2001 Systems Qualifying Exam

5 questions, 100 points maximum

1. Operating Systems (Concurrency: 25 points)

You are designing a high performance networked server, and have adopted a multithreaded architecture.  A message passing system delivers messages to the server in some order m0, m1, …but in your design, each message will be handled by a separate thread.  Assume that the arrival sequence number of message m can be obtained using the integer function seqno(m), and that messages are delivered without loss.  

You should assume that messages may be delivered out of order but that there is a limit on how disordered messages may become: if message mi has not yet been delivered, there is some constant WINSIZE such that the largest sequence number that might be received is mi+WINSIZE-1.  (This strange property is typical of UDP-based connection stream protocols that do flow-control and error correction on a sliding window of size WINSIZE messages). 

a) [10 points] Suppose that some code segment should be executed in message-sequence order.  (For example, a graphics protocol might move a cursor, then draw a box).  Write code for two monitor procedures EnterRegion and LeaveRegion so that if each task calls EnterRegion before entering this order-sensitive code segment and LeaveRegion afterwards, there will be at most one active thread in the region, and so that threads will execute the protected code in sequence-number order.  Assume that all threads eventually execute the protected code and that the monitor implements a signal-urgent discipline
, A skeleton of the monitor is as follows:
monitor OrderSensitiveRegion {


/* variable declarations  */


procedure entry EnterRegion(message *m) {


}


procedure entry LeaveRegion(message *m) {


}

/* monitor initialization code, if any */

}
b) [5 points] It is common to assert that deadlock can only occur if four “necessary conditions” arise.  List these four conditions.  Is your solution to (a) subject to deadlock?  Answer with respect to the conditions you listed.
c) [10 points]  Now suppose that from time to time, you observe that your server has too many active threads.  Can we limit the number of active threads by changing the program as follows?  Explain the conditions under which such a change would preserve correctness. Assume that the monitor itself is not modified.  Also, both changes are made at the same time.
i. Arriving messages are placed into a queue, in the order they arrive (recall that this may not be the same as the sequence number ordering; for example, the queue might list m0, m5, m1, m8, m2, …)
ii. Running threads from a fixed set of  size NTHREADS>1.  Each thread comes along, dequeues one message from the head of the queue, processes that message, frees it and then repeats the cycle.
2. Operating Systems (Scheduling: 25 points)

You are asked to consult on the design of a simple operating system called Lunix. Lunix is designed to

support multiprogramming on a single-processor machine. However, the designers have observed that

under various conditions the machine hangs because some of the concurrently executing processes either

stop making forward progress, or make progress so slowly they might as well have stopped. Your job is to

debug their kernel.

The Lunix kernel job queue consists of an array of process control blocks (also known as “process table entries”) with the following structure:

struct PCB {

int process_id;

enum { running, ready, waiting } status;

int priority;

struct PCB *next_ready;

/* "next ready" points to the next process on the ready */

/* queue, or is NULL if this is the last process */

void *PC;

/* program counter at which to restart execution */

...more stuff...

}
The scheduler also has a variable ready_queue of type struct PCB * that is a pointer to the first process on the ready queue. The ready queue is a linked list formed by the next ready pointers, in which the

status of every process is ready. The linked list is kept sorted in order of descending process priority.

(a) [5 pts] To impress the Lunix designers with your fitness for the consulting job, name two additional

kinds of information you would expect to find in the section of the PCB labeled “more stuff.”

(b) [5 pts] The Lunix kernel implements preemptive priority scheduling, yet the system designers are finding that often processes are not preempted. They have determined that the problem is in the scheduler itself. The scheduler selects and dequeues a new process to run using the following code:

struct PCB *choose_process() {

struct PCB *ret = ready_queue;

ready_queue = ret->next_ready;

return ret;

}
Because the scheduler is preemptive, sometimes running processes must be placed back on the ready

queue when preempted; this is implemented by the following function which ensures the ready queue is

kept sorted on priority:

struct PCB *reenqueue_running(PCB *current_proc) {

current_proc->status = ready;

struct PCB *p = ready_queue;

struct PCB **prev = &ready_queue;

while (p != NULL && p->priority > current_proc->priority) {

prev = &p->next_ready;

p = p->next_ready;

}

*prev = current_proc;

current_proc->next_ready = p; // insert into linked list

}

Why isn’t preemption working? Suggest a one-line fix. 

