
Tradeoffs in the Complexity

of Backdoor Detection

Bistra Dilkina, Carla P. Gomes, and Ashish Sabharwal

Cornell University, Department of Computer Science, Ithaca, NY 14850, USA
{bistra,gomes,sabhar}@cs.cornell.edu

Abstract. There has been considerable interest in the identification of
structural properties of combinatorial problems that lead to efficient al-
gorithms for solving them. Some of these properties are “easily” identi-
fiable, while others are of interest because they capture key aspects of
state-of-the-art constraint solvers. In particular, it was recently shown
that the problem of identifying a strong Horn- or 2CNF-backdoor can
be solved by exploiting equivalence with deletion backdoors, and is NP-
complete. We prove that strong backdoor identification becomes harder
than NP (unless NP=coNP) as soon as the inconsequential sounding
feature of empty clause detection (present in all modern SAT solvers) is
added. More interestingly, in practice such a feature as well as polyno-
mial time constraint propagation mechanisms often lead to much smaller
backdoor sets. In fact, despite the worst-case complexity results for
strong backdoor detection, we show that Satz-Rand is remarkably good
at finding small strong backdoors on a range of experimental domains.
Our results suggest that structural notions explored for designing efficient
algorithms for combinatorial problems should capture both statically and
dynamically identifiable properties.

1 Introduction

Capturing and exploiting problem structure is key to solving large real-world
combinatorial problems. For example, several interesting tractable classes of
combinatorial problems have been identified by restricting the constraint lan-
guage used to characterize such problem instances. Well-known cases include
2CNF, Horn, Linear Programming (LP), and Minimum Cost Flow problems
(MCF). In general, however, such restricted languages are not rich enough to
characterize complex combinatorial problems. A very fruitful and prolific line of
research that has been pursued in the study of combinatorial problems is the
identification of various structural properties of instances that lead to efficient al-
gorithms. Ideally, one prefers structural properties that are “easily” identifiable,
such as from the topology of the underlying constraint graph. As an example, the
degree of acyclicity of a constraint graph, measured using various graph width
parameters, plays an important role with respect to the identification of tractable
instances — it is known that an instance is solvable in polynomial time if the
treewidth of its constraint graph is bounded by a constant [8, 9, 6, 10, 5, 21]. In-
terestingly, even though the notion of bounded treewidth is defined with respect

to tree decompositions, it is also possible to design algorithms for constraint satis-
faction problems of bounded (generalized) hypertree width that do not perform
any form of tree decomposition (see e.g., [3]). Other useful structural proper-
ties consider the nature of the constraints, such as their so-called functionality,
monotonicity, and row convexity [7, 24].

Another approach for studying combinatorial problems focuses on the role
of hidden structure as a way of analyzing and understanding the efficient per-
formance of state-of-the-art constraint solvers on many real-world problem in-
stances. One example of such hidden structure is a backdoor set, i.e., a set of
variables such that once they are instantiated, the remaining problem simplifies
to a tractable class [25, 26, 12, 4, 15, 23, 20]. Note that the notion of tractabil-
ity in the definition of backdoor sets is not necessarily syntactically defined: it
may often be defined only by means of a polynomial time algorithm, such as
unit propagation. In fact, the notion of backdoor sets came about as a way of
explaining the high variance in performance of state-of-the-art SAT solvers, in
particular heavy-tailed behavior, and as a tool for analyzing and understand-
ing the efficient performance of these solvers on many real-world instances, in
which the propagation mechanisms of fast “sub-solvers” play a key role. In this
work the emphasis was not so much on efficiently identifying backdoor sets, but
rather on the fact that many real-world instances have surprisingly small sets of
backdoor variables and that once a SAT solver instantiates these variables, the
rest of the problem is solved easily. In this context, randomization and restarts
play an important role in searching for backdoor sets [25, 26].

Even though variable selection heuristics, randomization, and learning in cur-
rent SAT/CSP solvers are quite effective at finding relatively small backdoors
in practice, finding a smallest backdoor is in general intractable in the worst
case. This intractability result assumes that the size of the smallest backdoor
is unknown and can grow arbitrarily with n. However, if the size of the back-
door is small and fixed to k, one can search for the backdoor by considering
all

(

n
k

)

subsets of k variables and all 2k truth assignments to these candidate
variables. This is technically a polynomial time process for fixed k, although for
moderate values of k the run time becomes infeasible in practice. Can one do
better? This is a question considered in the area of fixed-parameter complexity
theory. A problem with input size n and a parameter k is called fixed-parameter
tractable w.r.t. k if it can be solved in time O(f(k)nc) where f is any com-
putable function and c is a constant. Note that c does not depend on k, meaning
that one can in principle search fairly efficiently for potentially large backdoors
if backdoor detection for some class is shown to be fixed parameter tractable.
Indeed, Nishimura, Ragde, and Szeider [19] showed that detecting strong back-
doors (cf. Section 2 for a formal definition) w.r.t. the classes 2CNF and Horn is
NP-complete but, interestingly, fixed-parameter tractable. This result for 2CNF
and Horn formulas exploits the equivalence between (standard) strong backdoors
and “deletion” backdoors, i.e., a set of variables that once deleted from a given
formula (without simplification) make the remaining formula tractable. Note,
however, that this result is only w.r.t. the tractable classes of pure 2CNF/Horn.

In particular, certain kinds of obvious inconsistencies are not detected in these
classes, such as having an empty clause in an arbitrary formula — clearly, any
basic solver detects such inconsistencies. We show that such a seemingly small
feature increases the worst-case complexity of backdoor identification, but, per-
haps more importantly, can dramatically reduce the size of the backdoor sets.

