
Computing the Density of States

of Boolean Formulas

Stefano Ermon, Carla P. Gomes, and Bart Selman

Cornell University, Ithaca NY 14850, USA
{ermonste,gomes,selman}@cs.cornell.edu

Abstract. In this paper we consider the problem of computing the den-
sity of states of a Boolean formula in CNF, a generalization of both
MAX-SAT and model counting. Given a Boolean formula F , its den-
sity of states counts the number of configurations that violate exactly
E clauses, for all values of E. We propose a novel Markov Chain Monte
Carlo algorithm based on flat histogram methods that, despite the hard-
ness of the problem, converges quickly to a very accurate solution. Using
this method, we show the first known results on the density of states
of several widely used formulas and we provide novel insights about the
behavior of random 3-SAT formulas around the phase transition.

1 Introduction

Boolean satisfiability (SAT) solvers have been successfully applied to a wide
range of problems, ranging from automated planning to hardware and software
verification. In all these applications, the original problem is encoded into a
Boolean formula and the task is that of deciding whether it is satisfiable or not.

Given the tremendous success of SAT solvers, a lot of attention has been
directed toward extending this technology to the model counting problem ([1–3]),
that is the problem of computing the number of distinct satisfying assignments
for a given propositional formula. This task is also very important because of its
wide range of applications. For example, several probabilistic inference problems
in graphical models such as Bayesian inference can be effectively translated into
model counting ([4, 5]). Moreover, when a SAT encoding is used to solve hard
combinatorial problems arising in other domains, knowledge of the number of
solutions can usually provide useful insights into the original problem.

Another very active line of research is devoted to the study of the optimiza-
tion version of SAT, namely the maximum satisfiability problem (MAX-SAT).
In MAX-SAT the goal is to find a truth assignment that satisfies the maximum
possible number of clauses of a given Boolean formula in conjunctive normal
form (CNF). This problem is important because many fundamental graph theo-
retic problem such as MAX-CUT, MAX-CLIQUE, Minimum Vertex Cover have
linear time encodings as MAX-SAT. Moreover MAX-SAT has direct applications
in a wide range of domains such as routing problems and expert-systems (see
e.g. [6])

In this paper we consider the problem of computing the density of states of a
Boolean formula in CNF, which is a generalization of both MAX-SAT and model
counting. The density of states (DOS) counts the number of truth assignments or
configurations that violate exactly E clauses, for all values of E. In other words,
the problem is to compute the number n(E) of configurations that leave exactly
E clauses unsatisfied, for all possible values of E. The density of states is a very
detailed characterization of the configuration space associated to a formula. In
particular, n(0) is the number of satisfying assignments or models of the formula.
The lowest value of E with a non-zero density (i.e. minE{E|n(E) > 0}) is the
solution of the corresponding MAX-SAT problem.

Given that computing n(0) is equivalent to model counting, the problem of
computing the entire density of states is at least as hard as model counting and
therefore it is #P -hard.

The name density of states is borrowed from statistical and condensed mat-
ter physics, where the density of states (DOS) of a system describes the number
of states at each energy level that are available to be occupied. For SAT in-
stances, we simply define the energy E(σ) of a configuration σ to be the number
of clauses that are not satisfied by σ. In physics the density of states represents a
deep characterization of the system, that is used to investigate various physical
properties of matter and to explain a number of quantum mechanical phenom-
ena. Analogously, in SAT the density of states gives a fine characterization of
the search space which can provide further insights into the development of new
algorithms.

We propose MCMC-FlatSat, a novel Markov Chain Monte Carlo sampling
technique to estimate the DOS for Boolean formulas, that is inspired by recent
methods introduced to estimate the DOS for statistical physics models [7]. Our
technique outperforms standard Metropolis sampling by overcoming the the of-
ten impractical mixing times. Moreover our method is especially suitable to deal
with rough energy landscapes with multiple local minima in the free energy that
are typical of combinatorial problems.

We empirically demonstrate that MCMC-FlatSat converges quickly to a very
accurate solution. Using this new method, we obtain novel insights about the
behavior of random 3-SAT formulas around the phase transition. Moreover, we
are able to show the first known results on the shape of the density of states
for several widely used formulas from the SATLib benchmark. Our results are
very promising and we expect that this new approach will find many other
applications both to counting and inference problems.

