QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL
Qual. Reliab. Engng. Int. 2002; 18: 165-184 (DOI: 10.1002/qre.473)

FIGHTING FIRE WITH FIRE: USING RANDOMIZED GOSSIP
TO COMBAT STOCHASTIC SCALABILITY LIMITS

INDRANIL GUPTA, KENNETH P. BIRMAN* AND ROBBERT VAN RENESSE
Cornell University, Ithaca, NY 14853, USA

SUMMARY

The mechanisms used to improve the reliability of distributed systems often limit performance and scalability.
Focusing on one widely-used definition of reliability, we explore the origins of this phenomenon and conclude that
it reflects a tradeoft arising deep within the typical protocol stack. Specifically, we suggest that protocol designs
often disregard the high cost of infrequent events. When a distributed system is scaled, both the frequency and
the overall cost of such events often grow with the size of the system. This triggers an 0(n?) phenomenon, which
becomes visible above some threshold sizes. Our findings suggest that it would be more effective to construct
large-scale reliable systems where, unlike traditional protocol stacks, lower layers use randomized mechanisms,
with probabilistic guarantees, to overcome low-probability events. Reliability and other end-to-end properties are
introduced closer to the application. We employ a back-of-the-envelope analysis to quantify this phenomenon
for a class of strongly reliable multicast problems. We construct a non-traditional stack, as described above,
that implements virtually synchronous multicast. Experimental results reveal that virtual synchrony over a non-
traditional, probabilistic stack helps break through the scalability barrier faced by traditional implementations of
the protocol. Copyright © 2002 John Wiley & Sons, Ltd.

KEY WORDS: group communication; reliable multicast; scalability; randomized algorithms; non-traditional

stack; virtual synchrony

1. INTRODUCTION

The scalability of distributed protocols and systems is
a major determinant of success in demanding settings.
This paper focuses on the scalability of distributed
protocols, in group communication systems, providing
some form of guaranteed reliability. Examples
include the virtual synchrony protocols for reliable
group communication [1], scalable reliable multicast
(SRM) [2], and reliable multicast transport protocol
(RMTP) [3]. We argue that the usual architecture for
supporting reliability exposes mechanisms of this sort
to serious scalability problems.

Reliability can be understood as a point within a

*Correspondence to: K. P. Birman, Department of Computer
Science, Cornell University, 4130 Upson Hall, Ithaca, NY 14853,
USA. Email: ken@cs.cornell.edu

Contract/grant sponsor: DARPA/AFRL-IFGA; contract/grant
number: F30602-99-1-0532

Contract/grant sponsor: NSF-CISE; contract/grant number:
9703470

Contract/grant sponsor: AFRL-IFGA Information Assurance
Institute

Contract/grant sponsor: Microsoft Research

Contract/grant sponsor: Intel Corporation

Copyright © 2002 John Wiley & Sons, Ltd.

spectrum of possible guarantees. At one extreme of
this spectrum one finds very costly, very strong guar-
antees (for example, the Byzantine Agreement used
to support Replicated State Machines). Replicated
database systems represent a step in the direction
of weaker, cheaper goals: one-copy serializability,
typically implemented by some form of multiphase
commit using a quorum read and write mechanism.
Lamport’s Paxos architecture and the consensus-based
approach of Chandra and Toueg achieve similar prop-
erties. Virtual synchrony, the model upon which we
focus here, is perhaps the weakest and cheapest ap-
proach that can still be rigorously specified, modeled
and reasoned about. Beyond this point in the spec-
trum, one finds best-effort reliability models, lacking
rigorous semantics, but more typical of the modern
Internet—SRM and RMTP are of this nature. The
usual assumption is that, being the weakest reliability
properties, they should also be the cheapest to achieve
and most scalable. One surprising finding of our work
is that this usual belief is incorrect.

Traditionally, one discusses reliability by posing

a problem in a setting exposed to some class of
faults. Fault-tolerant protocols solving the problem

166 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

can then be compared. The protocols cited above
provide multicast tolerance of message loss and
endpoint failures, and discussions of their behavior
would typically look at throughput and latency under
normal conditions, message complexity, background
overheads, and at the degree to which failures disrupt
these properties.

Oddly, even thorough performance analyses gener-
ally focus on the extremes—performance of the proto-
col under ideal conditions (when nothing goes wrong),
and performance impact when injected failures disrupt
execution. This paper adopts a different perspective;
it looks at reliable protocols under the influence of
what might be called mundane transient problems,
such as network or processor scheduling delays and
brief periods of packet loss. One would expect reliable
protocols to ride out such events, but we find that this
is rarely the case, particularly if we look at the impact
of a disruptive event as a function of scale. In fact,
reliable protocols degrade dramatically under this type
of mundane stress, a phenomenon attributable to low-
probability events that become both more frequent and
more costly as the scale of the system grows.

After presenting these arguments, we shift attention
to an old class of protocols that resemble NNTP, the
gossip-based algorithm used to propagate ‘news’ on
the Internet. These turn out to be scalable under the
same style of analysis that predicts poor scalability for
their non-gossip counterparts.

This finding leads us to suggest that protocol
designers should fight fire with fire, employing
probabilistic techniques that impose a constant and
low system-wide cost to overcome these infrequent
system-wide problems. In particular, we employ
probabilistic reliability mechanisms at lower levels of
the protocol stack, employing higher-level end-to-end
layers that send very few additional messages. This is
different from traditional protocol stacks that attempt
to achieve reliability at the lower layers. In the case of
reliable multicast, this yields a style of protocol very
different from the traditional receiver-driven reliability
or virtual synchrony solutions. Our approach reflects
tradeoffs: the resulting protocols are somewhat slower
in small-scale configurations, but faster and more
stable in large ones.

We test this hypothesis by applying the approach to
virtually synchronous multicast protocols. Traditional
implementations of virtual synchrony, as in Amoeba,
Ensemble, Eternal, i-bus, Isis, Horus, Phoenix,
Rampart, Relacs, Transis, Totem, etc. [1], provide very
good performance at small group sizes (i.e. perhaps 16
to 32 members), but partition away and break down
at larger group sizes. However, the specification is

Copyright © 2002 John Wiley & Sons, Ltd.

popular with builders of distributed systems, and the
systems mentioned above have been widely used in
settings such as the Swiss Stock Exchange and the
French Air Traffic Control System [1,4]. As noted
earlier, our interest in the model stems both from its
popularity and because it appears to be the weakest of
the models that still offers rigorous guarantees.

We first use a back-of-the-envelope analysis to try
and quantify the growth rate of disruptive overheads
for this model. The analysis reveals that using
traditional stacks inherently limits the scalability
of these protocols (Gray et al. reach a similar
conclusion with respect to database scalability in [5]).
We next propose, analyze, and experiment with a non-
traditional stack-based implementation of a virtually
synchronous reliable multicast.

Our analysis and experiments reveal that such a
probabilistic stack scales to much larger group sizes
than a traditional one, even though it does not give as
good a throughput at small group sizes. Although we
still encounter some limits to scalability, these are far
less severe than for standard implementations of the
model.

In Section 2, we detail several problems with
traditional reliable protocol stacks. In Sections 3 and 4,
we outline a proposal to build lower stack layers
with gossiping mechanisms. In Sections 5 and 6, we
analyze and evaluate the performance of traditional
as well as the new non-traditional stack for virtual
synchrony. Section 7 summarizes our findings.

2. SCALABILITY AND RELIABILITY

Reliable multicast comes in many flavors. This section
considers two points within the spectrum, studying
their scalability properties. First, we look at the virtual
synchrony model [6]. The model offers strong fault-
tolerance and consistency guarantees to the user,
including automated tracking of group membership,
reporting membership changes to the members, fault-
tolerant multicast, and various ordering properties.
Scalability has been studied in a previous work on
the Horus system [7] and we briefly summarize the
findings, which point to a number of issues. We believe
that these problems are fundamental to the way in
which virtual synchrony is usually implemented, and
that similar experiments would have yielded similar
results for other systems in this class.

Next, we discuss multicast protocols in which re-
liability is ‘receiver-driven’—group membership is
not tracked explicitly, and the sender is consequently
unaware of the set of processes which will receive
each message. Receivers are responsible for joining

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 167

themselves to the group and must actively solicit
retransmissions of missing data. The systems com-
munity has generally assumed that because these
protocols have weaker reliability goals, they should
scale better; well-known examples include the reliable
group multicast of the V system, RMTP, SRM, TIB,
etc. SRM has been described in the greatest detail and
a simulation was available to us, so we focus on that
protocol. Perhaps surprisingly, the protocol scales as
poorly as the virtually synchronous one, although for
slightly different reasons. Moreover, we believe the
same phenomena would limit scalability of the other
protocols in this class. This finding leads us to draw
some general conclusions that motivate the remainder
of the paper.

2.1. Throughput instability

Consider Figure 1, which illustrates a problem
familiar to users of virtually synchronous multicast.
The graph shows the throughput that can be sustained
by various sizes of process groups (32, 64 and
96 members), measuring the achievable rate from
a sender attempting to send up to 200 messages/s
to the group. This experiment was produced on an
SP-2 cluster with no hardware multicast. We graph
the impact of a ‘perturbation’ on the throughput of
the group, using an optimized implementation that
set throughput records among protocols in this class.
A single group member was selected, and forced to
sleep for randomly selected 100 ms intervals, with
the probability shown on the x-axis. Each throughput
value was calculated at an unperturbed process, using
80 successive throughput samples, gathered during a
500 ms period. The message size was 7 kbyte. The
data was gathered on a cluster-style parallel processor,
but similar results can be obtained for LANSs, as
reported in [4,8].

