The Systems Qualifying Exam

Spring 2003

· This exam consists of five (5) pages.

· You have 3 hours.

· Descriptions written mostly in English will get no credit as responses to coding questions.
1. Synchronization [15 points]
Some monkeys are trying to cross a ravine. A single rope traverses the ravine, and monkeys can cross hand-over-hand. Up to five monkeys can be hanging on the rope at any one time; if there are more than five, then the rope will break and they will all die. Also, if eastward-moving monkeys encounter westward moving monkeys, all will fall off and die.

Each monkey operates in a separate thread, which executes the code below:

typedef enum { EAST, WEST} Destination ;

void monkey(int id, Destination dest) {

WaitUntilSafeToCross(dest);

CrossRavine(id, dest);

DoneWithCrossing(dest);

}

Variable id holds a unique number identifying that monkey. CrossRavine(int monkeyid, Destination d) is a synchronous call provided to you, and it returns when the calling monkey has safely reached its destination.

a. [12 points] Use semaphores to implement WaitUntilSafeToCross(Destination d) and DoneWithCrossing(Destination d). Your implementation should ensure that:

1. At most 5 monkeys simultaneously execute CrossRavine().

2. All monkeys executing in CrossRavine() are heading in the same direction.

3. WaitUntilSafeToCross() does not delay a monkey unnecessarily.

b. [3 points] Explain your definition of “unnecessarily” for property (3) above and justify this choice.

(Note that this “monkey problem” is encountered frequently in practice. A resource manager, for instance, may award resources to requests coming from competing applications using a generalized version of this scheme).

2. Synchronization [15 points]

Concurrent-Systems-R-Us has built a new operating system. This simple system provides three primitives for managing threads:

int thread_create(void (*f)());

void thread_start(int threadid);

void thread_stop();

thread_create() creates a new thread and returns its thread identifier. This newly created thread is in the suspended state. thread_start() takes a suspended thread, marks that thread as runnable, and places it on the scheduler’s run queue. The behavior of thread_start() is undefined if the thread is not suspended. thread_stop() operates implicitly on the calling thread – it marks the currently running thread as suspended, and removes it from the run queue. The scheduling policy is unspecified, but is known to be preemptive.

Concurrent-Systems-R-Us has tried to build a software-controlled radar using this system. The radar is controlled by two threads, a transmitter and a receiver thread, which are supposed to alternate (i.e. first the transmitter executes, then the receiver, then the transmitter, then the receiver, and so on). To achieve this alternation, the programmers decided to use low-level thread manipulation, instead of standard synchronization primitives like monitors with condition variables – efficiency was their excuse. Here is their code:

int xmit, rcv;

void transmitter() {

while(TRUE) {

printf(“In transmitter!\n”);

/* do transmission work */

thread_start(rcv);

thread_stop();

}

}

void receiver() {

while(TRUE) {

thread_stop();

printf(“In receiver!\n”);

/* do reception work */

thread_start(xmit);

}

}

void startradar() {

xmit = thread_create(transmitter);

rcv = thread_create(receiver);

thread_start(xmit);

thread_start(rcv);

/* main thread loops forever now */

while(TRUE);

}

a. [2 points] Concurrent-Systems-R-Us reports that their software radar “does not work reliably.” Identify the cause of the problem, and describe what behavior the users would see as a result.

b. [13 points] Modify the transmitter() and receiver() functions to fix the problem you identified in part a. Use monitors with condition variables for all synchronization.
3. Protection & Security [20 points]
a. [2 points] Define each of the following terms:

i. Access control list
ii. Capability
b. [5 points] Discuss the relative merits of (i) and (ii) for revocation of access.

c. [3 points] Define the Principle of Least Privilege.

d. [5 points] Discuss the relative merits of (i) and (ii) in implementing operating system support for the Principle of Least Privilege.

e. [5 points] Describe how capabilities might be implemented in a monolithic operating system that has a privileged address space for the kernel.