2 Density of states: problem definition

In this paper we consider the problem of computing the density of states of a
given Boolean formula F in conjunctive normal form (CNF). A clause C is a
logical disjunction of a set of (possibly negated) variables. A formula F is said
to be in CNF form if it is a logical conjunction of a set of clauses C.

We define V to be the set of propositional variables in the formula, where
|V | = n. A variable assignment σ : V → {0, 1} is a function that assigns a value
in {0, 1} to each variable in V . As usual, the value 0 is interpreted as FALSE and
the value 1 as TRUE. A variable assignment σ will also be interchangeably called
a configuration, a term that refers to an element of {0, 1}n, a set isomorphic to
the set of all possible variable assignments.

Let F be a formula in CNF over the set V of variables with m = |C| clauses
and let σ be a variable assignment. We say that σ satisfies a clause C if at least
one signed variable of C is TRUE. We define the energy of a configuration E(σ)
to be the number of clauses that are unsatisfied when F is evaluated under σ.
If E(σ) = 0, then σ satisfies F and σ is called a model, solution, a ground state
or satisfying assignment for F .

Given a Boolean formula F , the density of states (DOS) n(·) is the function
n : [0, . . . ,m]→ N that maps energy levels to the number of configurations with
that energy level:

E 7→ |{σ ∈ {0, 1}n|E(σ) = E}|.
It is clear from the definition that the DOS of any formula F satisfies the nor-
malization constraint

∑m
E=0 n(E) = 2n.

3 Prior work

Despite the rich literature devoted to the study of model counting and MAX-
SAT, there is little prior work on the more general problem of the computation
of the density of states.

In [8] the authors propose sampling uniformly at random N configurations
σ1, . . . , σN and then estimating the DOS with an energy histogram h(E) based on
the samples. This approach is clearly unpractical because it requires an enormous
number of samples to get an accurate description of the DOS. In particular, any
attempt to sample at least a constant fraction of the whole configuration space
is doomed to have exponential complexity.

A more sophisticated sampling scheme is proposed in [9]. The authors pro-
pose the use of a Monte Carlo simulation with standard Metropolis transition

probabilities between configurations σi and σj given by pi→j = min{1, e
Ei−Ej

T },
where Ej is the number of unsatisfied clauses by σj and T is a temperature

parameter. Upon convergence, it is well known that the steady state distribu-
tion P (i) is Boltzmann distributed with the correct energy function E(·) (that
measures the number of unsatisfied clauses). The density of states can then be

obtained from the canonical ensemble rule n(E) = P (E)e−
E
T . It is well known

that the Metropolis algorithm can have very slow mixing times, especially when
dealing with rough energy landscapes with multiple local minima in the free
energy ([7, 10]). Unfortunately combinatorial energy landscapes, such as the one
corresponding to the energy used here, are known to have many free energy min-
ima and a similar problem of long tunneling times between local minima arises.
These reasons intuitively explain why the use of the Metropolis algorithm is un-
practical to deal with Boolean formulas. In the experiments we conducted, we

observed convergence only on very small instances and only for certain temper-
ature ranges.

4 A novel sampling strategy: the flat histogram method

We propose a Markov Chain Monte Carlo method to compute the density of
states based on the flat histogram idea that is inspired by recent work devel-
oped by the statistical physics community [7] to avoid Metropolis sampling. The
central idea of this method is that if we perform a random walk in the configu-
ration space {0, 1}n such that the probability of visiting a given energy level E
is inversely proportional to the density of states n(E), then a flat histogram is
generated for the energy distribution of the states visited. Suppose we define a
random walk with the following transition probability

pσ→σ′ = min

{

1,
n(E)

n(E′)

}

(1)

of going from a configuration σ with energy E to a configuration σ′ with energy
E′. The detailed balance equation

P (σ)pE→E′ = P (σ′)pE′→E

is satisfied when P (σ) ∝ 1/n(E). This leads to a flat histogram of the energies
of the states visited because P (E) =

