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ABSTRACT Currently, of the 10° known pro-
tein sequences, only about 10* structures have been
solved. Based on homologies and similarities, pro-
teins are grouped into different families in which
each has a structural prototype, namely, the fold,
and some share the same folds. However, the total
number of folds and families, and furthermore, the
distribution of folds over families in nature, are still
an enigma. Here, we report a study on the distribu-
tion of folds over families and the total number of
folds in nature, using a maximum probability prin-
ciple and the moment method of estimation. A qua-
dratic relation between the numbers of families and
folds is found for the number of families in an
interval from 6000 to 30,000. For example, about
2700 folds for 23,100 families are obtained, among
them about 33 superfolds, including more than 100
families each, and the largest superfold comprises
about 800 families. Our results suggest that although
the majority of folds have only a single family per fold,
a considerably larger number of folds include many
more families each than in the database, and the
distribution of folds over families in nature differs
markedly from the sampled distribution. The long tail
of fold distribution is first estimated in this article.
The results fit the data for different versions of the
structural classification of proteins (SCOP) excel-
lently, and the goodness-of-fit tests strongly support
the results. In addition, the method of directly “enlarg-
ing” the sample to the population may be useful in
inferring distributions of species in different fields.
Proteins 2004;54:491-499. ©2003 Wiley-Liss, Inc.
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INTRODUCTION

Proteins are clustered together into families based on
their homologies and similarities. To some extent, the
definition of a protein family is somewhat arbitrary, aris-
ing from the use of different percentages of sequence
identity and a variety of sequence- or structure-based
methods.’~¢ A residue identity of more than about 30% for
clustering protein sequence pairs together into families is
widely accepted in the literature.'27-!3 In particular,
according to the structural classification of proteins (SCOP)
established by Murzin et al.,? proteins are clustered
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together into families based on one of two criteria: (1)
proteins that have residue identities of 30% and greater,
and (2) proteins with lower sequence identities, but whose
functions and structures are very similar (e.g., globins
with sequence identities of 15%). Families are defined as
having a common fold if their proteins have same major
secondary structures in the same arrangement, with the
same topologic connections. How many folds exist in
nature? Furthermore, what is the distribution of the folds
over the families (i.e., the breakdown of folds by number of
families) in nature? These questions are still enigmas®-"~22
in biology; however, they are important for studies of

structure prediction®®2? in structural biology, for proteom-
ics in the postgenome era,?® and also for systematic
biology.2®

Chothia'® first estimated the total number of families
and proposed a concept that the number of families and
folds in nature is rather limited. Since then, many esti-
mates have been made, with various estimations of the
total number of folds from N = 400-10,000 and the
number of the families from M = 1000-30,000.7° [In this
work, the family number is not estimated and is consid-
ered a variable.] By assuming a geometric distribution for
the breakdown of folds by the number of families in nature,
Zhang and DeLisi'? estimated the number of folds as N =
700,° and later as about 1300. Wolf et al.'' proposed a
logarithmic distribution and argued that the fold number
is about 1000. Govindarajan et al.,'® who employed a
continuous distribution to approximate the number of
families in a fold, estimated the number of folds as 4000.
By using a Poisson approximation, Wang” estimated the
total number of folds to be about 650. The number of folds
for human proteins is estimated to be =5200 by Zhang®
from the degenerative degree. Recently, Coulson and
Moult'? indicated the number of folds to be about 4600 for
M = 23,100, the number of families estimated by Orengo et
al.! We note that in the study by Orengo et al., protein
sequence pairs with more than 30% residue identity are
clustered together into superfamilies (or 30 SEQ families),
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which is most consistent with the definition of family used
by SCOP, as Zhang and DeLisi® pointed out.

However, the previous models do not follow well the
development of data from SCOP (releases 1.50 to 1.59),2
especially for the number of superfolds (a superfold includ-
ing a large number of families). For example, Zhang and
DeLisi®!? concluded that 33 folds having more than 6
families each exist in nature, whereas that number is
already 42 in SCOP release 1.55. Coulson and Moult'®
assume that the number of the folds having more than 12
families each is 9, whereas that number is already 19 in
SCOP release 1.57, and so on. On the other hand, different
models use different hypotheses for the distribution of
folds over families. These hypotheses are critical to the
estimation of the total number of folds. For example, the
geometric distribution®'23 T = (1 — ¢)* q, with ¢ =
N/M, which is uniquely defined by the ratio of the total
numbers of folds and families, is used to describe the
probability that a fold is composed of exactly x families.
However, it gives the same distribution as long as the total
number of families, M, and the total number of folds, N,
are the same, respectively, for any two different popula-
tions. In fact, the geometric distribution with parameter
N/M in the Zhang and DeLisi model'Z may approximately
describe the sampled fold distribution (for folds that
include less than 6 families per fold), but not necessarily
the fold distribution in nature. Another supposed distribu-
tion, namely, the logarithmic distribution,'! seems to have
better results than the geometric distribution for fitting
the sampled distribution of folds in the database (except
for the superfolds that are treated separately by the
authors). It is not clear whether it could be used to
approximate the distribution in nature, or whether the
fitting value of the parameter is appropriate to describe
such a distribution. Govindarajan et al.'° employed a
continuous distribution to approximate the distribution of
the number of families in a fold. It seems that this
distribution should be discrete, as pointed out by Wolf et
al.lt