More specifically, we prove that strong Horn- and 2CNF-backdoor identifica-
tion becomes both NP- and coNP-hard, and therefore strictly harder than NP
assuming NP 6= coNP, as soon as empty clause detection is added to these classes.
This increase in formal complexity has however also a clear positive aspect in
that adding empty clause detection often considerably reduces the backdoor
size. For example, in certain graph coloring instances with planted cliques of
size 4, while strong Horn-backdoors involve ≈ 67% of the variables, the fraction
of variables in the smallest strong backdoors w.r.t. mere empty clause detection
converges to 0 as the size of the graph grows.

Encouraged by the positive effect of slightly extending our notion of Horn-
backdoor, we also consider backdoors w.r.t. RHorn (renamable Horn), UP (unit
propagation), PL (pure literal rule), UP+PL, and SATZ. For each of these no-
tions, we show on a variety of domains that the corresponding backdoors are
significantly smaller than pure, strong Horn-backdoors. For example, we con-
sider the smallest deletion RHorn-backdoors. We provide a 0-1 integer program-
ming formulation for finding such optimal backdoors, and show experimentally
that they are in general smaller than strong Horn-backdoors. In particular, in the
graph coloring domain, while strong Horn-backdoors correspond to ≈ 67% of the
variables, deletion RHorn-backdoors correspond to only ≈ 17% of the variables.
More interestingly, when considering real-world instances of a car configuration
problem, while strong Horn-backdoor sets vary in size between 10-25% of the
variables, deletion RHorn-backdoor sets vary only between 3-8%.

At a higher level, our results show that the size of backdoors can vary dra-
matically depending on the effectiveness of the underlying simplification and
propagation mechanism. For example, as mentioned earlier, empty clause detec-
tion can have a major impact on backdoor size. Similarly, Horn versus RHorn
has an impact. We also show that there can be a substantial difference between
deletion backdoors, where one simply removes variables from the formula, versus
strong backdoors, where one factors in the variable settings and considers the
propagation effect of these settings. Specifically, we contrast deletion RHorn-
backdoors with strong RHorn-backdoors. We prove by construction that there
are formulas for which deletion RHorn-backdoors are exponentially larger than
the smallest strong RHorn-backdoors.

Finally, despite the worst-case complexity results for strong backdoor de-
tection, we show that Satz-Rand [16, 11] is remarkably good at finding small
strong backdoors on a range of experimental domains. For example, in the case
of our graph coloring instances, the fraction of variables in a small strong SATZ-
backdoor converges to zero as the size of the graph grows. For the car config-
uration problem, strong SATZ-backdoor sets involve 0-0.7% of the variables.
We next consider synthetic logistics planning instances over n variables that are

known to have strong UP-backdoors of size log n [13]. For all these instances, the
size of the strong SATZ-backdoor sets is either zero or one. In contrast, the size
of deletion RHorn-backdoors corresponds to over 48% of the variables, increasing
with n. We also consider instances from game theory for which one is interested
in determining whether there is a pure Nash equilibrium. For these instances,
while strong Horn-backdoors and deletion RHorn-backdoors involve ≈ 68% and
≈ 67% of the variables, respectively, strong SATZ-backdoors are surprising small
at less than 0.05% of the variables.

These results show that real-world SAT solvers such as Satz are indeed re-
markably good at finding small backdoors sets. At a broader level, this work
suggests that the study of structural notions that lead to efficient algorithms for
combinatorial problems should consider not only “easily” identifiable properties,
such as being Horn, but also properties that capture key aspects of state-of-the-
art constraint solvers, such as unit propagation and pure literal rule.

2 Preliminaries and Related Work

A CNF formula F is a conjunction of a finite set of clauses, a clause is a disjunc-
tion of a finite set of literals, and a literal is a Boolean variable or its negation.
The literals associated with a variable x are denoted by xǫ, ǫ ∈ {0, 1}. var(F)
denotes the variables occurring in F . A (partial) truth assignment (or assign-
ment, for short) is a map τ : Xτ → {0, 1} defined on some subset of variables
Xτ ⊆ var(F). A solution to a CNF formula F is a complete variable assign-
ment τ (i.e., with Xτ = var(F)) that satisfies all clauses of F . F [ǫ/x] denotes
the simplified formula obtained from F by removing all clauses that contain the
literal xǫ and removing, if present, the literal x1−ǫ from the remaining clauses.
For a partial truth assignment τ , F [τ] denotes the simplified formula obtained
by setting the variables according to τ .

A unit clause is a clause that contains only one literal. A pure literal in F
is a literal xǫ such that x ∈ var(F) and x1−ǫ does not occur in F . A Horn
clause is a clause that contains at most one positive literal. A binary clause is a
clause that contains exactly two literals. A formula is called Horn (resp., 2CNF)
if all its clauses are Horn (binary). We also use Horn and 2CNF to denote the
two corresponding classes of formulas. Renaming or flipping a variable x in F
means replacing every occurrence of xǫ in F with x1−ǫ. F is Renamable Horn,
also called RHorn, if all clauses of F can be made Horn by flipping a subset
of the variables. Following Nishimura et al. [19], we define the deletion of a
variable x from a formula F as syntactically removing the literals of x from F :
F − x =

{

c \
{

x0, x1
}

| c ∈ F
}

. For X ⊆ var(F), F − X is defined similarly.
The concept of backdoors and their theoretical foundations were introduced

by Williams, Gomes, and Selman [25, 26]. Informally, a strong backdoor set is a
set of variables such that for each possible truth assignment to these variables,
the simplified formula is tractable. The notion of tractability is quite general,
and it even includes tractable classes for which there is not a clean syntactic
characterization. It is formalized in terms of a polynomial time sub-solver:

Definition 1 (sub-solver [25]). A sub-solver S is an algorithm that given as
input a formula F satisfies the following conditions:

1. Trichotomy: S either rejects F or correctly determines it (as unsatisfiable or
satisfiable, returning a solution if satisfiable),

2. Efficiency: S runs in polynomial time,

3. Trivial solvability: S can determine if F is trivially true (has no clauses) or
trivially false (has an empty clause, {}), and

4. Self-reducibility: If S determines F , then for any variable x and value ǫ ∈
{0, 1}, S determines F [ǫ/x].

Definition 2 (strong S-backdoor [25]). A set B of variables is a strong
backdoor set for a formula F w.r.t a sub-solver S if B ⊆ var(F) and for every
truth assignment τ : B → {0, 1}, S returns a satisfying assignment for F [τ] or
concludes that F [τ] is unsatisfiable.

Clearly, if B is a strong S-backdoor for F , then so is any B′ such that
B ⊆ B′ ⊆ var(F). For any sub-solver S, given 〈F, k〉 as input, the problem of
deciding whether F has a strong S-backdoor of size k is in the complexity class
ΣP

2 : we can formulate it as, “does there exist a B ⊆ var(F), |B| = k, such that
for every truth assignment τ : B → {0, 1}, S correctly determines F [τ/B]?” We
are interested in the complexity of this problem for specific sub-solvers.

The most trivial sub-solver that fulfills the conditions in Definition 1 is the
one that only checks for the empty formula and for the empty clause. Lynce
and Marques-Silva [17] show that the search effort required by the SAT solver
zChaff [18] to prove a random 3-SAT formula unsatisfiable is correlated with
the size of the strong backdoors w.r.t. this trivial sub-solver.

More relevant sub-solvers employed by most state-of-the-art SAT solvers are
Unit Propagation and Pure Literal Elimination, and their combination. Given
a formula F , the Unit Propagation sub-solver (UP) checks whether the formula
is empty or contains the empty clause, in which case it is trivially solvable,
otherwise it checks whether the formula contains a unit clause. If yes, it assigns
the variable in the unit clause the corresponding satisfying value, and recurses on
the simplified formula. If the formula does not contain any more unit clauses, it is
rejected. The Pure Literal Elimination sub-solver (PL) checks for variables that
appear as pure literals, assigning them the corresponding value and simplifying,
until the formula is trivially solvable or is rejected (when no more pure literals
are found). The sub-solver that uses both of these rules is referred to as UP+PL.

We note that unit propagation by itself is known to be sufficient for com-
puting a satisfying assignment for any satisfiable Horn formula: set variables
following unit propagation until there are no more unit clauses, and set the
remaining variables to 0. A similar result is known for RHorn formulas. Interest-
ingly, this does not mean that the smallest UP-backdoors are never larger than
Horn- and RHorn-backdoors. For example, any (satisfiable) Horn formula with
k ≥ 2 literals per clause has a strong Horn-backdoor of size zero but no strong
UP-backdoor of size k − 2.

Szeider [23] studied the complexity of finding strong backdoors w.r.t. the
above sub-solvers. For S ∈ {UP, PL, UP+PL} and with k as the parameter of
interest, he proved that the problem of deciding whether there exists a strong
C-backdoor of size k is complete for the parameterized complexity class W[P].
Interestingly, the näıve brute-force procedure for this problem is already in W[P];
it has complexity O(nk2knα) and works by enumerating all subsets of size ≤ k,
trying all assignments for each such subset, and running the O(nα) time sub-
solver. Hence, the in the worst case we cannot hope to find a smallest strong
backdoor w.r.t. UP, PL, or UP+PL more efficiently than with brute-force search.

Satz [16] is a DPLL-based SAT solver that incorporates a strong variable se-
lection heuristic and an efficient simplification strategy based on UP and PL. Its
simplification process and lookahead techniques can be thought of as a very pow-
erful sub-solver. Kilby et al. [15] study strong SATZ-backdoors: sets of variables
such that for every assignment to these variables, Satz solves the simplified for-
mula without any branching decisions (i.e., with a “branch-free” search). They
measure problem hardness, defined as the logarithm of the number of search
nodes required by Satz, and find that it is correlated with the size of the small-
est strong SATZ-backdoors.

A sub-solver S correctly determines a subclass of CNF formulas and rejects
others, and hence implicitly defines the class CS of formulas that it can deter-
mine. A natural variation of the definition of the backdoor does not explicitly
appeal to a sub-solver, but rather requires the remaining formula, after set-
ting variables in the backdoor, to fall within a known tractable sub-class, such
as 2CNF, Horn, or RHorn. We will refer to such backdoors as Horn-backdoor,
RHorn-backdoor, etc. Note that this way of defining the backdoor de facto cor-
responds to relaxing the assumption of the sub-solver’s trivial solvability and
therefore trivially satisfiable or unsatisfiable formulas need not lie within the
tractable class. For example, an arbitrary formula with an empty clause may
not be Horn. Such formulas — with an empty clause in them — are important
for our discussion and we use the following notation:

Definition 3. C{} is the class of all formulas that contain the empty clause, {}.

For any class C of formulas, C{} denotes the class C ∪ C{}.

We will show that strong backdoors w.r.t. 2CNF{} and Horn{} behave very
differently, both in terms of the complexity of finding backdoors as well as back-
door size, compared to 2CNF and Horn. In our arguments, we will use two
properties of formula classes defined next.

Definition 4. A class C of formulas is closed under removal of clauses if re-
moving arbitrary clauses from any formula in C keeps the formula in C.