Focusing on the 32-member case, we see that the
group can sustain a throughput of 200 messages/s
in the case where no members are perturbed. As the
perturbed member experiences growing disruption,
throughput to the whole group is eventually impacted.
The problem arises because the virtual synchrony
reliability model forces the sender to buffer messages
until all members in the group acknowledge receipt;
as the perturbed member becomes less responsive, the
message buffer fills up and throughput is affected.
Moreover, flow control in the sender could also
begin to limit the transmission bandwidth. Indeed,
our experiment employed a fixed amount of buffering
space at the sender. With this in mind, an application
designer might consider adjusting the buffering

Copyright © 2002 John Wiley & Sons, Ltd.

250

—6— group size: 32
—¥— group size: 64
—H&— group size: 96

200

100

50

Messages per second

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Degree of perturbation

Figure 1. Throughput instability. Throughput instability grows as a
reliable multicast protocol is scaled to large group sizes

parameters of the system to increase sender-side
buffer capacities, and designing the application itself
to communicate asynchronously, in the hope that
the underlying communication system might soak
up delays, much as TCP’s sliding window conceals
temporary rate mismatches between the sender and
receiver.

Such a strategy is unlikely to succeed. Notice that
for any fixed degree of perturbation, performance
drops as a function of group size, primarily because
of the linear time required by the two-phase commit
protocol per multicast’. As a result, the knee of the
curve shifts left as we scale up: with 64 members,
performance degrades even with one member sleeping
as little as 10% of the time, and with 96 members the
impact is dramatic. The perturbation introduced by our
experiment* is not such an unlikely event in a real
system: random scheduling or paging delays could
easily cause a process to sleep for 100 ms at a time, and
such behavior could also arise if the network became
loaded and messages were delayed or lost. Indeed,
some small amount of perturbation would be common
on any platform shared with other applications,
especially if some machines lack adequate main
memory, have poor cache hit rates, or employ slow and
flaky network links. Our graph suggests that a strategy
focused on sender-side buffering would apparently
need buffering space to grow at least linearly with
the group size, even with just one perturbed member.

TThis means that even in the presence of (unreliable) hardware
multicast, one would observe trends similar to those in Figure 1.
*We should note that similar results are obtained when multiple
processes are subjected to perturbation, and when the network
is disrupted by injecting packet delays or losses. The throughput
graphs differ, but the trend is unchanged.

Qual. Reliab. Engng. Int. 2002; 18: 165-184

168 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

In fact, the buffering required might be worse than
linear, as the group-wide perturbation rate tends to rise
linearly with group size.

2.2. Micropartitions

Faced with this sort of problem, a system designer
who needs to reliably sustain a steady data rate
might consider setting failure detection thresholds
of the system more and more aggressively as a
function of scale. The idea would be to knock out
the slow receiver, thereby allowing the group as a
whole to sustain higher performance. To a reader
unfamiliar with virtually synchronous multicast, the
need to make failure detection more aggressive as a
function of system size may not seem particularly
serious. However, such a step is precisely the last
thing one wants to do in a scalable reliable group
multicast system. The problem is that in these systems,
membership changes carry significant costs. Each time
a process is dropped from a group, the group needs
to run a protocol (synchronized with respect to the
multicast stream) adjusting membership, and reporting
the change to the members.

The problem gets worse if the failure detector is pa-
rameterized so aggressively that some of the dropped
processes will need to rejoin. Erroneous failure deci-
sions involve a particularly costly ‘leave/rejoin’ event.
We will term this a micropartitioning of the group,
because a non-crashed member effectively becomes
partitioned away from the group and later the parti-
tion (of size one) must remerge. In effect, by setting
failure detection parameters more and more aggres-
sively while scaling the system up, we approach a
state in which the group may continuously experi-
ence micropartitions, a phenomenon akin to thrashing.
Moreover, aggressive failure detection mechanisms
ensuring that a process will be dropped for even very
minor perturbations, brings us into a domain in which
a typical healthy process has a significant probability
of being dropped because of the resulting noise.

Note that this problem would be expected to grow
with the square of the size of the group. This is because
the frequency of mistakes is at least linear® with the
size of the group, and the cost of a membership change
in systems of this sort is also linear with the group size.
Section 5 fleshes out this observation.

This phenomenon is familiar to the designers of
large reliable distributed systems. For example, the
developers of the Swiss Exchange trading system

$For all-to-all heartbeating schemes for failure detection [15], the
rate of erroneous failure detections grows as O(nz), since any
member might misdiagnose a failure of any other member.

Copyright © 2002 John Wiley & Sons, Ltd.

(an all-electronic stock exchange, based on the Isis
Toolkit) comment that they were forced to set failure
detection very aggressively, but that this in turn limited
the number of machines handled by each ‘hub’ in their
architecture [4].

2.3. Convoys

One possible response to the scalability problem
presented above is to structure large virtually
synchronous systems hierarchically, as a tree of
process groups. Unfortunately, when the hierarchy is
several levels deep, this option is also limited by
random events disrupting performance.

Consider a small group of processes within which
some process is sending data at a steady rate, and focus
on the delivery rate to a healthy receiver. For any of a
number of reasons, the rate is likely to be somewhat
bursty unless data is artificially delayed. For example,
messages can be lost or discarded, or may arrive out
of order; normally, a reliable multicast system will
be forced to delay the subsequent messages until the
missing ones are retransmitted. The sender may be
forced to use flow control. Messages may pass through
arouter, which will typically impose its own dynamics
on the data stream. This is illustrated in Figure 2. Data
enters a hierarchical group at a steady rate (illustrated
by the evenly spaced black boxes), but layer by layer
becomes bursty. This phenomenon is widely known as
the ‘Convoy’ phenomenon.

Kalantar [9] found that each new level of group
amplifies the burstiness of its data input source.
He notes that the problem is particularly severe when
the upper levels of the hierarchy maintain a multicast
ordering property, such as totally-ordered message
delivery. When messages atrive out of order, such a
property forces delays, but also results in the delivery
of a burst of ordered messages when the gap has
been filled; thus, the next layer sees a bursty input
which can trigger flow control mechanisms (even if the
original flow would not have required flow control).
If the top-level group multicasts at a high data rate,
the gaps between bursts represent dead time and
effectively reduce the available bandwidth, while the
bursts themselves are likely to exceed the available
bandwidth.

Kalantar suggests a few remedies. First, hierarchical
systems might be designed to enforce weak ordering
properties near the sender, reintroducing stronger
guarantees close to the receiver. However, this design
point has never been explored in practice, in part
because ordering and reliability are hard to separate.
A second option involves delaying messages on

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 169

Messages @ sender ::

Messages @ receiver ::

| I N ﬂ

Figure 2. Message convoys. Message convoys in hierarchical groups

receipt (layer by layer, or end-to-end) to absorb the
expected degree of rate variations. However, this
would demand a huge amount of buffering and
the delays could be large. Kalantar concludes that
lacking one of these mechanisms, large hierarchically-
structured process groups will perform poorly.

2.4. Request and retransmission storms

One might speculate that the problems seen
above are specific to the virtual synchrony reliability
model. However, several researchers studying the
SRM protocol have observed a related scalability
phenomenon.

SRM is a reliable multicast protocol that uses
a receiver-driven recovery mechanism, whereby the
onus falls on the receiving process to join itself
to the transmission group (an IP multicast group
within the Internet), to begin collecting data, and
to request retransmissions of missing data. SRM is
based on a model called application-level framing,
which basically extends the end-to-end model into
the multicast domain. The idea is that the IP
multicast layer is oblivious to the protocol using
it, hence the SRM request and retransmission
mechanisms reside in the application (in a library).
One consequence is that although the protocol uses
IP multicast to send messages, retransmission requests
and retransmissions, the IP multicast layer is oblivious
to the manner in which it is being used. The only
control available to the protocol itself is in the value
used for the IPMC time-to-live (TTL) field, which
limits the number of hops taken before a packet is
dropped.

Copyright © 2002 John Wiley & Sons, Ltd.

Since I[P multicast is an unreliable protocol, a
multicast packet might be dropped by a router (or the
sender’s operating system), and hence fail to reach
large numbers of receivers, although this is not the
usual situation. To avoid subjecting the full set of
participants to a storm of requests and retransmissions,
SRM uses a timer-based delay scheme reminiscent
of exponential backoff. Processes delay requests
(for missing data) for a randomly selected period of
time, calculated to make it likely that if a subtree of the
IP multicast group drops a message, only one request
will be issued and the data will be retransmitted
only once. The protocol also uses the TTL values in
a manner intended to restrict retransmissions to the
region within which the data loss occurred.

Unfortunately, recent studies have shown that the
SRM tactics are not as effective as might be hoped,
particularly in very large networks (hundreds or
thousands of members) subject to low levels of
random packet loss or link failures. At least three
simulation studies have demonstrated that under these
conditions, a large percentage of the packets sent
trigger multiple requests, each one of which, in turn,
triggers multiple multicast retransmissions.

