level signals. It is manifestly secure; it can’t pos-
sibly give away high-level information to the low-level

user, since it never even sees any high-level informa-
tion.

It is not preserved by upgrading outputs.

Intuitively, upgrading outputs (increasing their secu-
rity level) on a secure system should leave the system
secure; there is less information available to low-level
user than before. However, such an upgrade can change
a system which obeys strong noninterference into one
which does not, since the transformation may produce
new unsolicited high-level outputs.

¢ It permits systems which are intuitively insecure.

Consider a system that behaves in the following way:

~— There is two possible low-level input commands;
begin_eavesdrop, and end_-eavesdrop.

— If the low-level user issues begin_eavesdrop, and
then at a later time issues end_eavesdrop, the sys-
tem will respond by repeating to the low-level
user the sequence of inputs made during the pe-
riod between low-level commands, if any.

— If no high-level inputs are made at all in the pe-
riod between begin_eavesdrop and end_eavesdrop,
then the system will send to the low-level user a
fake response made up of randomly selected out-
puts.

The system described above is deducibility secure. A
low level user can never deduce anything about the se-
quence of high-level inputs, since it is always possible
that absolutely any sequence was made in a time that
did not fall between begin_eavesdrop and end-eavesdrop.
(Actually, a low-level user can deduce something; he
can deduce that certain sequences of high-level inputs
were definitely not made during the eavesdropping pe-
riod. However, this deduction is allowed by the defini-
tion of deducibility security.)

5 Restrictiveness: A Compos-
able Security Property

An important thing to notice about the failure of com-
posability for generalized noninterference is that, al-
though a system obeying the property insures that no
single high-level input will affect the future low-level
behavior, it does not guarantee that a pair, consisting
of a high-level input followed immediately by a low-
level input, will have the same effect on the low-level
behavior as the low-level input alone. From figure 5,
it is clear that system B does not insure this latter,
stronger form of noninterference. For example, the pair
consisting of a high-level input followed by stop_count
does not have the same effect as stop_count alone.

The additional requirement can be intuitively under-
stood as follows: Only some facts about the past of a
system are relevent for the future low-level behavior
of the system. These relevent facts can be thought of
as defining the “low-level state” of the system. The
requirement of noninterference is that a high-level in-
put may not change the low-level state of the system.
Therefore, the system should respond the same to a
low-level input whether or not a high-level input was
made immediately before. Systems which obey this
property, called restrictiveness are said to be restric-
tive. Restrictiveness was described under the name of
“hook-up security” in [McC 87], and is a composable
security property.

5.1 A State Machine Characterization
of Restrictiveness

A state machine is characterized by giving a set £ of
events, a set Z of input events, a set of O of output
events, a set S of states, an initial state Sp, and a set
T of transitions of the form

meaning that the machine may start in state S;, engage
in event sequence v, and end up in state S2. The set of

traces produced by a state machine is the set of event
sequences produced by the transitions starting in the
initial state.

To formalize restrictiveness for state machines, I will
once again consider only the case in which there are
two levels: low and high. For a state machine to be
restrictive with respect to a set of low-level events, it
is sufficient that a state machine have the following
statements hold:

— It is tnput total, meaning that inputs are never
blocked, and so for every input signal and every
state there must be a transition leading out of
that state with that input signal.

— There is an equivalence relation = between states
(indicating when two states correspond to the same
low-level state) such that

1. If e is a high-level input, and S “ S} then
S = St
This says that high-level inputs may not af-
fect the low—level part of the system state.
This can be thought of as a kind of “write
only up” policy.

2. If S; = S, and e is a low-level input, and
S “ S1, then for some state Sj such that

S5 =, 8., it must be that S, % 5.

This requirement says that the low-level part
of the final state following a low-level input
depends only on the input and the low-level
part of the state before the transition.

3. If S; = S, and v is a high-level output se-
quence, and S; = S}, then for some state
53 such that S = Si, and some high-level

output sequence v/, it must be that S, WA Ss

4. If S1 =5, and v and § are high-level output
sequences, and e is a low-level output, and

’YA(E s
51 “ 51, then for some high-level output
sequences 7’ and ¢’ and some state Sj such

IA A U

that S} = 5!, it must be that S, 7 4 % &5,
These two rules state that if two states have
the same low-level parts, then for any pos-
sible output sequence leading from one state
there must be an equivalent output sequence
leading from the other state, and the resulting
final states must be equivalent. This can be
thought of as a “read only down” policy; the
possible output sequences for low-level events
are completely determined by the low-level
equivalence class.

The rules above are equivalent to the trace defini-
tion of restrictiveness given in [McC 87] in that:

* For any set of traces which is restrictive, there

is some restrictive state machine which pro-
duces exactly that set of traces.

* For any state machine which is restrictive, the
set of traces produced by it is also restrictive.

There are, however, some state machines which
are definitely not restrictive, which nevertheless
give rise to a restrictive set of traces.