Definition 5. A class C of formulas is said to support large strong backdoors
if there exists a polynomial (in k) time constructible family {Gk}k≥0 of formulas
such that the smallest strong C-backdoors of Gk have size larger than k.

Note that (pure) 2CNF, Horn, and RHorn are closed under removal of clauses,
while C{} is in general not: removing the empty clause may put a formula outside

C{}. Further, 2CNF and Horn support large strong backdoors as witnessed by
the following simple single-clause family of formulas: Gk = (x1∨x2∨ . . .∨xk+3).
It can be easily verified that the all-0’s assignment to any set of k variables of
Gk leaves a clause with three positive literals, which is neither 2CNF nor Horn.

A different notion of backdoors, motivated by the work of Nishimura et al.
[19], involves a set of variables such that once these variables are “deleted” from
the formula, the remaining formula falls into a given tractable class (without
considering any simplification due to truth assignments). Formally,

Definition 6 (deletion C-backdoor). A set B of variables is a deletion back-
door set of a formula F w.r.t. a class C if B ⊆ var(F) and F − B ∈ C.

When membership in C can be checked in polynomial time, the problem of
deciding whether F has a deletion C-backdoor of size k is trivially in NP. This
problem is in fact NP-complete when C is 2CNF [19], Horn [19], or RHorn [2].

In general, a deletion C-backdoor may not be a strong C-backdoor. E.g.,
when C includes C{}, any 3CNF formula F has a trivial deletion C-backdoor of
size 3: select any clause and use its variables as the deletion backdoor. Unfortu-
nately, such a “backdoor” set is of limited practical use for efficiently solving F .
When the class C is closed under removal of clauses, every deletion C-backdoor
is indeed also a strong C-backdoor. Conversely, strong C-backdoors often are not
deletion C-backdoors, because assigning values to variables usually leads to fur-
ther simplification of the formula. Nonetheless, for C ∈ {2CNF, Horn}, deletion
and strong backdoors are equivalent, a key fact underlying the fixed parameter
algorithm of Nishimura et al. [19]. We will show that this equivalence between
deletion backdoors and strong backdoors does not hold for RHorn.

Paris et al. [20] studied deletion RHorn-backdoors. They proposed a two step
approach: find a renaming that maximizes the number of Horn clauses using a
local search method and then greedily delete variables from the remaining non-
Horn clauses until the renamed formula becomes Horn. The variables deleted in
the second step form a deletion RHorn-backdoor. They find that branching on
these variables can significantly speed up DPLL solvers.

3 Theoretical Results

In this section, we first prove that the two problems of deciding whether a for-
mula has a strong backdoor w.r.t. 2CNF{} and Horn{}, respectively, are NP-hard
as well as coNP-hard. This shows that unless NP=coNP, this problem is much
harder than detecting strong backdoors w.r.t. 2CNF and Horn, which are both
known to be in NP [19]. Recall that adding C{} to 2CNF and Horn corresponds
to adding empty clause detection to the two classes. We then consider the class
RHorn and prove that strong RHorn-backdoors can be exponentially smaller
than deletion RHorn-backdoors, and are therefore more likely to succinctly cap-
ture structural properties of interest in formulas.

Lemma 1. Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0, the problem
of deciding whether F has a strong C{}-backdoor of size k is NP-hard.

Proof. We extend the argument originally used by Nishimura et al. [19] for (pure)
2CNF/Horn. The polynomial time reduction is from the NP-complete Vertex
Cover problem: given an undirected graph G = (V,E) and a number k ≥ 0, does
G have a vertex cover of size k? Recall that a vertex cover U is a subset of V
such that every edge in E has at least one end point in U . Given an instance
〈G, k〉 of this problem, we will construct a formula FHorn with all positive literals
such that FHorn has a strong Horn{}-backdoor of size k iff G has a vertex cover
of size k. Similarly, we will construct F2CNF.

FHorn has |V | variables and |E| clauses. The variables are xv for each v ∈
V . For each edge e = {u, v} ∈ E, u < v, FHorn contains the binary clause
(xu∨xv). It is easy to see that if G has a vertex cover U , then the corresponding
variable set XU = {xu | u ∈ U} is a strong Horn{}-backdoor: for any assignment
τ to XU , F [τ/XU] only contains unit clauses or the empty clause, and is thus
in Horn{}. For the other direction, suppose XU is a strong Horn{}-backdoor.
We claim that variables of XU must touch every clause of FHorn so that the
corresponding vertices U touch every edge of G and thus form a vertex cover. To
see this, consider the all-1’s assignment τ1 to XU . Since XU is a strong Horn{}-
backdoor and assigning variables according to τ1 cannot result in creating the
empty clause, FHorn[τ1/XU] must be Horn. If XU did not touch a clause c of
FHorn, then c would appear in FHorn[τ1/XU] as a binary clause with two positive
literals, violating the Horn property. Hence, the claim holds.

F2CNF has |V | + |E| variables and |E| clauses. The variables are xv for each
v ∈ V and yu,v for each {u, v} ∈ E, u < v. For each such {u, v}, F2CNF contains
the ternary clause (xu ∨ xv ∨ yu,v). The argument for the correctness of the
reduction is very similar to above, relying on the all-1’s assignment. The only
difference is that if we have a strong backdoor XU , it may contain some of the
y variables, so that there is no direct way to obtain a vertex cover out of XU .
However, this is easy to fix. If XU contains yu,v and also at least one of xu and xv,
we can simply disregard yu,v when constructing a vertex cover. If XU contains
yu,v but neither xu nor xv, we can replace yu,v with either of these two variables
and obtain a backdoor set with fewer (and eventually no) such y variables. ⊓⊔

We now prove coNP-hardness of backdoor detection w.r.t. Horn{} and
2CNF{}, exploiting the notions introduced in Definitions 4 and 5.