The data shown in Figure 3 [8] reflects this
problem; similar findings have been reported in
[10,11]. ns-2 (which includes a simulation of SRM,
including its adaptive mechanisms) was used to
graph the rate of requests for retransmissions and
repairs (retransmissions) for groups of various sizes.
We constructed a simple four-level tree topology,
injecting 100 210-byte messages/s, and setting
parameters as recommended by SRM’s developers.
We set a system-wide message loss probability at
0.1% on each link, and measured overhead at typical
processes (with other topologies and noise rates we get
similar graphs).

The intuition is that the basic SRM mechanisms are
ultimately probabilistic. As a network becomes large,
the frequency of low-probability events grows at least
linearly with the size of the network. For example,
as a network scales, there will be processes further
and further apart which may each (independently)
experience a packet loss. By symmetry, these have
some probability of independently and simultaneously
requesting a retransmission, and even with SRM’s
‘scalable session messages’, variability in network
latency may be such that neither request inhibits the
other. Each process that receives such a request and
has a copy of the multicast in its buffers, has some
probability of resending it. Again, although there is
an inhibitory mechanism, it is probable that more than
one process may do so. Thus, as the network is scaled

Qual. Reliab. Engng. Int. 2002; 18: 165-184

170 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

SRM protocols with system wide constant noise, tree topology
15 T T T T T T T T T

-
[=]

Repair requests (per sec)
5,

X

0 L . L L . . L L L
20 30 40 50 60 70 80 0 100

goup size

SRM protocols with system wide constant noise, tree topology

-

o
T
L

Retransmissions (per sec)
o

o . L L L . L L L .
0 10 20 30 40 50 60 70 80 90 100

goup size

Figure 3. SRM scalability. As the size of the group increases, a low level of background noise (0.1% in this case) can trigger high rates of
requests (left) and retransmissions (right) for the SRM protocols, at each group member. Most of these are duplicates. Notice that the data rate
is being held constant; only the size of the group is increased in these experiments

and the global frequency of these low-probability
events rises, one begins to observe growing numbers
of requests for each multicast packet. Depending on
the network topology, each request may result in
multiple retransmissions of the actual data. Although
the latter problem is not evident in the simple tree used
to construct Figure 3, with a ‘star’ topology and the
same experimental setup, SRM sends roughly three
to five repairs for each request. All but the first are
‘duplicates’. Thus, the aggregate overhead rises with
group size, and the effect can be considerably worse
than linear'.

Note that although SRM has reliability goals which
are weaker than those of virtual synchrony, once again
we encounter a mechanism with costs linear in system
size and frequency growing, perhaps linearly, with
system size. Indeed, while intuition would suggest
that because SRM has weaker goals than virtual
synchrony it should be cheaper and more scalable, we
see here that SRM scalability is no better than that
of virtual synchrony, at least for the implementations
studied.

We thus observe that the throughput degradation
experienced for virtual synchrony protocols is not
unique to that reliability model. In the case of SRM,
the problems described above contribute to a growth
in background load (seen in Figure 3), unstable
throughput much like that shown in Figure 1, and
can even overload routers to such a degree that the

i3 might appear to the reader that adjusting the backoff timing
parameters less aggressively in the SRM protocol would reduce
such overhead. Unfortunately, doing so results in a linear increase
in multicast dissemination latency.

Copyright © 2002 John Wiley & Sons, Ltd.

system-wide packet loss rate will rise sharply. Should
this occur, a scale-driven performance collapse is
likely.

Moreover, the issues described above are also seen
in other reliability mechanisms. While brevity limits
our discussion in this paper, it is not difficult to
see that similar problems would arise in RMTP [3],
publish—subscribe message bus protocols such as the
one in TIB, and indeed in most large-scale multicast
architectures (based, of course, on the published
descriptions of such systems).

Forward error correction (FEC) is a pro-active
mechanism whereby the sender introduces redundancy
into the data stream so that the receiver can reconstruct
lost data [12]. However, FEC entrusts the message-
sending node to send all the copies of a multicast,
leading to a throughput limitation similar to that in the
traditional multicast protocols (Figure 1).

3. BIMODAL MULTICAST

Not all protocols suffer the behavior seen in these
reliable mechanisms. In particular, Bimodal Multicast,
a protocol reported in [8], scales quite well and easily
rides out the same phenomena that cause problems
with these other approaches.

Bimodal Multicast is a ‘gossip-based’ protocol that
closely resembles the old NNTP protocol (employed
by network news servers), but runs at much higher
speeds. The protocol has two sub-protocols. One of
them is an unreliable data distribution protocol similar
to IP multicast, and in fact IP multicast can be used for

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 171

this purpose if it is available!. Upon arrival, a message
enters the receiver’s message buffer. Messages are
delivered to the application layer in FIFO order, and
are garbage collected out of the message buffer after
some period of time.

The second sub-protocol is used to repair gaps in the
message delivery record, and operates as follows. Each
process in the system maintains a list containing some
random subset of the full system membership. In prac-
tice, we weight this list to contain primarily processes
from close by—processes accessible over low-latency
links. These details go beyond the scope of the current
paper, and we refer the reader to [13].

At some rate (but not synchronized across the
system) each participant selects one of the processes
in its membership list at random and sends it a digest
of its current message buffer contents. This digest
would normally just list messages available in the
buffer; for example, ‘messages 5—11 and 13 from
sender s, ...°. Upon receipt of a gossip message, a
process compares the list of messages in the digest
with its own message buffer contents. Depending
upon the configuration of the protocol, a process
may pull missing messages from the sender of the
gossip by sending a retransmission solicitation, or may
push messages to the sender by sending unsolicited
retransmissions of messages apparently missing from
that process, or do both (push—pull).

This simplified description omits a number of
important optimizations to our implementation of
the protocol. We sometimes use unreliable multicast
with a regional TTL value instead of unicast, in
situations where it is likely that multiple processes are
missing copies of the message. A weighting scheme
is employed to balance loads on links: gossip is
performed primarily to nearby processes over low-
latency links and rarely to remote processes, over
costly links that may share individual routers. The
protocol uses both gossip pull and gossip push, the
former for ‘old’ messages and the latter for ‘young’
ones. Finally, every message need not be buffered at
every process; a hashing scheme is used to spread the
buffering load around the system, with the effect that
the average message is buffered at enough processes
to guarantee reliability, but the average buffering load
on a participant decreases with increasing system size.
Further details are available in [8].

Bimodal Multicast imposes loads (per multicast)
on participants that are logarithmic with the system

IBecause IP multicast is often disabled in modern networks,
however, Bimodal Multicast more often runs over a very lightweight
unicast-based tree management and multicasting mechanism of our
own design.

Copyright © 2002 John Wiley & Sons, Ltd.

size, and the protocol is simple to implement
and inexpensive to run. More important from the
perspective of this paper, however, the protocol
overcomes the problems cited earlier for other scalable
protocols. Bimodal Multicast has tunable reliability
that can be matched to the needs of the application
(basically, reliability is increased by increasing the
length of time before a message is garbage collected—
this time typically varies with the logarithm of the
group size). The protocol gives very steady data
delivery rates with predictable, low variability in
throughput. For soft-real-time applications this can be
extremely useful. Also, the protocol imposes constant
loads on links and routers (if configured correctly),
which avoids network overload as a system scales up.
All of these properties are preserved as the size of the
system increases.

The reliability guarantees of the protocol are
midway between the very strong guarantees of virtual
synchrony and the much weaker best-effort guarantees
of a protocol like SRM or a system like TIB. We will
not digress into a detailed discussion of the nature
of these guarantees, which are probabilistic, but it
is interesting to note that the behavior of Bimodal
Multicast is predictable from certain simple properties
of the network on which it runs. Moreover, the
network information required is robust in networks
like the Internet, where many statistics have heavy-
tailed distributions with infinite variance. This is
because gossip protocols tend to be driven by
successful message exchanges and hence by the
‘good’ quartile or perhaps half of network statistics.
In contrast, protocols such as SRM or RMTP often
include round-trip estimates of the mean latency or
mean throughput between nodes; estimates that are
problematic in the Internet where many statistical
distributions are heavy-tailed and hence have ill-
defined means and very large variances.

Bimodal Multicast is just one of the many presen-
tations of gossip-based data replication mechanisms.
Similar protocols can also be used in lazy database
consistency [14], failure detection [15], data aggrega-
tion, or in ad hoc networking settings. For the purposes
of this paper, the scalability of the one-to-many config-
uration of the protocol is the most interesting issue.

Figure 4 [8] compares the performance of the
Bimodal Multicast primitive with SRM and adaptive
SRM under similar noise conditions in the underlying
network. The plot shows that SRM imposes per-
message overheads on each group member that
increases linearly with group size, while the load due
to Bimodal Multicast is logarithmic with group size.
Other studies [16] have shown similar advantages

Qual. Reliab. Engng. Int. 2002; 18: 165-184

172

Repair requests (per sec)

I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

Bimodal Multicast and SRM with system wide constant noise, tree topology

T T T T T T
X

4

/" adaptive SRM

X

x

2K X

SRM

Degx
o

Bimodal Multicast

I L L 1

30 40 50

group size

60 70 80 90

100

15

Retransmissions (per sec)

T T

X
X
/; adaptive SRM

2%
2R

SRM

Bimodal Multicast

209 <

- ™ e -

!