5.2 The Composability of Restric-
tiveness

To see that the security property of state ma-

chines is composable, one needs to prove that if

machine A and machine B both obey state ma-

chine restrictiveness, then the composite machine

formed by connecting them obeys state machine

restrictiveness. For the connection to make sense,

the two machines must be compatible, in the sense

that output events for one machine are input events
for the other, and that the two machines agree on

which events are considered low-level.

The states of the composite machine are pairs of

states of A with states of B.

The transitions of the composite machine are given
by: (Aj, B1) 5 (A, By) only if one of the follow-

ing cases holds:

1. Ay 5 Ajisa legal transition for machine A,
and e is not an event of B, and B; = B,

2. By 5 B, is a legal transition for machine B,
and e is not an event of A, and A, = A,

3. A1 5 A, and B, 5 B, are legal transitions
for A and B, respectively, and e is an input
for one machine and an output for the other.

The equivalence relation on the states of the com-
posite machine is obtained from the equivalence
relation for the components as follows: (A;, B;)
is equivalent to (Aj, B,) if and only if A, is equiv-
alent to A, and B, is equivalent to B,.

It is straight—forward to prove that for such a
composite machine, it will obey state machine re-
strictiveness if the component machines do. (This
Is in contrast to the original definition of restric-
tiveness, which was defined in terms of possible
histories instead of state transitions.)

It is a little more complicated to show that re-
strictive state machines also obey the generalized
noninterference property, but they do, and so they
cannot be used for even half-bit covert channels.

5.3 What’s Good about Restric-
tiveness?

Restrictiveness is a useful property because:

185

* Any legal (connecting outputs to inputs of the
same level) composition of restrictive systems
1s restrictive.

*

If a system is restrictive, and some output
events are hidden (made to become unob-
servable internal events) then the resulting
system is restrictive. (This means that the
property of being restrictive is preserved by
any modification of the system which changes
only the behavior of internal events.)

*

Restrictiveness applies to nondeterministic, as
well as deterministic systems.

6 Summary : How do the

properties rate?

1. Goguen and Meseguer’s noninterference prop-
erty
On the positive side:
* It is intuitively appealing.
* Every implementation of a secure system
is secure.
On the negative side:
+ It is only composable for forward branch-
ing architectures (a process may not re-
ceive inputs from two different sources).

* It is only composable if unbounded buffers
are-assumed. (As a matter of fact, for de-
terministic systems with unbounded buffers,
it can be shown that a system obeys the
MLS noninterference property if and only
if it is restrictive.)

* It applies only to deterministic systems.

* It applies only to uninterruptable systems.

* Its connection with information flow is
not explicit.

2. Generalized Noninterference
On the positive side:

* It applies to nondeterministic and inter-
ruptable systems.

* It is a straight—forward generalization of
Goguen-Meseguer.

* It is somewhat composable.

On the negative side:

= It is only composable for networks with
no feedback (no two-way communication
between processes).

+ It is not preserved by implementation.

3. Sutherland’s Deducibility Security
On the positive side:

* Its connection with information flow is
explicit.

* It can be applied to all systems.

* It is composable, under the additional as-
sumption that unsolicited write-ups are
disallowed.

On the negative side:

* It permits intuitively insecure systems.

% With the no write-up condition, it disal-
lows some systems which are manifestly
secure.

+ With the no write—up condition, it is not
preserved by upgrading outputs.

* It is not preserved by implementation.

4. Restrictiveness
On the positive side:

+ It is composable for all network architec-
tures.

* It applies to all systems; nondeterministic
or interruptable.

*

Restrictiveness is preserved by hiding out-
puts.

* Because restrictiveness is composable, one
can make a restrictive large system is by
composing restrictive smaller systems.

On the negative side:

* It may be difficult to prove in some cir-
cumstances.

* It is not preserved by implementation. (If

one makes a system more deterministic

may invalidate the security proof, since
it may produce new correlations between
high-leve inputs and low-level events. This
problem is inherent in any definition of
security for nondeterministic systems.)

References

[Hoare 85] C.A.R. Hoare, Communicating
Sequential Processes, (Prentice-
Hall, London, 1985)

[McC 88] Daryl McCullough, The Theory
of Security in Ulysses, (Technical
Report, Odyssey Research Asso-
ciates, Ithaca, NY, 1988)

[BLP 76] Bell, D.E. and LaPadula, L.J.,
Secure Computer System: Uni-
fied Ezposition and Multics Inter-
pretation (Technical Report no.
ESD-TR-75-306, Electronics Sys-
tems Division, AFSC, Hanscom
AT Base, Bedford MA, 1976)

[GoMes 84] Goguen, J.A. and Meseguer, J.
Unwinding and Inference Control
(Proceedings of the 1984 Sympo-
sium on Security and Privacy)

186

[Suth 86] Sutherland, D. A Model of Infor-
mation (Proceedings of the 9th
National Computer Security Con-
ference, 1986)

[McC 87] McCullough, Daryl Specifications
for Multi-Level Security and a
Hook-Up Property (Procedings of
the 1987 Symposium on Security
and Privacy)