(c) [5 pts] Even after you fix preemptive scheduling, it is discovered that some processes are not scheduled for execution for long periods of time. When can this happen?  What “term” is commonly used to describe this phenomenon?

(d) [5 pts] An important class of Lunix users would like to run large background jobs that use most of the

memory of the machine, but at a low priority so that they do not interfere with higher-priority processes

that run the user interface code. In beta testing, this does not seem to work: no matter how low the priority

of the background process, the user interface becomes unusably sluggish and remains so. How can this

be? Explain in 3-4 sentences.  Can you suggest a simple way to fix the problem?

(e) [5 pts] Lunix provides shared-memory segments to which multiple processes can read and write. To allow control of concurrent access to these segments, it provides mutexes with the following operations:

void lock(Mutex m); /* wait until mutex is available and

then acquire it */

void unlock(Mutex m); /* release a mutex that is held */
The Lunix printer server is implemented using shared memory; processes submit a print request by locking

a mutex m, putting the request in a print-queue data structure, and releasing the mutex. This

involves no system calls and all memory accessed is physically resident – there are no page faults.   Note that a mutex is like a lock and is only released through an explicit call to unlock.

When high-priority and low-priority processes attempt to share access to the printer, in the presence of

other medium-priority processes, it is found that the high-priority processes often block indefinitely on

the initial call to lock(m), while medium-priority processes continue to be scheduled and run. What is

happening, and how might the scheduler be modified to address the problem?

3. Database Systems (25 points)

Cornell University has asked you for consultation in the design of their new human resource database. Even though you have not much time since you are studying hard for the qualifying exams, you grudgingly agree at your regular consulting fee of $500 per hour.
a. [5 points]  The database contains a relation R(A,B,C,D,E) with two integer attributes A and B and three string attributes C, D, and E. Assume that the only two indexes on relation R are an unclustered B+-tree on attribute A and an unclustered B+-tree index on attribute B. R spans 100,000,000 pages on disk. The attribute values of attribute A are uniformly distributed between 1 and 1,000,000. Consider the following query Q:

SELECT A, B FROM R WHERE A> 999900

Describe the most efficient query plan to evaluate query Q. State precisely any assumptions that you make. (You do not have to calculate the cost of the plan that you propose.) (5 points)

b. [5 points] Consider again the relation R(A,B,C,D,E). Assume that the following functional dependencies hold:

A ( B, BC ( E, ED ( A

b.1) Find all the candidate keys (minimal keys) for this relation. 
b.2) The process of normalization decomposes a relation R into several relations R1, …, Rk such that the union of the sets of attributes in R1, …, Rk is equal to the set of attributes in R. Why do we normalize relations? Give one reason why we would not normalize a relation even though normalization might be possible.

c. [5 points] Consider the join of the relations R(A,B) and S(B,C). Relation R has attributes A and B, and relation S has attributes B and C. Attribute B is a key for relation S. You are given the following information about the two relations:

· Both relations are stored as simple (unsorted) heap files.

· Relation R contains 10,000 tuples and has 10 tuples per page.

· Relation S contains 2,000 tuples and also has 10 tuples per page.

· Neither relation has any indexes.

· There are 22 buffer pages available.

What is the cost of joining R and S using a block nested loops join?  Explain your answer.  The cost metric is the number of page I/Os, and the cost of writing out the result should be ignored.

d. [5 points] Under the same assumptions as in part (c), what is the cost of joining R and S using a hash join?

e. [5 points] Consider the following complete schedule for two transactions: 

R1(X) W1(X) R2(X) R1(Y) W2(X) W1(Y) R2(Y) C1 W2(Y) C2

Is this schedule serializable?  Would it be allowed by 2-phase locking?  Would it be allowed by strict 2-phase locking?  Explain your answers.