20 30 40 50 60 70 80 90 100

group size

Figure 4. Bimodal Multicast. Bimodal Multicast imposes per-member overheads that are logarithmic in group size. Versions of SRM impose a
linear load, as shown in Figure 3

for

Bimodal Multicast over RMTP. The reader is

encouraged to refer to these papers for extensive
comparative studies.

We

4. FINDINGS SO FAR AND PROVIDING
STRONGER GUARANTEES

can generalize from the phenomena described

above. Distilling these down to their simplest form,

and

elaborating slightly, we obtain the following.

With the exception of the Bimodal Multicast pro-
tocol, each of these reliability models involves a
costly, but infrequent, fault-recovery mechanism.

— Traditional virtual synchrony protocols em-
ploy sender-side buffering, flow control,
failure detection and membership-change
protocols, with a cost that is at least propor-
tional to the size of the group.

SRM has a solicitation and retransmission
mechanism that involves multicasts; when
a duplicate solicitation or retransmission
occurs, all participants process an extra
message.

FEC tries to reduce retransmission requests
to the sender by encoding redundancy in
the data stream. The multicast sender’s
responsibility to transmit all of its redundant
copies results in scalability limitations
similar to those of the traditional protocols.

Copyright © 2002 John Wiley & Sons, Ltd.

4.1.
Is

All of the protocols we have reviewed are
potentially at risk from convoy-like behaviors.
Even if data is injected into a network at
a constant rate, as it spreads through the
network router scheduling delays and link
congestion can make the communication load
bursty. While this phenomenon has actually
been observed in hierarchical implementations
of virtual synchrony, we have not seen anything
comparable in our work with Bimodal Multicast,
or with virtual synchrony running over Bimodal
Multicast.

Many protocols (SRM, RMTP) depend on con-
figuration mechanisms that are sensitive to net-
work routing and topology. Over time, network
routing can change in ways that take the protocol
increasingly far from optimal, in which case
the probabilistic mechanisms used to recover
from failures can be increasingly expensive or
inaccurate. Periodic reconfigurations, the obvious
remedy, introduce a disruptive system-wide cost.

General insight

there a general insight to be drawn from these

observations?

Many reliable multicast protocols depend upon
assumptions that usually hold, but may have a
small probability of being violated. As a system

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 173

scales, however, the frequency of violations
Srows.

e These protocols typically have some form of
recovery mechanism with a potentially global
cost. As the system scales up, this cost grows.

e Each of these protocols is built in layers (i.e. as a
protocol stack). The problems cited arise within
the lowest layers, although they then propagate
to higher layers triggering large-scale disruptions
of performance.

e Sender-side responsibility for reliable multicast
dissemination is a direct outcome of the
traditional stack architecture.

More broadly, we argue that these are all consequences
of a protocol stack architecture in which reliability is
provided by the lowest layers of the stack, and in which
randomized phenomena are threats to performance or
some other property guaranteed by the system. The
insight is then that as we scale the system to larger
and larger settings, the absolute frequency of these
probabilistic events rises, and hence the performance
of the system degrades.

4.2. Our solution—a non-traditional stack
architecture

We envision a protocol stack where the lower layers
use randomized strategies (such as Bimodal Multicast)
to fight random network events, while layers closer to
the application guarantee the reliability required by the
application. We believe that such a stack would help
fight fire (random network unreliability events) with
fire (randomized algorithms) at lower layers, while
guaranteeing good performance at large distributed
group sizes by placing the reliability requirement
at a layer closer to the application. For problems
that are difficult to solve, or are considered to be
inherently unscalable (such as virtual synchrony),
the new probabilistic stack would suffer from this
limitation too, but would give better scalability than
traditional stacks.

5. SCALING VIRTUAL SYNCHRONY

In the next few sections, we attempt to validate our
hypothesis by attacking the problem of achieving
virtual synchrony in distributed process groups.
Informally, virtual synchrony is maintained in a
process group if each group member (an application
process over a virtual synchrony stack) sees both
(a) multicast events, and (b) group membership
changes (also called a ‘view change’), in the same

Copyright © 2002 John Wiley & Sons, Ltd.

order [6]. For simplicity, we require all multicast
events in our system to be seen by all group members
(effectively, we allow only broadcasts within the
group).

Virtual synchrony is a very strong reliable multicast
model; implementing the model is known to be as hard
as solving distributed consensus [17]. From a practical
point of view, the power of the model accounts
for its popularity: one can easily implement high-
performance versions of state-machine algorithms.
Yet, if high performance is the primary reason for
using the model, one would obviously hope that
performance is sustainable as the size of a group
is scaled up. Here, we use a back-of-the-envelope
scalability analysis to try and quantify the question
(Section 5.1).

We analyze two possible implementations—the
traditional implementation using reliable multicast at
the lower layers, and our non-traditional stack, with
Bimodal Multicast at the lower layer. Our analysis in
Section 5.1 reveals that both approaches inherently
suffer from an O(n?) degradation in throughput
(multicasts per second) with increasing group size, and
reasonable assumptions on the characteristics of the
underlying network and nodes. However, the analysis
also reveals that the new probabilistic stack approach
potentially scales much better than the traditional
stack.

This leads us to further evaluate our hypothesis
by designing, building and testing one such non-
traditional stack for virtual synchrony. We describe
the architecture of this system in Section 5.2, and
experimental findings in Section 6. Our findings
do support our hypothesis, and we report stable
throughput performance at group sizes larger than
traditional virtual synchrony protocols have so far
been able to achieve.

5.1. Scaling virtual synchrony—a
back-of-the-envelope analysis

This section presents a back-of-the-envelope anal-
ysis for two different implementations of virtual
synchronous multicast. This analysis seeks to identify
scaling trends of the different protocols, and thus ig-
nores constants in asymptotic estimates. Section 5.1.1
discusses the behavior of the traditional unicast-based
implementation of virtual synchrony, as in the Isis sys-
tem [18]. Section 5.1.2 examines properties of virtual
synchrony within a non-traditional protocol stack.

For simplicity, our analysis in this section assumes
the presence of only the second sub-protocol of
Bimodal Multicast (see Section 3), i.e. the gossip-

Qual. Reliab. Engng. Int. 2002; 18: 165-184

174

I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

Table 1. Parameters used in the back-of-envelope analysis

Total number of group members

Number of senders in the group

Total (non-negative) throughput of the group (multicasts/s)
Individual member failure rate

ENES

ml Probability of multicast delivery failure

(for simplicity, assumed independent across messages and recipients)
B Maximum network bandwidth allotted to each group member

based push dissemination. Henceforth, we will use the
shorthand ‘Pbcast’ (for ‘Probabilistic Broadcast’) for
this phase of Bimodal Multicast. We use the notation
shown in Table 1 in the rest of our analysis.

pmi 1s the network message loss probability for the
traditional stack analysis in Section 5.1.1. When we
use Pbcast in Section 5.1.2, pmy) is used to derive
the message reliability as a function of the number
of gossip rounds used for the multicast (we specify
this more concretely where needed). Although pm
is assumed to be uniform and independent across all
messages in order to simplify the analysis, the results
of the analysis hold if this parameter is the time-
bounded loss rate of messages, across the system.
Our analysis only considers a constant number of
senders (s). When the number of senders varies with
group size, the message load on receiver-side members
is difficult to characterize (e.g. message losses due to
buffer overflows, etc.), and is not accounted for in our
analysis.

5.1.1. Virtual synchrony, unicast implementation.
Consider virtual synchrony implemented entirely
with unicast messages, as in traditional systems
such as Isis [I]. This approach is based on the
multicast layer (lower layer) attempting to reliably
multicast messages by using unicast (or point-
to-point) messages for multicasting. The higher
layer uses multiphase commit protocols to change
membership.

The optimal (non-negative) throughput 7* achiev-
able under this implementation can be expressed as

\) I: (B)] n 19
/U’l /

The first term on the right-hand side comes from the
effective time left for transmitting ‘useful’ multicasts,
obtained by discounting the time the group is
‘blocked’ while changing views. un is the number
of view changes per unit time, and n/B is the time
taken to verify the view with all group members. The
second term (1/(n/B)) is simply the rate at which
a particular member can transmit its messages or

Copyright © 2002 John Wiley & Sons, Ltd.

check acknowledgements—this arises from constant
buffering at each member, as in the traditional
virtual synchrony implementation. The above equation
gives us:

T* = max{(B - unz)%, 0} (1

Note that when the numerator becomes negative, the
throughput goes to zero.

In the actual implementation, however, each non-
faulty group member verifies the stability of its own
multicasts directly with other group members during
the view changes. Thus, by a similar explanation as
above,

T [<n+ pmlT(l/un)n)] 1
—=|1—un S
s B n/B

where each view change involves updating the
membership (the n term above) and repairing ‘holes’
in the received message list for the last view for each
of the group members (the term py 7T (1/un)n above).
This gives us:

T =max{ ——,
{(n/s) + i

2

P 0} @
which is fairly close to the optimal throughput 7*.

