
Pointers and Storage Classes

COM S 113

February 8, 1999



Announcements

Assignment 2 can be turned in Tuesday; o�ce hours

today 2:00{3:30 in Upson 5162

Assignment 3 (short!) available, due Friday

Read Ch. 8 in C by Dissection or K&R 5.1{5.9

1



Pointers and const

const int a; /* a is a const int */

const int *b; /* b is a pointer to a const int */

int * const c; /* c is a const pointer to int */

const int * const d; /* d is a const pointer

to a const int */

2



Pointers to void

One pointer can be assigned to another only if both

have same type or one is pointer to void

void * is used as a generic pointer type

malloc() returns a pointer to void, so we can assign

the result to any pointer type without a cast

3



Examples of Pointers to void

int *p; float *q; void *v;

/* Legal */ /* Illegal */

p = 0; p = 1;

p = (int *) 1; v = 1;

p = v = q; p = q;

p = (int *) q;

p = malloc(4 * sizeof(int));

4



Example of Call-by-Reference

void swap(int *p, int *q) {

int tmp = *p; *p = *q; *q = tmp;

}

int main() {

int a=3, b=7;

swap(&a, &b);

return 0;

}
5



Storage Classes

Every variable and function has a type and a storage

class

Four storage classes: auto, extern, register, and static

6



Storage Class auto

Variables within functions or blocks default to auto-

matic, but storage class can be given explicitly:

auto int a, b, c;

Memory allocated upon entering block, released at

exit, so values aren’t kept between invocations

7



Storage Class static (first use)

When applied to variables de�ned within a block, local

variables retain their values between invocations

void printletter(void) {

static int parity; /* initially 0 */

putchar(parity ? ’A’ : ’B’);

parity = (parity + 1) % 2;

}

8



Using static Variables for Debugging

...

{

static int cnt = 1;

printf("On %dth iteration, d has value %d.\n",

cnt, d);

}

...

9



Storage Class extern

Variables declared outside functions, and all functions

themselves, have external storage class

extern tells the compiler to look for a variable else-

where, either in the same �le or in another �le

10



Example of External Variables

#include <stdio.h>

int a = 1, b = 2, c = 3; /* global variables */

int f(void); /* function prototype */

int main() {

int b, c;

a = b = c = 4;

printf("%3d\n", f());

printf("%3d%3d%3d\n", a, b, c); }

11



Useful Example of extern

In �le file1.c:

int a = 1, b = 2, c = 3;

int f(void);

int main() { printf("%3d\n%3d%3d%3d\n", f(), a, b, c); }

In �le file2.c:

int f(void) { extern int a;

int b, c;

a = b = c = 4; return a + b + c; }

12



Storage Class register

Advises (but doesn’t require) compiler to store value

in CPU register rather than in memory

Defaults to auto if compiler decides otherwise

Purpose is to speed program execution by keeping very

frequently accessed variables (loop counters) imme-

diately available

13



Storage Class register (continued)

Was important when compilers weren’t as smart about

register allocation; many compilers now ignore register

Because register variables not necessarily stored in

memory, can’t take the address of such a variable

register int i; /* could be written: register i */

for (i = 0; i < LIMIT; i++)

... /* illegal to refer to &i */

14



Storage Class static (second use)

When applied to external declarations (of functions or

variables), scope is restricted to current �le

Functions in other �les can’t access external static

variables, even if they attempt to use the extern stor-

age class keyword

Good way to implement information hiding in C, like

private variables and methods in Java, but limited
15



Example of External static Variables

Consider implementation of a stack with operations

push(i), pop(), empty(), and full()

We’ll implement with integer array s, using variable

next to point to next free element, both declared

static, in �le stack.c

16



Example of External static Variables (continued)

#include "stack.h"

static int s[MAX_SIZE], next = 0;

void push(int i) { s[next++] = i; }

int pop(void) { return s[--next]; }

int empty(void) { return next == 0; }

int full(void) { return next == MAX_SIZE; }

17



Review of Memory Allocation

#include <stdlib.h>

int main() {

int *a;

a = malloc(sizeof(int));

*a = 3;

printf("a is an int pointer with value %p\n", a);

printf("a points to an int with value %d\n", *a);

free(a); }

18



Allocating One-Dimensional Arrays

#include <stdlib.h>

int main() {

int *a, i, n = 100;

a = malloc(n * sizeof(int));

for (i = 0; i < n; i++)

a[i] = i;

free(a);

}

19



Traversing an Array with Pointers

#define N 100

int sumarray(const int a[N]) {

int *p, sum = 0;

for (p = a; p < &a[N]; p++)

sum += *p;

return sum;

}

20