∑

σ:E(σ)=E P (σ) = const.
Since the density of states is unknown a priori, and computing it is precisely

the goal of the algorithm, it is not possible to construct a random walk with
transition probability (1). However it is possible to start from an initial guess of
the DOS and keep changing the current estimate g(E) in a systematic way to
produce a flat energy histogram and simultaneously make the density of states
converge to the true value n(E).
MCMC-FlatSat(φ)
1 Start with g(E) = 1 for all E
2 Start with a modification factor F = F0

3 repeat

4 repeat

5 Generate a new state and accept with prob. given by eq. (1)
6 Adjust g(E) : g(E) = g(E)× F
7 Increase visit histogram H(E)← H(E) + 1
8 until until H is flat
9 Reduce F
10 Reset the visit histogram H
11 until F is close enough to 1
12 Normalize g
13 return g

To generate a new configuration we randomly flip a variable with uniform
probability, but other strategies are possible as well. The modification factor F

plays a critical role because it controls the tradeoff between the convergence rate
of the algorithm and its accuracy. Large initial values of F imply a substantial
diffusion rate and therefore fast convergence to a rather inaccurate solution. This
rough initial estimate is subsequently refined as the value of F decreases until
F ≈ 1, at which point when a flat histogram is produced g(E) has converged to
the true density n(E).

Due to statistical fluctuations, a perfectly flat histogram occurs with an ex-
tremely low probability. Therefore in our implementation we use a flatness pa-
rameter; in our experiments it is set so that an histogram is considered flat when
all the values are between 90% and 100% of the maximum value. The value of
F is reduced according to the schedule F ←

√
F , with an initial value F0 = 1.5;

the impact of the schedule on the convergence rate is an open research question.
By construction the DOS is obtained only up to constant factors: the normal-
ization of g ensures that

∑

E g(E) = 2n, where n is the number of variables in
the formula.

5 Effectiveness and validation of MCMC-FlatSat

The goal of this section is to verify the convergence of MCMC-FlatSat and to
empirically evaluate the accuracy of the solution obtained. To accomplish these
results, we first empirically check the accuracy of the results obtained for small
structured formulas, for which we can compute the true density by exact enumer-
ation of the entire (exponentially large) state space. We also test MCMC-FlatSat
on larger synthetic formulas for which we derive an analytical expression for the
true density of states, as well as on random 3-SAT formulas. For larger struc-
tured instances, for which no known method can be used to compute the true
DOS, we make use of partial consistency checks to validate the results.

When the true DOS is known, we employ two metrics to evaluate the accu-
racy of the results: the relative error for each data point and a global measure
represented by the Kullback-Leibler divergence between the true and the esti-
mated densities. The Kullback-Leibler divergence between the true density n(·)
and the estimated one g(·) is defined as:

DKL(n||g) =
m
∑

E=0

n(E)

Z
log

(

n(E)

g(E)

)

where Z = 2n is used to normalize the DOS to probability distributions. In fact,
the KL divergence is a standard information theoretic non-symmetric measure
of the difference between two probability distributions P and Q. In information
theoretic terms, the KL divergence measures the expected number of extra bits
required to code samples from P when using a code based on Q, rather than
using a code based on P .

5.1 Structured problems: exact counts

In figure 5.1, we compare the true and estimated log-densities for several small
instances (all with less than 28 variables) from the MAXSAT-2007 competition

benchmark. The true density is computed by exact enumeration. We chose in-
stances that are encodings of three different class of problems (Ramsey Theorem,
Spin Glass, Max Clique) and we plotted log-densities because of the large range
of values involved.

Although by the effect of the logarithmic scale the two densities in the plots
are overlapping to the eye and therefore are not distinguishable, the correspond-
ing relative error plots show that there is small error, that is never greater than
5%. The impressive degree of accuracy obtained is confirmed by the Kullback-
Leibler divergences presented in table 1.

Instance variables clauses KL-divergence DKL(n||g)
ram k3 n7.ra0.cnf 21 70 0.00003956
ram k3 n8.ra0.cnf 28 126 0.0000119634
johnson8-2-4.clq.cnf 28 420 0.0000458743
t3pm3-5555.spn.cnf 27 162 0.0000130045

Synth. formula (3) 50 100 0.0000118838
Synth. formula (6) 200 750 0.000000125958

Table 1. Comparison with exact enumerator. Kullback-Leibler divergence between the
true density of states and the estimated one.