This analysis reveals that the virtual synchrony
model faces an inherent scalability problem due to
the cost of view changes (the (—;mz) term above).
However, even when this does not have an effect on the
throughput, the sender-side multicast responsibility
results in an unscalable throughput (the n/s term in the
denominator above). As a result, even for a problem
such as state machine replication [19] that is weaker
than virtual synchrony (since there is no extra cost
for view changes), the sender-side responsibility of
reliable multicast makes the overall group throughput
unscalable.

5.1.2. Virtual synchrony, implemented over
Pbcast. Now, consider a virtual synchrony
implementation that uses a distributed multicast
dissemination mechanism, repairing holes at the

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 175

Guarantees Messages
APPLICATION 3
o App muiticasts
— _ _ e
i _ App mullicasls
Probabilistic PBCAST +Mullticast Repair
(GOSSIP MULTICAST) + Membership
Best Effort .
TSR TLAGTER Prediciable load

- Network

Figure 5. New non-traditional stack for virtual synchrony

higher Vsync (virtual synchrony) layer. Figure 5
shows an example of such a stack where the
dissemination mechanism is the Pbcast primitive.
The higher Vsync layer repairs holes in the multicast
message stream delivered by the Pbcast layer. The
ordered stream of multicasts is delivered by the Vsync
layer to the application layer.

Below, we first ignore the cost of view changes,
and analyze the optimality of different multicast
dissemination schemes (lower layer) for reliable
multicast applications (i.e. where every member has
to receive at least one copy of every multicast, and in
the same global order). The optimality is calculated
with respect to the tradeoff between the number of
multiple copies of a multicast received by a typical
group member, and the number of repairs that are
transmitted by the upper layer in the protocol stack,
in order to guarantee reliability. This analysis applies
to problems such as state machine replication. We then
analyze the achievable throughput under the stronger
virtual synchrony model by accounting for the cost of
view changes.

Abstractly, let M be the number of copies of a
single multicast that a member receives from the lower
dissemination layer. For the Pbcast implementation,
since each member gossips a given multicast for
O(log(n)) gossip rounds and to randomly chosen
targets, we have M = O(log(n)).

To maximize the throughput, one would want to
minimize the number of copies M of a multicast that
a member receives from the multicast dissemination
layer, as well as the number of repairs sent by
the upper protocol layer, in order to repair ‘holes’
in the message delivery stream from the multicast
dissemination layer. The second term is pfgln, since
pr’:;’l is the likelihood of a given member receiving
none of the copies of a multicast. The expression to

Copyright © 2002 John Wiley & Sons, Ltd.

be minimized, is thus:
Setting dL/dM = 0 gives us:

_ log(n) + log(1/ pm)
log(1/pm1)

or M = O(log(n)), which is exactly what the Pbcast
primitive achieves with each member gossiping a
given multicast for O(log(n)) gossip rounds. So, in
a sense, the Pbcast primitive is a provably optimal
multicast dissemination mechanism with respect to
the minimum load on participants required to achieve
reliable delivery.

Not surprisingly, implementations of reliable mul-
ticast in the Isis/Horus-style stack, as well as over
SRM behavior (Figure 3), can also be characterized
by a similar analysis. In Horus, the dissemination layer
consists of each member verifying the stability of the
message with every other member, with the higher
Vsync layer repairing the holes. In SRM, each member
receives multiple copies of each multicast (repairs)
that, from Figure 3, is linear with the group size. The
value of the expression L for this is thus obtained by
setting M = O(n). From the above analysis, using
any of these two mechanisms at the lower multicast
dissemination protocol layer gives a (provably) sub-
optimal implementation of reliable multicast.

We now analyze the achievable throughput of
the implementation of virtual synchrony when
implemented over Pbcast, as depicted in Figure 5. This
analysis adds to the cost of view changes, and its effect
on throughput.

The optimal throughput 7* under this implementa-

tion is:
T [1 (n)] slogn -
1= un(Z=
s H\B B

where ((slogn)/B)~! is the optimal rate at which a
multicast is disseminated to all the group members if
there were no message losses. This gives us:

3)

T = max{(B — ,u,nz)é, 0} 4
n

which is asymptotically higher than the optimal
throughput under the traditional implementation of
virtual synchrony (obtained in Equation (1)). Also
notice that the throughput is independent of the
number of senders.

A real implementation of the stack in Figure 5
would need to repair message holes at the view
changes. We propose using a leader committee with

Qual. Reliab. Engng. Int. 2002; 18: 165-184

176 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

0.1)

350

traditional vs;ltnc
vsync/pbcast ------

300

250 r

1000,10 senders,pml

200

150

100 |

50

Total group throughput (mu=3e-5,B

Group size

2000 4000 6000 8000 10000

350

traditional vsync -
vsync/pbcast ------
300

2000,pm|=0.1)

250 - 1

200 - 1

150 1

100 - 1

Total group throughput {(mu=3e-5,B=1000,N

0 L 1 L 1 1 L
180 150 120 S0 60 30

Number of senders

Figure 6. Virtual synchrony scales better over Pbcast (‘vsync/pbcast’) than within the traditional stack (‘traditional vsync’). The curves plotted
represent Equations (2) and (5)

k members (call it the ‘k-committee’ or ‘leader-
committee’) for this purpose. The k-committee
maintains virtual synchrony even though all other
group members may be well behind in the virtual
synchrony. All multicasts are first communicated to
the committee, where they attain stability, are assigned
a global sequence number and then are gossiped
about in the group by the sender. The committee
membership can migrate among members, using less-
loaded members at any time. Such a k-committee
can be elected using any of the several committee
election strategies found in the literature. The failure
of a committee member will result in the inclusion
of some other non-faulty member into the committee.
The failure of a non-committee member will be seen
as yet another event by the entire k-committee. Both
these kinds of failures result in view changes, first in
the k-committee, then at the members, which receive
the view notification just like any other multicast,
through the Pbcast primitive. Note that this scheme
is only (k — 1)-fault-tolerant to committee member
failures, but can tolerate any number of faults in the
general group membership.

The number of gossip rounds a multicast survives
(and is gossiped about) in the group before garbage
collection is s(C log(n)), where C log(n) is the num-
ber of rounds each multicast is gossiped. We define
pmi(C) as the Pbcast delivery loss probability at any

group member. We then have ppy(C) ~ p;ﬂC log(n) [8].

Copyright © 2002 John Wiley & Sons, Ltd.

The throughput of this scheme can thus be
expressed as:

r [<”+pml(c)T(1/l/~”)n):|
7= 1—pun

kB
(s(C1ogn)>‘
X _—
B

B — (un?/k))
Clogn + (pm(C)n/k)’

This approach thus scales almost as well as the
optimal 7%, since C can be adjusted as C >
(log(l/pm]))’1 so that pm(C)n is a constant or
smaller. Thus, as n rises, T would fall very slowly
below T*.

Notice from the optimal 7* calculations in
Equations (1) and (4) above that neither the traditional
nor the probabilistic non-traditional stack approaches
to virtual synchrony is inherently scalable, since as
n grows, un® would approach (fixed) B, and T
would go to zero. This phenomenon remains even
if B is scaled linearly with n. However, notice
that the optimal throughput of virtual synchrony
is asymptotically better with the non-traditional
stack. Figure 6 plots the above throughput equations
(Equations (2) and (5)), for purposes of comparison of
the trends of the throughput degradation—the values
themselves do not mean much (since the equations
lack constants). The figures show that at a small

=>T=rnax{

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 177

Members Members
(senders) (leaders)

Members
(receivers)

o W e

Gseq Req|

Multicagt by

Repair

Y |

Stability pithin
-- 1271 Jeadet gommitte;

17

Ex

B .
Repair Req Repa]r
SRR Sub-protocol

Figure 7. Stages in sending a multicast to the group

number of senders, with rising group size, the non-
traditional stack approach (‘vsync/pbcast’) degrades
more gracefully than the traditional implementation.
The traditional implementation appears to improve as
the number of senders increases, but the approach is
limited by the group size scalability itself.

5.2. Algorithm description

In this section, we give details of the implemen-
tation of the non-traditional stack of Figure 5, with
a k-committee. This approach bears resemblance to
Kaashoek’s token based approach [20], and the server-
based approach of [21], although there are algorithmic
differences.

Each multicast from a sender member goes through
the stages shown in Figure 7. The Vsync layer
at the sender first sends the message to a leader-
committee member, as a request to assign it a global
sequence number (Gseq Req message). The message
is assigned a global sequence number by total ordering
within the leader-committee. On receiving the
acknowledgement with this information (Gseq ack
message), the Vsync layer at the sender submits
the message to the Pbcast layer underneath it for
dissemination by gossiping.

Insofar as the Pbcast layer does not guarantee
that multicast messages reach all group members, we
need a mechanism to overcome possible packet loss.
Accordingly, the Vsync layer at a member times-out if
it does not receive an in-sequence multicast after some
time. The Vsync layer then requests a repair from
one of the leader committee members—we henceforth

Copyright © 2002 John Wiley & Sons, Ltd.

call this the ‘repair sub-protocol’. The frequency of
such repairs is minimized by the good reliability
characteristics of the Pbcast layer. During periods
when no multicasts are being sent, the repair protocol
timeout at members is increased in order to avoid a
repair implosion at the leader. However, the timeout
must still be small enough so that an isolated, sporadic
multicast would be discovered were it to be lost in
the Pbcast layer. We currently vary the timer from a
minimum of 10 ms, when a high rate of multicasts is
being received, to a maximum of 1 s, when multicasts
are infrequent.