Lemma 2. Let C be a class of formulas such that (1) C is closed under removal
of clauses and (2) C supports large strong backdoors. Then, given a formula F
and k ≥ 0, the problem of deciding whether F has a strong C{}-backdoor of size
k is coNP-hard.

Proof. Let UNSAT denote the coNP-complete problem of deciding whether a
given CNF formula is unsatisfiable. We prove the lemma by reducing UNSAT to
C{}-backdoor detection. Let H be a CNF formula over variables VH , |VH | = k.
We create a formula F such that F has a strong C{}-backdoor of size k iff H
is unsatisfiable. The idea is to start with H and append to it a formula on a
disjoint set of variables such that for any assignment to k backdoor variables, the
combined formula does not reduce to a formula in C and must therefore contain
the empty clause in order to belong to C{}.

F is constructed as follows. Using the fact that C supports large strong
backdoors, construct in polynomial time a formula G over a disjoint set of vari-
ables (i.e., variables not appearing in H) such that G does not have a strong
C-backdoor of size k. Now let F = H ∧G. We prove that H ∈ UNSAT iff F has
a strong C{}-backdoor of size k.

(⇒) Suppose H is unsatisfiable. This implies that every truth assignment τ
to VH , the variables of H, violates some clause of H. It follows that for each such
τ , F [τ/VH] = H[τ/VH]∧G[τ/VH] contains the empty clause and is therefore in
C{}. Hence VH gives us the desired backdoor of size k.

(⇐) Suppose F has a strong C{}-backdoor B of size k. Partition B into
BH ∪ BG, where BH has the variables of H and BG has the variables of G.
By the construction of G and because |BG| ≤ k, BG cannot be a strong C-
backdoor for G. In other words, there exists an assignment τG to BG such that
G[τG/BG] 6∈ C. Because of the closure of C under removal of clauses and and the
variable disjointness of H and G, it follows that F [τ/B] 6∈ C for every extension
τ = (τH , τG) of τG to all of B. However, since B is a strong C{}-backdoor for F ,
it must be that F [τ/B] ∈ C{}, and the only possibility left is that F [τ/B] ∈ C{}.
Since G[τG/BG] 6∈ C{}, it must be that H[τH/BH] ∈ C{} for all such extensions
τ of τG. In words, this says that H[τH/BH] contains a violated clause for every
truth assignment to BH . Therefore, H is unsatisfiable as desired. ⊓⊔

Lemmas 1 and 2 together give us our main theorem:

Theorem 1. Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0, the prob-
lem of deciding whether F has a strong C{}-backdoor of size k is both NP-hard
and coNP-hard, and thus harder than both NP and coNP, assuming NP 6= coNP.

We now turn our attention to the relationship between strong and deletion
backdoors. While these two kinds of backdoors are known to be equivalent for the
classes 2CNF and Horn, we prove an exponential separation for the class RHorn.
The main idea is the following. Suppose B is a strong RHorn-backdoor for F .
Then for each assignment τ to the variables in B, there exists a renaming rτ such
that F [τ/B] under the renaming rτ yields a Horn formula. If F is such that for
different τ , the various renamings rτ are different and mutually incompatible,
then there is no single renaming r under which F −B, the formula obtained by
deleting the variables in B, becomes Horn.

The following example illustrates this point, which we will generalize to an
exponential separation in the proof of Theorem 2. Let F = (x1 ∨ x2) ∧ (¬y1 ∨
¬y2) ∧ (¬x1 ∨ y1 ∨ z) ∧ (¬x1 ∨ y2 ∨ ¬z) ∧ (¬x2 ∨ y1 ∨ z) ∧ (¬x2 ∨ y2 ∨ ¬z). First
we observe that B = {z} is a strong RHorn-backdoor for F because for z = 0
we can rename x1 and y1, and for z = 1 we can rename x1 and y2 to get a Horn
formula. On the other hand, {z} certainly does not work as a deletion backdoor
because we must rename at least one of x1 and x2, which forces both y1 and y2

to be renamed and violates the Horn property. In fact, it can be easily verified
both {x1} and {y1} are also not deletion RHorn-backdoors. From the symmetry
between x1 and x2 and between y1 and y2, it follows that F does not have a
deletion RHorn-backdoor of size 1.

Theorem 2. There are formulas for which the smallest strong RHorn-backdoors
are exponentially smaller than any deletion RHorn-backdoors.

Proof. Let s be a power of 2, t = s+log2 s, and n = s+log2 s+t = 2 ·(s+log2 s).
We will prove the theorem by explicitly constructing a family of formulas {Fn}
such that Fn is defined over n variables, Fn has a strong RHorn-backdoor of size
log2 s = Θ(log n), and every deletion RHorn-backdoor for Fn is of size at least
s + log2 s − 1 = Θ(n).