We also notice that even though the shape of the DOS is a distinctive char-
acteristic of the original problem class, in all cases the distribution concentrates
almost all the probability weight on a small energy range.

5.2 Synthetic formulas: exact analytic counts

The simplest analytical results can be obtained for a k-SAT formula with m
clauses such that each variable appears in exactly one clause (so there are n = km
variables). In this case the density of states is

n(E) =

(

m

E

)

pE(1− p)m−E2km =

(

m

E

)(

1

2k

)E (

1− 1

2k

)m−E

2n , (2)

where p = 1/2k is the probability that a clause is unsatisfied by an assignment
chosen uniformly at random.

A more interesting class of instances with a closed form solution can be
constructed in the following way:

x1 ∧ x2 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ x3 ∧ x4 ∧ (x3 ∨ x4) ∧ (x3 ∨ x4) ∧ . . . (3)

∧xℓ−1 ∧ xℓ ∧ (xℓ−1 ∨ xℓ) ∧ (xℓ−1 ∨ xℓ)

Each subformula of the form x1 ∧ x2 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2) has a density of
satisfied clauses that is uniform in the interval [1, 4]. Using the fact that the

10 20 30 40 50 60 70
E Hunsat clausesL

5

10

15

Log HnHELL

(a) Exact and estimated log-densities:
curves are overlapping to the eye.

10 20 30 40 50 60 70
E

-1

1

2

3

Rel. error H%L

(b) Relative errors.

10 20 30 40 50 60
E Hunsat clausesL

5

10

15

Log HnHELL

(c) Exact and estimated log-densities:
curves are overlapping to the eye.

30 40 50 60
E

-2

-1

1

2

3

Rel. error H%L

(d) Relative errors.

50 100 150 200
E Hunsat clausesL

5

10

15

Log HnHELL

(e) Exact and estimated log-densities:
curves are overlapping to the eye.

100 120 140 160 180 200
E

-2

2

4

Rel. error H%L

(f) Relative errors.

Fig. 1. The density of states of a Boolean formula counts the number of configurations
that violate exactly E clauses, for all values of E. We present a comparison of the
estimated density (g(E)) and the exact one (n(E)) computed by explicit enumeration
for several small instances from the MaxSAT-2007 benchmark. Figures 1(a),1(b) are
relative to the Ramsey Theorem instance ram k3 n8.ra0.cnf (28 variables, 126 clauses).
Figures 1(c),1(d) are relative to the Spin Glass instance t3pm3-5555.spn.cnf (27 vari-
ables, 162 clauses, unsat). Figures 1(e),1(f) are relative to the Clique instance johnson8-
2-4.clq.cnf (28 variables, 420 clauses, unsat). A comparison in terms of Kullback-Leibler
divergence is presented in table (1).

probability that the sum of n s-sided dices is k can be written as

F [s, n, k] =
1

sn

⌊ k−n
s

⌋
∑

i=0

(−1)i
(

n

i

)(

k − si− 1

n− 1

)

, k > n.

We therefore have that the number of configurations satisfying k clauses of a
formula constructed as in equation (3) is F [4, ℓ

2 , k]2
ℓ and from that the density

of states is

n(E) = F [4,
ℓ

2
, 2ℓ− E]2ℓ (4)

More generally, consider a (small) formula φ for which we know the density
of states nφ(E). We can construct a larger formula F by taking the conjunction
of ℓ copies of φ, each one involving a different set of variables x1, . . . , xℓ:

F (x1, . . . , xℓ) = φ(x1) ∧ φ(x2) ∧ . . . ∧ φ(xℓ).

Given the independence assumption implied by the fact that by construction
the subformulas do not share variables, the DOS nF (·) of the larger formula F
can be obtained in closed form using a multinomial distribution. Moreover, by
noticing that the subformulas in F do not share variables, it is easy to see that
nF (E) can be computed as a multiple convolution of nφ(·):

nF (E) = (nφ ∗ . . . ∗ nφ)(E), (5)

where ∗ is the convolution operator. This result is analogous to the fact that
the probability density function (PDF) of the sum of independent random vari-
ables is equal to the convolution of the PDFs of the addends (concentrating the
measure on the mean).