View changes are initiated by the leader-committee.
Unlike traditional virtual synchrony mechanisms
[1,6], view changes are initiated periodically
(here, once every 20 s), and not on every member
failure. This delays the reporting of new views, but re-
duces the impact of view change events on throughput.

Every view change consists of the following
phases, as shown in Figure 8. The leaders first
establish/reconfirm the membership within the
leader-committee itself. The leader-committee then
multicasts a Prenewview message throughout
the group (by wusing the Pbcast primitive).
Non-faulty group members reply back with an
acknowledgement—an AckPrenewview message.
The leader-committee waits some time for these
acknowledgements (1 s in our implementation),
agrees on the group membership for the next view,
and multicasts it out as a Newview message multicast
via the Pbcast layer. This Newview message specifies
any changes to the group membership, and is assigned

Qual. Reliab. Engng. Int. 2002; 18: 165-184

178 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

Members Members

(senders) (leaders)
vy !
Global Seq =i----
Stability in oy
commmittes _>J
Prenewview el L1 PN
by gossip P et
[—
]
AckPrenewviewd \/
---'"""'_'-—'.
| "]
Stability in RN] N
cominittee R P
P
Newview et
by gossip 1

{Global seq=i+1)

Members
(receivers)

View
[] Change
e Ll

Figure 8. Anatomy of a view change

the next available global sequence number. This
makes each Newview message a multicast within
the group, with guaranteed delivery by the repair
sub-protocol. This also preserves the total ordering of
each view change with respect to other multicasts and
view changes.

This view change mechanism has some
shortcomings, most notable the possibility of an
ack-implosion at the leader-committee members.
Our solution to this technique is to have members
defer their acknowledgements (AckPrenewview
messages) randomly in time.

The periodic view changes reduce the overhead of a
view change per failure, but might result in increasing
the time for the view change—although this increase
is linear in the group size, our experiments show that
it is typically small in the absence of any perturbed
or failed member (see Section 6). The periodic view
change offers a checkpoint beyond which messages
can be garbage-collected at members. The approach
would thus let us use a single state-transfer to
initialize multiple new members, an opportunity not
evaluated here. Use of a gossip-style failure detection
service [15] or epidemic-style membership [22]
will also help eliminate the costlier Prenewview-
Ackprenewview phase of the view change mech-
anism. This would, however, substantially affect the
group’s multicast throughput, as the failure detection
gossips would compete with the multicast gossips in
the Pbcast layer. Exploration of these areas is beyond
the goal of this paper and is left for future study.

Note that a multicast-sending member learns the
view in which the message will be delivered in the

Copyright © 2002 John Wiley & Sons, Ltd.

group only when it receives the Gseqg ack from
the leader-committee for that message. This is in
keeping with the specification of the original Isis
protocol [18]. The multicast dissemination and the
repair sub-protocol are blocked during view changes,
in order to reduce the number of involuntary member
droppings. The leader-committee delays pending
Gseq Req messages (Figure 7) until the end of the
view change process.

Loss of Gseg Req messages and view changes
at the committee members might lead to a phe-
nomenon similar to the convoy problem described
in Section 2.3. However, the extent of the problem
is small here, since there are effectively only two
hierarchy levels. Our experiments show that if leaders
and senders stay unperturbed, view changes are the
only times that senders stay blocked.

Figure 9 summarizes our discussion. It shows the
typical state of a group at a hypothetical instant in
time. The ‘most complete’ event history is maintained
at the leader-committee, which has delivered the
greatest number of virtually synchronous messages
and views (bold lines in Figure 9). At a general
member, however, the Pbcast layer may have failed to
deliver some messages to the Vsync layer. This results
from the probabilistic guarantees of the protocol,
which is not required to achieve atomicity and may
create ‘holes’ in the message delivery stream to the
Vsync layer. The resulting holes must be repaired,
leading virtual synchrony at that member to lag
behind the current advancing frontier of messages
delivered by Pbcast (gray lines in Figure 9). If the
gap is not repaired quickly by the Pbcast protocol

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 179

Members Members
(senders) (leaders)
/ Voo
Multicasts
delivered@App
Virtual Synchrony
wave as seen
by App layer
b I
N)
A +
.. '
Multicasts e ::,“‘q 1.1 .-
delivered®Vsync | | | Ak

Members
(receivers)

Gossip

message delivery
holes:

corrected by
Repair sub-protocol

Gossiping

wave as seen
by Vsync layer
(not application)

Figure 9. Lazy virtual synchrony. States of a set of group members depicted as partial histories. Virtually synchronous message deliveries are
most advanced at the leaders; members lag both in terms of virtual synchrony delivery (bold lines) and also Pbcast delivery events (gray lines)

itself, it will eventually be subject to our repair sub-
protocol. We quantify the potential size of this gap
in Section 6 and show that the gap is insignificant
for healthy members, and that the lazy nature of this
protocol allows slightly-perturbed members to catch
up with the rest of the group. A heavily-perturbed
member would diverge and drop out from the virtually
synchronous membership view.

6. EXPERIMENTAL EVALUATION

In this section, we describe performance results
of an implementation of virtual synchrony using a
non-traditional probabilistic stack, as presented in
Section 5.2.

The experimental environment was as follows.
The processing nodes used were a mix of machines
(nodes), each with a 300 or 450 MHz Pentium II pro-
cessor, 130 Mbyte RAM, and running Windows 2000,
with hardware multicast disabled. The network was
a 100 Mbps Ethernet, with little or no external load.
All experiments refer to an implementation of the non-
traditional stack for virtual synchrony, as described in
Section 5.2, implemented over the Winsock API in the
Win32 environment.

In order to maximize the size of the test
configurations considered, we resorted to placing
multiple group members on each node. This number
was limited by the interaction of multiple group
members on a single node, due to the effects of
scheduling delays, memory utilization and network
contention. Experimentally, we observed that the CPU
utilization with up to four members per node was

Copyright © 2002 John Wiley & Sons, Ltd.

limited to 20%, and the throughput performance for
single member/node and four members/node were
comparable, for up to a group size of 16. The CPU
utilization at the leader member’s node, however, was
100%. Accordingly, we used exactly four members per
node, with the exception of the leader members, which
were put on individual nodes.

To mimic the experimental conditions that triggered
scalability problems in Figure 1, our initial experi-
ments in Sections 6.1-6.4 use one leader member in
the committee, elected statically, and one multicast
sender (a different member). Multiple leaders increase
the fault-tolerance and load-balancing properties of
the scheme. Our experiments in Section 6.5 reveal
that increasing committee size results in a rise in the
sender-side latency between the Gseq Req generation
and multicast delivery. However, stable throughput can
still be maintained by increasing the size of the sender-
side buffer for waiting Gseq Req messages.

The view change period at the leader was fixed at
20 s, with a timeout of 1 s for the AckPrenewview
messages. Unless otherwise stated, no involuntary
member droppings at view changes were encountered
during our experiments.

The following sections investigate the effect of
increasing group size and member perturbations on
the group throughput (Sections 6.1 and 6.2), as well
as measurements of message loads on different group
members (Section 6.4). Section 6.3 demonstrates
the lazy nature of the protocol as depicted in
Figure 9, and Section 6.5 investigates the effect of
larger committee sizes. Section 6.6 summarizes the
experimental findings.

Qual. Reliab. Engng. Int. 2002; 18: 165-184

180

120 . :] ! .
64B messages —8—
100
Bﬁa/a%&; =, = N

) =]
3
@ 80
w
o]
L
=
355 60
=]
(=8
g3
3 40
=
'_

20

o]
15 30 45 60 75 90 105
Group Size
(@)

View change time (milliseconds)

I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

1000 T T T
Average
800 >
600

400 - -
<] o /;
» s e S
e L o 5
— O

200 o 4

o P >

15 30 45 60 75 90 105
Group Size

(b)

Figure 10. Throughput scalability of non-traditional stack. For our protocol: (a) throughput scales gracefully with group size; (b) average time
for view changes (no member failures) increases with group size

6.1. Scalability

Figure 10(a) shows the maximum achievable stable
throughput in groups of up to 105, for a single sender
sending 64-byte messages. Each message is sent as a
separate multicast and there is no packing of multiple
messages into each protocol packet. Each point on
this curve is the average of a 60 s stable run (i.e. no
involuntary member droppings at view changes) of
the protocol. We observe that the throughput remains
stable until about 70 members, after which it begins
to slowly drop off. The reason for the drop is not
unscalability of the Pbcast dissemination mechanism,
but the longer times taken for view changes, as
shown in Figure 10(b). (Recall that in our protocol,
normal messages are blocked during view changes.)
This phenomenon points to an inherent scalability
limitation for virtual synchrony, but as can be seen
in Figure 10(b), is a very modest phenomenon.
The stability of the throughput attained by the
non-traditional stack, at these high group sizes, is
better than that which traditional virtual synchrony
implementations can achieve.

The curve in Figure 11 gives throughput for larger
message sizes. Horus, using its ‘protocol accelerator’,
is able to pack about 1000 4-byte messages into
a 4-kbyte packet, and has quoted a peak rate of
85 000 multicasts/s for a four-process group [23]. Our
protocol is slower, but not drastically—with similar
packing, we would achieve 20000 multicasts per
second with up to 70 members.