4. Networking [15 points]

Here is a description of a simplified email protocol called BareBonesSMTP: Suppose a user A@laptop1.foo.com wants to send an email to user B@syslab1.cs.cornell.edu. laptop1 spools the message to an outgoing mail server, mail.foo.com, using a TCP connection. This outgoing mail server parses the destination address and looks up the incoming mail server for syslab1.cs.cornell.edu, smtp.cs.cornell.edu. The outgoing mail server then creates a TCP connection to the incoming mail server and forwards the email. The incoming mail server stores the email on disk in user B’s mailbox until it is retrieved by B’s mail reader using another TCP connection. If any errors occur at any step before B retrieves the email, then the email is bounced back to A’s outgoing mail server with an error indication. The outgoing mail server attempts redelivery every hour, and bounces the email back to user A after three days.

a. [5 points] In three sentences or less, describe the end-to-end principle.

b. [10 points] Analyze BareBonesSMTP from an end-to-end perspective. Does it conform to or violate the end-to-end principle? Describe how the end-to-end principle is upheld by BareBonesSMTP, or suggest changes to the protocol that will make it comply with the end-to-end principle.
5. Databases [20 points]
A university's student data base includes the following relations (the keys are underlined).

Students(sid: integer, name: string, class: integer …)

Courses(cid: integer, title: string, cdept: string ...)

Enrollments(sid: integer, cid: integer, status: string ...)

a. [5 points] Write the following query in SQL: Print the sids and names of all the students who are enrolled in the course with the highest enrollment. You can assume that no two courses have the same enrollment.

b. [8 points] Each tuple of the Students and Courses relation is 200 bytes long, so 20 tuples fit in a page. Each tuple of the Enrollments relation is 100 bytes long, so 40 tuples fit in a page. The following indexes are maintained:

A clustered hash index on the cid column of Enrollments

A hash index on the sid column of Enrollments

A hash index on the sid column of Students

Assume the school has 8000 students; on average each student enrolls in 5 courses; there are about 40 students per course; about 5% of enrollments are audits; and 1/4th of all students are members of the class of 2002. These statistics are maintained by the DBMS system for query optimization purposes. Assume that you have 12 buffer pages.

The following SQL query identifies those seniors who are auditing courses:
SELECT
S.name

FROM

Students S, Enrollments E

WHERE
E.sid = S.sid AND E.status = 'audit' AND S.class = 2002

Give an efficient query plan for evaluating this query. Indicate the access paths used for each relation and the implementation used for each relational operator, including pipelining or use of temporary relations. Estimate the cost (in page I/Os) of this plan. Show your work.

c. [4 points] Consider the following classes of lock-based concurrency control algorithms:

2PL: Two-phase locking

S2PL: Strict two-phase locking (all X-locks are held until commit)

R2PL: Rigorous two-phase locking (all locks are held until commit)

For each of these three algorithms, state which of the following properties are guaranteed.

i. The resulting schedule is serializable

ii. The resulting schedule is deadlock-free

iii. The resulting schedule avoids cascading aborts

iv. The resulting schedule is serializable using the same order as the commit order

d. [3 points] Give an example of a schedule that is serializable but not possible using 2PL.

6. Architecture [15 points]

We have written a function Loop(A,Size,Stride) that traverses the first Size bytes of an array A, in ascending order, using a stride of Stride bytes. For example, for Size=16B, Stride=4B, Loop accesses bytes 0, 4, 8, 12 in that order. As it runs, the function measures the cost of each access to the array in clock cycles; once finished, it returns the average cost. The function is written so that access time is sensitive to nothing other than whether it hits or misses in the cache. There are no context switches during the execution.

We use Loop in a series of experiments, using Size=16KB through 256KB and Stride=8B through 16KB. At each point, we start with an empty cache and we run the function twice: the first pass is used as warm-up, and the second pass is used to get the cost. The plot on the next page summarizes the results.

[image: image1.emf]8

16

32

64

128

256

512

1024

2048

4096

8192

16

32

64

128

120

68

41

28

22

120

68

41

28

22

15

15

0

15

30

45

60

75

90

105

120

Time

(cycles)

Stride

(bytes)

Size

(kilobytes)

Knowing that all relevant sizes are powers of two, and that the cache follows a FIFO replacement policy, deduce the following from the plot and justify your answer in one or two sentences for each part:

i. cache size

ii. cache line size

iii. cache hit time

iv. cache miss penalty

v. cache associativity