In particular, let Pn(x) be the standard CNF encoding of a Pigeon Hole
problem with n holes and n + 1 pigeons, with n + 1 clauses which say that a
pigeon has to be placed in some hole and a set of clauses ensuring that only one
single pigeon is placed into each hole. This encoding leads to n(n+ 1) variables
and to (n + 1) + n(n(n + 1)/2) clauses. Now we consider the following CNF
formula:

P ℓ
n(x1, . . . , xℓ) = Pn(x1) ∧ Pn(x2) ∧ . . . ∧ Pn(xℓ) (6)

where xi ∩ xj = ∅ whenever i 6= j. Using (5), the DOS of formula (6) can be
obtained as the convolution of the DOS of a single Pn(x) with itself ℓ− 1 times.

We test the effectiveness of MCMC-FlatSat on large synthetic instances, for
which exact enumeration would not be possible, by comparing the estimated
DOS with the analytical results we just derived. In figure 2(c) and 2(d) we com-
pare the results of MCMC-FlatSat on a formula constructed as in equation (3)
with the theoretical density of states given by (4). In the experiment presented
in figure 2(a) and 2(b) we evaluate the DOS of a single P4(x) by explicit enu-
meration, and then we compute the exact DOS of P 10

4 (x1, . . . , x10) by carrying
over the convolutions. This is compared with the approximate result given by
MCMC-FlatSat when used directly on the large formula (6). Even in this case,

100 200 300 400 500 600 700
E

20

40

60

80

100

120

LogHnHELL

(a) Exact and estimated log-densities:
curves are overlapping to the eye.

100 200 300 400 500 600 700
E

-2

-1

1

2

3

Rel. error H%L

(b) Relative errors.

10 20 30 40 50 60 70
E

5

10

15

20

25

30

LogHnHELL

(c) Exact and estimated log-densities:
curves are overlapping to the eye.

10 20 30 40 50 60 70
E

-2

-1

1

2

Rel. error H%L

(d) Relative errors.

Fig. 2. Comparison of the estimated DOS and the exact analytical results obtained in
section 5.2. In figure 2(a) and 2(b) we used a formula constructed as in equation (6)
with n = 4, ℓ = 10, resulting in 200 variables, 750 clauses. In figure 2(c) and 2(d) we
used a formula constructed as in equation (3) with 50 variables and 100 clauses.

the log-densities in the plots are overlapping and therefore are not distinguish-
able to the eye, and the corresponding relative error is never greater than 3%,
as confirmed by the small Kullback-Leibler divergences reported in table 1.

5.3 Random formulas

In this section we present a detailed study of the behavior of the DOS for random
3-SAT formulas as a function of the ratio clauses to variables α. In particular, we
compute the average DOS over 1000 random instances for each value of α in the
range considered. By studying the behavior of g(0) (the number of estimated
models) in figure 3(a) and 3(b), we recover the well known phase transition
between the SAT and UNSAT phase, occurring at the critical ratio αc = 4.27.
Notice that we have E[g(0)] > 0 for α > αc because even if it is true that in that
region most of the formulas are not satisfiable, the ones that are contributing to
the average with large numbers of solutions (see [11]).

We discovered a similar phase transition behavior for g(i), i > 0 as reported
in figures 3(a) and 3(b). To the best of our knowledge, this is the first time

these phase transition phenomena have been discovered experimentally. Notice
however that the average DOS (E[g(i)]) for random k-SAT formulas can be
obtained using equation (2). This is because given a truth assignment σ, the
probability of having a clause that is violated by σ is 1/2k when the k-SAT
formula is chosen uniformly at random. The comparison with the analytic result
(2) in figure 3(a) confirms the good accuracy of the DOS estimation algorithm.
Moreover, by using a Markov bound P [g(i) > 0] ≤ E[g(i)] we can get upper
bounds on the phase transition thresholds we see in figure 3(b). For instance, we
obtain that P [g(i) > 0] ≤ 0.001 for α greater than 6.22, 6.80, 7.30 for i = 0, 1, 2
respectively. Interestingly, using the same Markov bound one can also show that
P [g(i) > 0]→ 0 for α > log8/7 2 = 5.19 . . . for n→∞ and i ∈ o(n/log(n)).