Copyright © 2002 John Wiley & Sons, Ltd.

40 ‘ ' w
4KB messages —=&—
35
5 30
0}
w)
@
B 25
9
=
*E.: 20 . =L L ==
3
5, 15
3
o
= 10
5
o
15 30 45 60
Group Size
Figure 11. Maximum throughput achievable. With 4-kbyte

multicasts, it is stable with group size. With message packing, this
is about four times slower than the peak throughput in a group of
four members using the traditional Horus implementation

6.2.

Insensitivity to perturbations

Figure 12 shows the effect of perturbations at a
single member on the group throughput for a group
with 66 members. One of the group members was
placed on an otherwise unloaded machine (i.e. no
other group members on this machine), and made to
sleep for randomly selected 100 ms intervals, with

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE 181

120

" Perturbed member
Unperturbed member -—-—--—--—---

100

N |
o
ol |

20

Throughput (mufticasts/sec) - 66 members

(o] 0.2 0.4 0.6 0.8 1
Perturbation Rate

Figure 12. Perturbation at a member has very little effect on the
group’s throughput

the perturbation probability shown on the x-axis. The
throughput (multicasts/s) was measured over a 60 s
interval, at both the perturbed and other unperturbed
members. Figure 12 shows the throughput for one such
unperturbed member and the perturbed member. In all
instances of perturbation probability above 0.01, the
perturbed member quickly fell behind the rest of the
group and was observed to drop out at the next view
change after the start of the perturbation. The effect of
this perturbation on the group’s throughput is minimal,
being limited to the effect of the extra time taken
during the view change (in our case, 1 s) when the per-
turbed member drops out and the leader stays blocked.
We did notice that an occasional healthy member
would fall behind and drop out at a subsequent view
change—however, this was a rare phenomenon.

Figure 12 thus shows that our non-traditional stack
is relatively insensitive to the perturbations that caused
such dramatic degradation in Figure 1. We obtained
similar results at a number of group sizes smaller than
100, and we believe that the same behavior will hold
even for larger groups.

6.3. Laziness of the new non-traditional stack

Recall from Figure 9 that our protocol allows
message delivery at members to lag behind delivery
at the leader. Figures 13(a) and 13(b) demonstrate
the presence of the two ‘waves’ of message delivery
in the group, as predicted. These plots are a
snapshot of a 0.6 s message delivery sequence
at three members in a group with 32 members:
(1) the advancing wave of virtual synchrony closely

Copyright © 2002 John Wiley & Sons, Ltd.

following the wave of message delivery at the leader
(labeled ‘Msgs@Leader’); (2) delivery of messages
at the Vsync and the App layers from underneath
(i.e. latest message deliveries in the Pbcast and the
virtual synchrony streams, respectively), as seen at a
healthy member (‘Msgs@ Vsync’ and ‘Msgs@App’ in
Figure 13(a), respectively) and a perturbed member
(same labels in Figure 13(b)). Also shown is the
delivery of a view change (Newview) message at
the different layers at the two members. Notice that
our approach effectively has the leader ‘drive’ the
waves of delivery at the Vsync and App layers of the
non-traditional stack at a group member. Figure 13(a)
shows that virtual synchrony at a healthy group
member lags behind the leader because of holes
in the Pbcast delivery stream, but recovers lazily
due to the repair sub-protocol. For example, the
separation created at time ¢ = 0.15 s between the
advancing virtual synchrony frontier at the leader
and at the member (created by holes in the Pbcast
delivery stream), is recovered at time t = 0.5 s.
Perturbed members, on the other hand, could begin
to lag behind the leader by several milliseconds, as
in Figure 13(b). As Figure 13(a) shows, there is good
chance of perturbed members catching up with the
leader (through the repair sub-protocol) if they recover
soon. Members that stay perturbed for too long, as
in Figure 13(b), diverge and ultimately drop out of
the group (an event not shown on plot). Note that the
perturbed member (Figure 13(b)) has no effect on the
message delivery stream at the unperturbed member
(Figure 13(a)), a property we observed in Section 6.2.

6.4. Message load on members

Some multicast protocols impose a high back-
ground load and deliver large numbers of messages to
the application. Our protocol is generally well behaved
in these respects. Figures 14 and 15 show the number
of messages received at the Vsync layer at the sender
and at a group member. The plot shows a scenario over
a 400 s interval during which the sender transmitted
100 multicasts/s during two brief periods: ¢t = 240 to
t = 260 s and r = 540 to + = 580 s. In between,
we increased the size of the group from 32 members
to 64 members. As is evident from the graphs, during
periods of quiescence, even with membership change,
there is only a very light load, due to checking for pos-
sible lost multicasts. During periods of sender activity,
the Pbcast layer delivers most of the multicasts, and
the number of repairs is negligible.

The measured load at the Vsync layer in the leader
member is an average of 199.4 messages/s in the

Qual. Reliab. Engng. Int. 2002; 18: 165-184

182 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

2960 : ‘
Msgs @ Leader
Msgs@Vsync -
Msgs@App
View Ch. -Leader +

- View Ch.-Vsync *
@ 2940 View Ch.-App < N
E
=)
=
@D
o
bl
[72]
£
= 2920
©
=0
K=
(&)
0
D
™ 2900
-

2880

o 0.2 0.4 0.6

Time (seconds)

(a)

2960

Msgs @ Leader
Msgs @ Vsync --—--
Msgs @ App
View Ch.-Leader -+
View Ch.-Vsync 3
View Ch.-App s

2940

2920

2900

Latest Global Message Number

2880
o) 0.2 0.4 0.6

Time (seconds)

(b)

Figure 13. Delivery waves at Vsync, App layers. At the leader and (a) a healthy member and (b) a perturbed member that eventually drops out

240 T !
At Sender -

210

180

150

120

20

P2P Messages per second

60

30

200 300 400 500 600

Time (seconds)

Figure 14. Message load at a sender with sporadic transmission

presence of an active sender in the group. These
messages mostly comprise the Gseq Req messages
and the multicast delivery (each at a rate of about
100 messages/s). In the absence of a sender in the
group, each group member sends repair solicitations
at the rate of 1/s. Subsequently, the load on the leader
is 1 message/s for each group member™*.

**This scheme could be generalized to adapt the rate of repair
solicitations to the recent rate of message delivery.

Copyright © 2002 John Wiley & Sons, Ltd.

120

At Receiver =«

- -

- - ‘-.
el 90 - .« =
o
o
[&]
(1 -
172}
@
o
172}
3, e0
I
[22]
[%] -
D
= .
o -
[
o
#* 30 =

o - 2 "~ a _ " - |
200 300 400 500 600

Time (seconds)

Figure 15. Message load at a group member with sporadic
transmission

6.5. Effect of larger leader committees

The experiments in Sections 6.1-6.4 were per-
formed for a leader-committee with one member. In-
creasing the leader-committee membership size results
in a rise in latency between Gseq Req generation for
a multicast and its delivery at the sender (see the first
two columns of Table 2). This latency increase results
from the overhead associated with stabilizing the mul-
ticast within the committee. Our implementation hides
the effect of sporadic rises in latency of Gseq req

Qual. Reliab. Engng. Int. 2002; 18: 165-184

FIGHTING FIRE WITH FIRE

183

Table 2. Leader-committee latency. For a single sender attempting to transmit 100 64-byte multicasts/s, latency at the sender member (between
Gseq Req generation and final receipt of the multicast) rises with committee size. Stable group throughput is maintained using a sender-side,
constant-size buffer containing messages waiting for Gseq acks. The group in this experiment contains only the committee members and the

sender

Committee Average latency Maximum measured Group
size at the sender latency at the sender throughput
(k) (ms) (ms) (multicasts/s)

1 1.39 192.09 97.64
2 1.68 27.56 98.32
3 2.16 15.02 97.93
4 3.31 157.56 98.33

(see the third column of Table 2) by using a sender-
side message buffer, with a size that depends on
the committee size. As a result, stable overall group
throughput can be sustained for a committee of up to
four members (see the last column of Table 2).

6.6. Summary of experimental results

The data presented in Sections 6.1-6.5 has demon-
strated that using a non-traditional, probabilistic stack
helps virtual synchrony scale better than in traditional
stacks. Groups of up to and above 100 members can
sustain stable throughput (multicasts/s), with pertur-
bations on individual members having practically no
effect on message delivery flow in the rest of the
group. This is in contrast to the behavior of traditional
stacks discussed in Section 2. Members that recover
from perturbation catch up lazily with the advanc-
ing frontier of virtual synchrony in the group, while
members that stay perturbed for too long eventually
drop out of the group. The load on the sender and
receiver members, as well as the leader-committee
members is low, even with only one member in the
committee. Multiple leader-committee members (k)
result in an increase in fault-tolerance (k — 1), and
message delivery latency, but do not affect throughput.

7. SUMMARY AND CONCLUSIONS

The fundamental question posed by our paper
concerns the scalability of strong reliability properties.
We focused on the weaker parts of the spectrum,
known from the literature, and used a variety of
methods (analysis, experimentation) to understand
their scalability.