Fn is constructed on three kinds of variables: {xi | 1 ≤ i ≤ t},
{yj | 1 ≤ j ≤ s}, and {zk | 1 ≤ k ≤ log2 s}. Variables zk are used to en-
code all s 0-1 sequences of length log2 s. Specifically, for 1 ≤ j ≤ s, let Dj

z be
the unique clause involving all z variables where each zk appears negated in Dj

z

iff the kth bit of j, written in the binary representation, is a 1. For example, for
j = 01101, Dj

z = (z1 ∨ ¬z2 ∨ ¬z3 ∨ z4 ∨ ¬z5). Note that Dj
z is falsified precisely

by the unique assignment that corresponds to the binary representation of j.
Fn has exactly st+2 clauses: Cx = (x1∨x2∨ . . .∨xt), Cy = (¬y1∨¬y2∨ . . .∨

¬ys), and for each i ∈ {1, . . . , t} , j ∈ {1, . . . , s}, the clause Ci,j
z = (¬xi∨yj∨Dj

z).
We now analyze RHorn-backdoors for Fn. First, we show that

{zk | 1 ≤ k ≤ log2 s} is a strong RHorn-backdoor for Fn. To see this, fix any

assignment τ ∈ {0, 1}
log2 s

to the z variables. By the discussion above, τ satisfies
all but one clause Dj

z. Let us denote this falsified clause by Dτ
z . It follows that

the reduced formula, Fn[τ/z], consists of Cx, Cy, and for each i ∈ {1, . . . , t}, the
binary clause (¬xi ∨ yτ). We can convert this formula to Horn by renaming or
flipping the signs of all xi, and of yτ . This renaming makes Cx Horn. Further,
it preserves the Horn property of Cy as well as of each of the t residual binary
clauses. Hence the z variables form a strong RHorn-backdoor of size log2 s.

To derive a lower bound on the size of every deletion RHorn-backdoor B,
notice that if B includes at least t − 1 of the x variables, then |B| ≥ t − 1 =
s + log2 s − 1, as claimed. Otherwise, B does not contain at least two of the
x variables, and we must therefore rename at least one of these two variables,
say x1, to make Cx Horn. This implies that we must flip all variables yj 6∈
B because of the clauses C1,j

z which now already have a positive literal, x1.
However, because of the clause Cy, we can flip at most one y variable, and it
follows that at least s − 1 of the y variables are in B. Moreover, we also have
that all log2 s of the z variables are in B, because otherwise, irrespective of how
the z variables are renamed, in at least one C1,j

z clause a z variable will appear
positively, violating the Horn property. Hence, |B| ≥ s − 1 + log2 s, as claimed.
This finishes the proof. ⊓⊔

4 Computing the Smallest Backdoors

Smallest Strong Horn-Backdoors: The problem of finding a smallest strong
Horn-backdoor can be formulated as a 0-1 integer programming problem using
the equivalence to deletion backdoors [19]. Given a formula F , associate with
each Boolean variable xi a 0-1 variable yi, where yi = 0 denotes that the cor-
responding variable xi is deleted from F (and added to the backdoor). For a

clause c ∈ F , let c+ =
{

i | x1
i ∈ c

}

and c− =
{

i | x0
i ∈ c

}

. The smallest (dele-
tion) Horn-backdoor problem is formulated as follows:

minimize
∑

i∈var(F)(1 − yi)

subject to
∑

i∈c+ yi ≤ 1, ∀c ∈ F

yi ∈ {0, 1} , ∀xi ∈ var(F)

The constraints ensure that each clause is Horn (in each clause, the total
number of not-deleted positive literals is at most one). The objective function
minimizes the size of the backdoor.

Smallest Deletion RHorn-Backdoors: The problem of finding a smallest deletion
RHorn-backdoor can be formulated similarly. Given a formula F , associate with
each Boolean variable xi three 0-1 variables y1i, y2i, y3i, where y1i = 1 denotes
that xi is not renamed in F , y2i = 1 denotes that xi is renamed in F , and y3i = 1
denotes that xi is deleted from F (and added to the deletion backdoor). The
smallest deletion RHorn-backdoor problem is formulated as follows:

minimize
∑

i∈var(F) y3i

subject to y1i + y2i + y3i = 1, ∀xi ∈ var(F)
∑

i∈c+ y1i +
∑

i∈c− y2i ≤ 1, ∀c ∈ F

y1i, y2i, y3i ∈ {0, 1} , ∀xi ∈ var(F)

The first set of constraints ensures that each Boolean variable xi is either
not-renamed, renamed, or deleted. The second set of constraints ensures that
each clause is Horn (in each clause, the total number of not-renamed positive
literals and renamed negative literals is at most one). The objective function
minimizes the size of the backdoor.

We use the above encodings and the ilog cplex libraries [14] for experi-
menting with Horn- and RHorn-backdoors.

Smallest Strong SATZ-, UP-, and (UP+PL)-Backdoors: Following previous
work [25, 15], we consider strong backdoors w.r.t. branch-free search by Satz-
Rand [11], a randomized version of Satz [16]. These are referred to as SATZ-
backdoors. We obtain an upper bound on the size of the smallest strong SATZ-
backdoors by running Satz-Rand without restarts multiple times with different
seeds and recording the set of variables on which the solver branches when
proving unsatisfiability. We also record the set of variables not set by UP and PL.
This gives us an upper bound on the strong (UP+PL)-backdoor size. Similarly
we record all variables set in Satz-Rand by anything but the UP procedure to
obtain an upper bound on the smallest strong UP-backdoor size.

5 Experimental Evaluation

For our experimental evaluation, we considered four problem domains: graph
coloring, logistics planning, equilibrium problems from game theory, and car
configuration. The results are shown in Table 1.

instance num num Horn RHorn SATZ UP+PL UP C{}

set vars clauses % (del) % % % % %

gcp 100 300 7557.7 66.67 17.00 0.30 1.20 1.23 4.00
gcp 200 600 30122.0 66.67 16.83 0.17 0.60 0.60 2.00
gcp 300 900 67724.4 66.67 16.78 0.11 0.51 0.60 1.33
gcp 400 1200 119997.4 66.67 16.75 0.08 0.38 0.55 1.00
gcp 500 1500 187556.0 66.67 16.73 0.07 0.28 0.80 0.80

map 5 7 249 720 38.96 37.75 0 2.01 2.01
map 10 17 1284 5000 44.55 44.31 0 1.17 1.17
map 20 37 5754 33360 47.31 47.25 0 0.61 0.61
map 30 57 13424 103120 48.21 48.19 0 0.41 3.23
map 40 77 24294 232280 48.66 48.65 0 0.31 3.20
map 50 97 38364 438840 48.93 48.92 0 0.25 3.19

pne 2000 40958.9 67.88 66.86 0.05 0.38 0.42
pne 3000 60039.7 67.66 66.55 0.00 0.17 0.20
pne 4000 79666.4 67.96 66.92 0.00 0.14 0.16
pne 5000 98930.8 67.80 66.80 0.00 0.13 0.15