4. Architecture (15 points)

Consider a machine with the following characteristics (assume words are 4 bytes):

· 64 bit virtual addresses

· 40 bit physical addresses

· 4096 byte (4Kbyte) page size

· A 64KByte physically indexed physically tagged direct-mapped cache with a block size of 64 bytes

a) [5 points]  For each of the following fields, explain how the cache uses the field and give the width (in bits) of the field, for the addressing scheme on this machine

· Virtual page number: 
· Page frame number (a.k.a. physical page number): 
· Cache tag: 
· Cache index: 
· Cache word offset: 

b)  [2 points]  Explain the difference between a direct mapped cache and an associative cache.  
c) [3 points]   Suppose that program P compiles into the assembler code shown below, where _a, _b and _c are distinct addresses in memory, corresponding to global variables in a program written in C.



address

instr.
Operands



.globl
_a, _b, _c

// Global variables

009810
movw
_a(r3),r2 
// load r2 = a[r2]

009820
movw
_b(r4),r0
// load r0 = b[r4]

009830
ldiv
r2,r0,r0
// r0 = r2/r0

009840
movw
r0,_c(r3)
// c[r3] = r0

009850
addw
_a(r3),r0,r0// r0 = a[r3]+r0

009860
movw
r0,_a(r3)
// a[r3] = r0

Now, suppose that you were told that the theoretical minimum number of machine cycles required to execute this sequence of instructions is six – one cycle per instruction – but that the actual measured number is twenty.  The explanation you are given is that the program is experiencing a high rate of “L1 data cache misses”.  Explain what the L1 data cache does, why this code might have a high rate of L1 cache misses, and why an L1 cache miss costs so many cycles.

d) [5 points] Now suppose that the code is changed as follows.  Notice that the change reorders the first two instructions and also introduces one additional instruction, but does the same thing.  Could the modified code execute faster than the version from part c?  Explain why, or why not.

009810
movw
_b(r4),r0
009820
movw
_a(r3),r2

009830
ldiv
r2,r0,r0

009840
movw
r0, r1

009850
addw
_a(r3),r0,r0

009860
movw
r0,_a(r3)

009870
movw
r1,_c(r3)
5.  Operating Systems (I/O path) (10 points)

Consider a standard computer architecture in which the operating system is about to initiate a disk I/O operation initiated by a user program that calls the write system call.  Assume that the write will be one whole disk block and that the argument to the write is a page-aligned region within the user’s address space.  

a. [5 points] Walk us through the steps that the operating system will perform in order to do this write and report completion to the user.  Assume that we are not writing to the disk buffer pool – the I/O will be done directly to the disk, using DMA transfer from the page in the user’s address space.   You can assume that the disk is idle and that no other requests are pending.

Note: we’re only interested in things the operating system does.  And we are looking for an answer expressed in terms of relatively high level functional steps – an answer shouldn’t involve more than about 10-15 separate steps.  For example, a step might be “mark the process state as waiting and schedule some other process.”  Our goal is to see that you know the important things that an operating system does, not to test your ability to reproduce chunks of Linux operating system code from memory…  

b) [5 points]  Most operating systems provide a user-level implementation of a write routine that converts byte-at-a-time I/O operations (such as characters printed by the C printf() procedure) into block I/O operations.  Yet system calls like write usually allow the program to indicate how many bytes are to be written, and in principle, nothing stops the application from calling write on each byte, or set of bytes, that it produces. Why do so many operating systems use these intermediary routines?  Are there conditions under which such a routine might hurt performance or otherwise give undesired behavior?

� Hint: signal-urgent is the discipline where the signaling task is suspended as soon as it does the signal operation and the signaled task runs immediately, before any other task can enter the monitor.