Our analysis led us to recognize a number of
problems that are common when one undertakes
to ‘scale up’ a reliable multicast-based system, and
we argued that these can be understood as the
outcome of a battle between random phenomena and
deterministic properties. Traditional protocols exhibit

Copyright © 2002 John Wiley & Sons, Ltd.

symptoms of unscalability that include throughput
instability, flow control problems, convoys seen in
ordered multicast delivery protocols, and high rates
of duplicated retransmission requests or un-needed
retransmitted data packets in protocols using receiver-
driven reliability. We trace these problems to a
form of complexity argument, in which the growth
in size of a system triggers a disproportionate
growth in overhead. Our work suggests that many
of the best known and most popular reliable
protocol architectures degrade with system size.
In a mechanical sense, this phenomenon stems from
properties of traditional stacks, such as sender-based
reliable multicast dissemination, and enforcement of
reliability flow control in low protocol layers.

The alternative we propose involves building a non-
traditional stack: lower layers are gossip-based and
have probabilistic properties, while stronger properties
are introduced with an end-to-end mechanism (such
as virtual synchrony, as we have used in this paper)
closer to the application. Experiments confirm that this
approach yields substantial immunity to the scalability
limits mentioned. In the case of virtual synchrony,
our end-to-end mechanism imposes scalability limits
of its own, but the solution degrades slowly and is
far more stable at large group sizes than traditional
implementations.

Randomized low-level phenomena that compromise
system-wide performance are an unrecognized but
serious threat to scalability. While we often brush con-
cerns about ‘infrequent events’ to the side when de-
signing services, in the context of a scalability analysis
it becomes critical that we confront these issues, and
their costs. Probabilistic gossip mechanisms fight fire
with fire: they overcome infrequent disruptive prob-
lems with mechanisms having small, localized costs.
In a world where scalability of network mechanisms
is rapidly becoming the most important distributed
computing challenge, appreciating the nature of these
effects and architecting systems to minimize their
disruptive impact is an issue which is here to stay.

Qual. Reliab. Engng. Int. 2002; 18: 165-184

184 I. GUPTA, K. P. BIRMAN AND R. VAN RENESSE

ACKNOWLEDGEMENTS

The authors wish to thank Oznur Ozkasap and
Zhen Xiao for Figures 1, 3 and 4. The authors also
thank Ben Atkin for his helpful comments.

The authors were supported in part by
DARPA/AFRL-IFGA grant F30602-99-1-0532
and in part by NSF-CISE grant 9703470, with
additional support from the AFRL-IFGA Information
Assurance Institute, from Microsoft Research and
from the Intel Corporation.

REFERENCES

1. Birman KP. Building Secure and Reliable Network Applica-
tions. Manning Publications and Prentice-Hall: Greenwich,
CT, 1997.

2. Floyd S, Jacobson V, McCanne S, Liu C, Zhang L. A
reliable multicast framework for light-weight sessions and
application level framing. Proceedings of the ACM SIGCOMM
’95 Conference, Cambridge, MA, August 1995. Association
for Computing Machinery: New York, NY, 1995.

3. Paul S, Sabnani K, Lin K, Bhattacharya S. Reliable Multicast
Transport Protocol (RMTP). IEEE Journal on Selected Areas
in Communication 1997; 15(3):407-421.

4. Piantoni R, Stancescu C. Implementing the Swiss Exchange
Trading System. Proceedings 27th International Symposium
on Fault-tolerant Computing, Seattle, WA, June 1997. IEEE
Computer Society Press: Los Alamitos, CA, 1997; 309-313.

5. Gray J, Helland P, O’Neil P, Shasha D. The dangers of
replication and a solution. Proceedings of the ACM SIGMOD
96 Conference, Montreal, QC, June 1996. Association for
Computing Machinery: New York, NY, 1996.

6. Birman KP, Joseph TA. Exploiting virtual synchrony in
distributed systems. Proceedings of the 11th Symposium on
Operating Systems Principles, Austin, TX, November 1997.
Association for Computing Machinery: New York, NY, 1997;
123-138.

7. van Renesse R, Birman KP, Maffeis S. Horus, a flexible group
communication system. Communications of the ACM 1996;
39(4):76-83.

8. Birman KP, Hayden M, Ozkasap O, Xiao Z, Minsky Y.
Bimodal Multicast. ACM Transactions on Computer Systems
1999; 17(2):41-88.

9. Kalantar M, Birman K. Causally ordered multicast: The
conservative approach. Proceedings International Conference
on Distributed Computing Systems '99, Austin, TX, June
1999. IEEE Computer Society Press: Los Alamitos, CA, 1999.

10. Liu C. Error recovery in Scalable Reliable Multicast. PhD
Dissertation, University of Southern California, December
1997.

11. Lucas M. Efficient data distribution in large-scale multicast
networks. PhD Dissertation, University of Virginia, May
1998.

12. Rubenstein D, Kurose J, Towsley D. Real-time reliable multi-
cast using proactive forward error correction. Proceedings Sth
International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’98), Cam-
bridge, UK, July 1998. IEEE Computer Society Press: Los
Alamitos, CA, 1998.

13. van Renesse R. Scalable and secure resource location.
Proceedings 33rd Hawaii International Conference on System
Sciences, Maui, HI, January 2000. IEEE Computer Society
Press: Los Alamitos, CA, 2000.

Copyright © 2002 John Wiley & Sons, Ltd.

14. Demers A et al. Epidemic algorithms for replicated data
management. Proceedings of the 6th ACM Symposium on
Principles of Distributed Computing (PODC ’87), Vancouver,
British Columbia, Canada, August 1997. Association for
Computing Machinery: New York, NY, 1997; 1-12.

15. van Renesse R, Minsky Y, Hayden M. A gossip-style
failure detection service. Proceedings of IFIP International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware *98), Lake District, UK.
Springer: New York, NY, 1998.

16. Xiao Z, Birman KP. Providing efficient robust error recover
through randomization. Proceedings International Workshop
on Applied Reliable Group Communication, Phoenix, AZ,
April 2001. IEEE Computer Society Press: Los Alamitos, CA,
2001.

17. Chandra TD, Hadzilacos V, Toueg S, Charron-Bost B. On
the impossibility of group membership. Proceedings of the
15th ACM Symposium on Principles of Distributed Computing
(PODC ’96), Philadelphia, PA. Association for Computing
Machinery: New York, NY, 1996; 322-330.

18. Birman KP, van Renesse R. Software for reliable networks.
Scientific American 1996; 274(5):64-69.

19. Schneider F. Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys
1990; 22(4):299-319.

20. Kaashoek MF, Tanenbaum AS, Verstoep K. Group commu-
nication in Amoeba and its applications. Distributed Systems
Engineering 1993; 1(1):48-58.

21. Keidar I, Khazan R. A client-server approach to virtually
synchronous group multicast: Specifications and algorithms.
Proceedings 20th International Conference on Distributed
Computing Systems, Taipei, Taiwan, April 2000. IEEE
Computer Society Press: Los Alamitos, CA, 2000; 344-355.

22. Golding R, Taylor K. Group membership in the epidemic style.
Technical Report UCSC-CRL-92-13, University of California
at Santa Cruz, May 1992.

23. van Renesse R. Masking the overhead of protocol layering.
Proceedings of the ACM SIGCOMM ’96 Conference, Stanford
University, CA, September 1996. Association for Computing
Machinery: New York, NY, 1996.

Authors’ biographies:

Indranil Gupta is a doctoral student in the Department
of Computer Science at Cornell University. His current
research interests lie in designing and building scalable and
reliable protocols for distributed and peer-to-peer systems.
He has also co-authored conference and journal publications
in the areas of real-time systems and ad hoc networking. (His
homepage is http://www.cs.cornell.edu/gupta).

Kenneth Birman is a Professor in the Department of
Computer Science at Cornell University, which he joined
after receiving his PhD from the University of California,
Berkeley in 1981. He heads the Spinglass project at Cornell.
He has also founded two companies, Isis Distributed
Systems (acquired by Stratus Computer in 1993) and
Reliable Network Solutions (http://www.rnets.com).

Robbert van Renesse is a Senior Research Associate in the
Department of Computer Science at Cornell University, as
well as co-founder and Chief Scientist of Reliable Network
Solutions, Inc. He holds a PhD from the Free University
of Amsterdam. His work focuses on development of fault-
tolerant distributed systems and network communication
protocols. He has published over 75 papers and is a member
of the IEEE and the ACM.

Qual. Reliab. Engng. Int. 2002; 18: 165-184

	1 INTRODUCTION
	2 SCALABILITY AND RELIABILITY
	2.1 Throughput instability
	2.2 Micropartitions
	2.3 Convoys
	2.4 Request and retransmission storms

	3 BIMODAL MULTICAST
	4 FINDINGS SO FAR AND PROVIDING STRONGER GUARANTEES
	4.1 General insight
	4.2 Our solution---a non-traditional stack architecture

	5 SCALING VIRTUAL SYNCHRONY
	5.1 Scaling virtual synchrony---a back-of-the-envelope analysis
	5.1.1 Virtual synchrony, unicast implementation.
	5.1.2 Virtual synchrony, implemented over hbox Pbcast.

	5.2 Algorithm description

	6 EXPERIMENTAL EVALUATION
	6.1 Scalability
	6.2 Insensitivity to perturbations
	6.3 Laziness of the new non-traditional stack
	6.4 Message load on members
	6.5 Effect of larger leader committees
	6.6 Summary of experimental results

	7 SUMMARY AND CONCLUSIONS