C168 FW SZ 1698 5646.8 14.32 2.83 0.16 0.77 5.70
C168 FW UT 1909 7489.3 23.62 5.50 0.00 0.36 1.03
C170 FR SZ 1659 4989.8 9.98 3.57 0.13 0.57 15.19
C202 FS SZ 1750 6227.8 12.31 4.55 0.13 0.61 9.42
C202 FW SZ 1799 8906.9 14.48 6.12 0.22 0.89 10.86
C202 FW UT 2038 11352.0 21.25 7.61 0.00 0.20 1.86
C208 FA SZ 1608 5286.2 10.52 4.51 0.06 0.40 6.50
C208 FA UT 1876 7335.5 23.13 7.46 0.00 0.05 0.05
C208 FC RZ 1654 5567.0 10.28 4.59 0.36 1.12 12.91
C208 FC SZ 1654 5571.8 10.47 4.68 0.16 0.63 10.41
C210 FS RZ 1755 5764.3 11.64 4.22 0.55 1.25 12.12
C210 FS SZ 1755 5796.8 11.77 4.35 0.30 0.91 15.56
C210 FW RZ 1789 7408.3 12.54 4.81 0.65 1.42 12.97
C210 FW SZ 1789 7511.8 13.74 5.37 0.23 0.78 11.15
C210 FW UT 2024 9720.0 20.73 7.31 0.00 0.64 4.42
C220 FV SZ 1728 4758.2 9.14 2.92 0.19 0.46 8.88

Table 1. Strong backdoor sizes for various ensembles of instances: Graph Color-
ing (gcp), MAP planning (map), Pure Nash Equilibrium (pne), and Automotive
Configuration (Cxxx). Each row reports the average over several instances. Back-
door sizes are shown as the average % of the number of problem variables. The
RHorn numbers are for deletion backdoors. Horn- and RHorn-backdoor sizes are
for the smallest corresponding backdoors, while the rest are upper bounds.

We generated graph coloring instances using the clique hiding graph gener-
ator of Brockington and Culberson [1]. All instances were generated with the
probability of adding an edge equal to 0.5 and with a hidden clique of size 4.
All SAT-encoded instances are unsatisfiable when the number of colors is 3. The
twelve variables representing color assignments to the four vertices in the hid-
den 4-clique constitute a strong C{}-backdoor, since any assignment of colors
to these four vertices will fail at least one coloring constraint. This domain il-
lustrates how the strong Horn-backdoors and deletion RHorn-backdoors can be
significantly larger than backdoors w.r.t. empty clause detection; it also shows
that deletion RHorn-backdoors (involving ≈ 17% of the variables) are consider-
ably smaller than strong Horn-backdoors (≈ 67%). We note that Satz is very
efficient at finding the small backdoors corresponding to the planted cliques.

The MAP problem domain is a synthetic logistics planning domain for which
the size of the strong UP-backdoors is well understood [13]. In this domain,
n is the number of nodes in the map graph and k is the number of locations
to visit. All MAP instances considered are unsatisfiable, encoding one planning
step less than the length of the optimal plan. Hoffmann et al. [13] identify that
MAP instances with k = 2n−3 (called asymmetric) have logarithmic size DPLL
refutations (and backdoors). We evaluate the size of the backdoors in asymmet-
ric MAP instances of various sizes (n = 5..50). In this domain, strong Horn-
backdoors and deletion RHorn-backdoors are of comparable size and relatively
large (37-48%); as expected strong UP-backdoors are quite small. Interestingly,
Satz solves these instances without any search at all, implying that the smallest
strong SATZ-backdoor is of size 0.

The game theory instances encode the problem of computing an equilib-
rium strategy. In a game, interactions between players can be represented by
an undirected graph where nodes represent players and edges represent mutual
dependencies between players. Each player has a finite set of actions and a payoff
function that assigns a real number to every selection of actions by him and his
neighbors. Here we consider binary games, where each player has exactly two
action choices. Our focus will be on random graphical games where each payoff
value is chosen uniformly and independently at random from the interval [0, 1]
and the interaction graphs are drawn from the Erdös-Rényi random graph model
G(n, p). In a pure Nash equilibrium (PNE), each player chooses an action and
has no incentive to unilaterally deviate and change his action, given the actions
chosen by the other players (i.e. each player has chosen a best response action
to the choices of his neighbors). We encode the problem of deciding whether a
graphical game has a PNE as a CNF formula that is satisfiable iff the given game
has a PNE. For every player p, there is a Boolean variable xp encoding the action
chosen by p. For each possible action assignment for the neighbors of p, we add a
clause ruling out the non-best response action of p. For this domain, while strong
Horn-backdoor sets and deletion RHorn-backdoor involve ≈ 68% and ≈ 67% of
the variables, respectively, strong SATZ-backdoors are surprisingly small, close
to 0% of the variables.