3 4 5 6 7 8
Α

-5

5

10

15

20

25

30

LogHE@gH×LDL

Analytic
gH5L
gH4L
gH3L
gH2L
gH1L
gH0L

(a) Average DOS.

3 4 5 6 7 8
Α

0.2

0.4

0.6

0.8

1.0

Fraction

gH2L>0

gH1L>0

gH0L>0

(b) Phase transitions.

Fig. 3. Average DOS and fraction of instances that have g(i) > 0 for random 3-SAT
formulas as functions of the ratio clauses to variables α. The number of variables is
n = 50 (see pdf for color version of figures).

With the density of states we can use canonical average formulas to cal-
culate exactly macroscopic properties such as the log-partition function Z(T)

at temperature T , defined as Z(T) = log
(

∑

E g(E)e−
1

T
E
)

. This property is of

considerable theoretical and practical interest because its zero temperature limit
limT→0 Z(T) counts the number of models. Several analytical and algorithmic
attempts ([12, 13]) have been made to estimate its value in the low temperature
range. Our findings reported in figure 4(a) suggest that small but non-zero tem-
perature approximations of Z(T) can indeed provide accurate information on
the number of models for random 3-SAT formulas.

Of practical interest is also the study of the running time of the algorithm
presented in figure 4(b). We find an increased complexity as we approach the
critical threshold αc that is typical of local search methods. However, given the
peculiar nature of this local search method, we can study its behavior even for
α > αc. In that range, the runtime increases with a smaller slope, that we
believe is caused by the additional effort required to estimate an histogram with
an increasing number of energy levels.

0.5 1.0 1.5 2.0 2.5 3.0
T

5

10

15

20

25

30

LogHZHTLL

Α=5.4

Α=4.2

Α=2

(a) Log partition function logZ(T).

3 4 5 6 7 8
Α

6.´107

8.´107

1.´108

1.2´108

1.4´108

1.6´108

Runtime HflipsL

(b) Runtime.

Fig. 4. Log partition function and runtime for random 3-SAT formulas as functions
of the ratio clauses to variables and temperature. Notice that the value of Z(0) corre-
sponds to the model count given by g(0) in figure 3(a).

5.4 Large structured instances

In this section we present the results obtained on large structured formulas
for which the exact DOS is unknown and direct enumeration is not feasible.
Given that we are not aware of any complete solver that is able to compute
the exact DOS, we need to resort to partial consistency checks to assess the
accuracy of MCMC-FlatSat. In particular, when it is possible, one can compare
g(0) with the exact model count given by a complete solver such as Cachet ([14]).
A further consistency check can be obtained by looking at the moments of the
DOS. Intuitively, the moments represent a quantitative measure of the shape of

100 200 300 400 500 600
E

5

10

15

20

25
Log HnHELL

(a) Log-Density for a Clique problem
brock400 2.clq.cnf from MaxSAT-2009.

50 100 150 200 250 300
E

20

40

60

80

Log HnHELL

(b) Log-Density for a Spin Glass prob-
lem spinglass5 10.pm3.cnf from MaxSAT-
2009. Notice there are no configurations
with an even number of unsatisfied clauses.

200 400 600 800
E

5

10

15

20

25

Log HnHELL

(c) Log-Density for a Clique problem
MANN a27.clq.cnf from MaxSAT-2009.
No solver presented at MAXSAT09 could
solve this instance (within 30 minutes).

500 1000 1500 2000 2500 3000
E

50

100

150

200

250

300

Log HnHELL

(d) Log-Density for the Logistic problem
bw large.a.cnf from SATLib.

100 200 300 400 500
E

10

20

30

40

50

60

70

Log HnHELL

(e) Log-Density for the Pigeon Hole prob-
lem instance hole10.cnf from SATLib.

500 1000 1500 2000 2500 3000
E

50

100

150

200

250

300

Log HnHELL

(f) Log-Density for the Morphed Graph
Colouring problem sw100-1.cnf from
SATLib. .

Fig. 5. DOS for several large formulas from MaxSAT-2009 and SATLib ([15]).

a set of points and therefore they can be used to check that the probability mass
is concentrated in the right regions. The k-th order moment is defined as

M(k) =
∑

E

Ek g(E)

Z

where Z = 2n is again used to normalize to a probability distribution. For ex-
ample, M(1) is the average number of violated clauses by a random assignment.
This value is compared with the sample k-th moment

Ms(k) =
1

ℓ

ℓ
∑

i=1

E(Xi)
k

where X1, X2, ..., Xℓ are samples drawn uniformly from all possible assignments.
Given that the space of all possible assignments is exponentially large, the sam-
ples X1, X2, ..., Xℓ will be representative only of high probability regions of that
space. While this is precisely the reason why the method of uniform sampling
cannot be used to estimate an entire DOS, it can still be used to check that the
probability mass is concentrated in the right regions.

In figure 5, we present the estimated DOS for several instances from the
MaxSAT-2009 benchmark and SATLib ([15]). These kind of results are, to the
best of our knowledge, novel. Even though we cannot provide a formal guar-
antee that our results are accurate, the experimental validation in the previous
sections suggests that they should be accurate. Moreover we have a perfect cor-
respondence both with Model Counters and in terms of sample k-th moments,
as confirmed by the results presented in table 2. In all these instances, we see

Instance var clauses g(0) # models Ms(1) M(1) Ms(2) M(2)

brock400 2.clq.cnf 40 1188 0 0 297.014 297.024 88365.9 88372.3
spinglass5 10.pm3.cnf 125 750 0 0 187.498 187.492 35249.2 35247
MANN a27.clq.cnf 42 1690 0 0 422.49 422.483 178709 178703

bw large.a.cnf 459 4675 1 1 995.298 995.322 996349 996634
hole10.cnf 110 561 0 0 137.482 137.562 19621.7 19643.8

sw100-1.cnf 500 3100 8.04 × 1027 753.072 753.06 571718 571863

Table 2. Comparison of the moments. Sample moments estimated with ℓ = 106 uni-
formly sampled truth assignments. Exact model counting is done with Cachet.

that the shape of the DOS appears to be a characteristic property of the class
of problems that was translated into SAT, and that the probability weight is
again concentrated in a small energy range. We believe this type of information
can be used to improve local search strategies targeted to a particular class of
encodings.

5.5 Model counting

Even if computing the DOS is a more general and more difficult problem than
model counting, comparing MCMC-FlatSat with model counters still provides

some useful insights. In particular, we can show that when the number of clauses
in the formula is not too big, that is the overhead derived from computing the
entire DOS is not overwhelming, MCMC-FlatSat competes against state of the art
model counters, both in terms of accuracy and running times. We compared the

Instance n m Exact # SampleCount SampleMiniSAT MCMC-FlatSat

Models Time Models Time Models Time

2bitmax 6 252 766 2.10 × 1029 ≥ 2.40 × 1028 29 2.08 × 1029 345 1.96 × 1029 1863
wff-3-3.5 150 525 1.40 × 1014 ≥ 1.60 × 1013 240 1.60 × 1013 145 1.34 × 1014 393
wff-3.1.5 100 150 1.80 × 1021 ≥ 1.00 × 1020 240 1.58 × 1021 128 1.83 × 1021 21
wff-4-5.0 100 500 ≥ 8.00 × 1015 120 1.09 × 1017 191 8.64 × 1016 189
ls8-norm 301 1603 5.40 × 1011 ≥ 3.10 × 1010 1140 2.22 × 1011 168 5.93 × 1011 2693

Table 3. Comparison with model counters on formulas from the benchmark in [2]
with a small number of clauses. Timings for SampleCount and SampleMiniSATExact
are taken from the respective papers [1, 2]. MCMC-FlatSat timings are obtained on a
comparable 3Ghz machine.

performance of MCMC-FlatSat with two approximate model counters: Sample-
Count ([2]) and SampleMiniSATExact ([1]). The instances used are taken from
the benchmark used in [1, 2]. The results in table 3 show that MCMC-FlatSat

generally achieves a greater accuracy, even though it does not provide any guar-
antee on the results (as [1, 2] do). When the ratio of clauses to variables is not
too high, it has comparable if not favorable running times. However, when the
number of clauses is too large, the overhead caused by the computation of the
entire DOS becomes too large and the comparison in terms of running times
becomes unfair, even though it still wins in terms of accuracy.