Finally, we also consider a real-world SAT benchmark from product config-
uration. The instances encode problems from the validation and verification of
automotive product configuration data for the Daimler Chrysler’s Mercedes car
lines [22]. We consider a set of unsatisfiable instances available at http://www-
sr.informatik.uni-tuebingen.de/∼sinz/DC/. Here, while strong Horn-backdoors
vary between 10-25% of the variables, RHorn-backdoor sets are considerably
smaller at 3-8%. Strong SATZ-backdoors involve only 0-0.7% of the variables.

6 Conclusions

The complexity of finding backdoors is influenced significantly by the features
of the underlying sub-solver or tractable problem class. In particular, while the
problem of identifying a strong Horn- or 2CNF-backdoor is known to be in NP
and fixed parameter tractable, strong backdoor identification w.r.t. to Horn and
2CNF becomes harder than NP (unless NP=coNP) as soon as the seemingly
small feature of empty clause detection (present in all modern SAT solvers)
is incorporated. While such a feature increases the worst-case complexity of
finding backdoors, our experiments show that in practice it also has a clear
positive impact: it reduces the size of the backdoors dramatically. For the class
RHorn, we prove that deletion backdoors can be exponentially larger than strong
backdoors, in contrast with the known results for 2CNF- and Horn-backdoors.
Nonetheless, we show experimentally that deletion RHorn-backdoors can be sub-
stantially smaller than strong Horn-backdoors. We also demonstrate that strong
backdoors w.r.t. UP, PL, and UP+PL can be substantially smaller than strong
Horn-backdoors and deletion RHorn-backdoors. Finally, despite the worst-case
complexity results for strong backdoor detection, we show that Satz-Rand is re-
markably good at finding small strong backdoors on a range of problem domains.

Acknowledgments

The authors would like to thank Joerg Hoffmann for providing the generator for
the MAP domain, and the reviewers for their thoughtful comments. This research
was supported by IISI, Cornell University, AFOSR Grant FA9550-04-1-0151.

References

[1] M. Brockington and J. C. Culberson. Camouflaging independent sets in quasi-
random graphs. In D. S. Johnson and M. A. Trick, editors, Cliques, Coloring,

and Satisfiability: Second DIMACS Implementation Challenge, volume 26, pages
75–88. American Mathematical Society, 1996.

[2] V. Chandru and J. N. Hooker. Detecting embedded Horn structure in proposi-
tional logic. Information Processing Letters, 42(2):109–111, 1992.

[3] H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods with-
out decompositions. In CP’05, pages 167–181, 2005.

[4] H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in
combinatorial search. In CP’01, 2001.

[5] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., 2003. ISBN
1558608907.

[6] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artif. Intell., 34(1):1–38, 1987. ISSN 0004-3702. doi: http://dx.doi.org/10.
1016/0004-3702(87)90002-6.

[7] Y. Deville and P. Van Hentenryck. An efficient arc consistency algorithm for a
class of csp problems. In IJCAI’91, pages 325–330, 1991.

[8] E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29(1):
24–32, 1982. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/322290.322292.

[9] E. C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32
(4):755–761, 1985. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/4221.4225.

[10] E. C. Freuder. Complexity of k-tree structured constraint satisfaction problems.
In AAAI’90, pages 4–9, Boston, MA, 1990.

[11] C. Gomes, B. Selman, and H. Kautz. Boosting Combinatorial Search Through
Randomization. In AAAI’98, pages 431–438, New Providence, RI, 1998.

[12] C. P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. J. Autom. Reason., 24(1-2):
67–100, 2000. ISSN 0168-7433.

[13] J. Hoffmann, C. Gomes, and B. Selman. Structure and problem hardness: Goal
asymmetry and DPLL proofs in SAT-based planning. Logical Methods in Com-

puter Science, 3(1:6), 2007.
[14] ILOG, SA. CPLEX 10.1 Reference Manual, 2006.
[15] P. Kilby, J. K. Slaney, S. Thibaux, and T. Walsh. Backbones and backdoors in

satisfiability. In AAAI’05, pages 1368–1373, 2005.
[16] C. M. Li and Anbulagan. Heuristics based on unit propagation for satisfiability

problems. In IJCAI’97, pages 366–371, 1997.
[17] I. Lynce and J. Marques-Silva. Hidden structure in unsatisfiable random 3-SAT:

An empirical study. In ICTAI’04, 2004.
[18] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

engineering an efficient SAT solver. In DAC’01, pages 530–535, 2001. ISBN 1-
58113-297-2.

[19] N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to
Horn and binary clauses. In SAT’04, 2004.

[20] L. Paris, R. Ostrowski, P. Siegel, and L. Sais. Computing Horn strong backdoor
sets thanks to local search. ICTAI’06, 0:139–143, 2006. ISSN 1082-3409. doi:
http://doi.ieeecomputersociety.org/10.1109/ICTAI.2006.43.

[21] M. Samer and S. Szeider. Constraint satisfaction with bounded treewidth revis-
ited. In CP’06, pages 499–513, 2006.

[22] C. Sinz, A. Kaiser, and W. Küchlin. Formal methods for the validation of automo-
tive product configuration data. Artificial Intelligence for Engr. Design, Analysis

and Manufacturing, 17(1):75–97, Jan. 2003. Special issue on configuration.
[23] S. Szeider. Backdoor sets for DLL subsolvers. J. of Automated Reasoning, 2005.
[24] P. van Beek and R. Dechter. On the minimality and global consistency of row-

convex constraint networks. J. ACM, 42(3):543–561, 1995. ISSN 0004-5411. doi:
http://doi.acm.org/10.1145/210346.210347.

[25] R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In
IJCAI’03, pages 1173–1178, 2003.

[26] R. Williams, C. Gomes, and B. Selman. On the connections between heavy-tails,
backdoors, and restarts in combinatorial search. In SAT’03, pages 222–230, 2003.