A more detailed comparison is beyond the scope of this paper, but we believe
that a fairly straightforward implementation that forces the random walk to
stay inside low energy regions, without wasting time exploring the high energy
space, could have dramatic impact on model counting. The reason is that the
random walk used by estimating DOS is explicitly designed to count, while other
sampling-based strategies are built on top of systems that might be too biased
towards greedy heuristics when they perform random walks in the configuration
space. Moreover, the information collected on how many configurations are not
models (that is g(i), i > 0) can be effectively used to infer about g(0), given the
normalization constraint

∑

g(i) = 2n.

6 Conclusions and Future Work

We described MCMC-FlatSat, a Markov Chain Monte Carlo technique based on
the flat histogram method to estimate the density of states of Boolean formulas.
We demonstrated the effectiveness of MCMC-FlatSat, both in terms of conver-
gence and accuracy, on a broad range of structured and synthetic instances.
Using our method, we also provided new insights about the phase transition

phenomena of random 3-SAT formulas. We believe that the results presented
in this paper are very promising and that the very detailed characterization
of the configuration space provided by MCMC-FlatSat will open the way for a
new set of heuristics for local search methods, and will provide further insights
about random k-SAT formulas as well. Moreover, considered the generality of
the flat histogram idea, we expect that this new approach will find many other
applications both to counting and inference problems.

7 Acknowledgments

This research is funded by NSF Expeditions in Computing grant 0832782.

References

1. Gogate, V., Dechter, R.: Approximate counting by sampling the backtrack-free
search space. In: Proc. of AAAI-07. (2007) 198–203

2. Gomes, C., Hoffmann, J., Sabharwal, A., Selman, B.: From sampling to model
counting. In: Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-07). (2007)

3. Gomes, C., Sabharwal, A., Selman, B.: Model counting: a new strategy for obtain-
ing good bounds. In: Proceedings of AAAI-06, AAAI Press (2006) 54–61

4. Littman, M., Majercik, S., Pitassi, T.: Stochastic boolean satisfiability. Journal of
Automated Reasoning 27(3) (2001) 251–296

5. Sang, T., Beame, P., Kautz, H.: Solving Bayesian networks by weighted model
counting. In: Proc. of AAAI-05. (2005) 475–481

6. Hansen, P., Jaumard, B.: Algorithms for the maximum satisfiability problem.
Computing 44(4) (1990) 279–303

7. Wang, F., Landau, D.: Efficient, multiple-range random walk algorithm to calculate
the density of states. Physical Review Letters 86(10) (2001) 2050–2053

8. Belaidouni, M., Hao, J.K.: Sat, local search dynamics and density of states. In: Se-
lected Papers from the 5th European Conference on Artificial Evolution, Springer
(2002) 192–204

9. Rosé, H., Ebeling, W., Asselmeyer, T.: The density of states - a measure of the
difficulty of optimisation problems. In: Proceedings of the 4th International Con-
ference on Parallel Problem Solving from Nature, Springer (1996) 208–217

10. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting ran-
dom walk strategies. In: Proceedings of the 19th national conference on Artifical
intelligence, AAAI Press (2004) 670–676

11. Kamath, A., Motwani, R., Palem, K., Spirakis, P.: Tail bounds for occupancy and
the satisfiability threshold conjecture. In: Proc. of the 35th Annual Symposium on
the Foundations of Computer Science. (1994) 592–603

12. Monasson, R., Zecchina, R.: Entropy of the K-satisfiability problem. Physical
review letters 76(21) (1996) 3881–3885

13. Montanari, A., Shah, D.: Counting good truth assignments of random k-SAT
formulae. In: Proc. of the 18th ACM Symposium on Discrete algorithms. (2007)

14. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: Proc. of SAT. (2004)

15. Hoos, H., Stiitzle, T.: SATLlB: An Online Resource for Research on SAT. Sat2000:
highlights of satisfiability research in the year 2000 (2000) 283