Why do these models not follow well the development of
the database, then provide a reasonable estimate for the
total number of folds, N? The main reason is the lack of
whole knowledge of the distribution of folds over families
in nature, and also the estimation methods. What is the
fold distribution in nature? Can a single-parameter distri-
bution, as used in most previous models, also describe
approximately the fold distribution in nature? Recently,
Qian et al.2” observed that the occurrence of a protein
family and fold in genomes follows a power law, which
might imply that the distribution of folds over families in
nature is also approximated by a power law, or a single-
parameter distribution, as mentioned above. Because any
single-parameter distribution ultimately depends on one
parameter only, and the distribution in nature and the
sampled distribution should be different when M > M, (M,
represents the total number of families in database), the
specific parameters and form of the distribution in nature
should differ from those of the sampled distribution in the
database. The parameters and form of the distribution of
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folds in nature are unknown, and it is not easy to derive
them by fitting data, because of the complications of the
sampling.

In this work, we report the results of a study on the
distributions of folds over families in nature and estimates
of the total number of folds for different values of the total
number of families, M. We first work out these distribu-
tions directly from the database (not assuming a special
kind of distribution) using a maximum probability prin-
ciple and the moment method of estimation.?® From these
results, we can determine the long tail of the distribution,
the number of families in the largest superfold, and the
total number of folds in nature for each value of M, and so
on; for example, we find that the number of folds is about
2700 for the total number of families, M = 23,100.

MODEL AND METHODS
Database

We use the SCOP database for the classification of folds
and families, and for the statistics for various releases
(1.35-1.59) (http://www.scop.mrc-lmb.cam.ac.uk/scop). The
data are derived from the parseable files. For each release,
we obtain the number of folds, superfamilies, families for
different classes, and the distribution of folds over fami-
lies. We favor this database, because the methods for
recognizing homologs are given with maximum expert
human intervention (for pattern-recognition problems, it
is difficult to find computational approaches that can
compare with human judgment).!® The SCOP database
has been used for estimation of the fold number in almost
all the recent articles.” 3

Grouping of Folds in the Database

Because the experimental observations of proteins may
be a random sampling from a pool of proteins in na-
ture,®11712 we can assume that the observed families with
total number M, belonging to N, folds, are sampled from
the pool with total number M of families belonging to N
folds in nature (Fig.1). Then, the probability, P(n,k), for a
fold in nature having n families, of which % families are
sampled by experiments, is given by a hypergeometric
distribution,

M M-M
pou = (U0) (M, 200 ram)
for k = 1, ..., n (i.e., the probability distribution of a

random sampling without replacement from a limited
population). Because, obviously, n = 0.1 M, this probabil-
ity can be well approximated by a binomial distribution:

Py = () p* (1= prt,

with p = M/M being the probability of selecting any
family (we use this approximation in our method). [A fold
having n families in nature is denoted as S,,, and in the
database as f,,.] Because the distribution of known folds
over families is not uniform, and the number of folds f,, for
n = 4 is rather rare, decreasing rapidly as n increases, as
seen in the database, to obtain robust estimates, these
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Fig. 1. Relationship between the folds and families in both nature and

the observed database. In nature, M families are distributed into N folds
(e.g., N, folds of S;, and N, folds of S,, and so on). Then, the total number
of foldsisN=N, + N, + ... + N, + ... + N,...,, and the total number of
familiesisM=1X N, +2X N, + ... + nX N, + ... + nmax X N,,.... The
observed data may follow the arrows, and the distribution is not uniform.
There are V, folds of f,, V, folds of £,, V, folds of f,, and so on. For the
database SCOP, release 1.55, there are V, = 349, V, = 85, ..., and V,,
=1, with f;, the largest fold with 52 families. The total number of folds is
Ny =V, + V, + ... + Vg,. Note that there are some empty terms V; as a
result of the nonuniformity of the observed data.

folds should be coarse-grained into some groups. For
example, the ith group, defined as g;, includes O, folds
having between m; and n; (m; =< n;), inclusive, families per
fold [for convenience, the interval (m;, n;) is hereafter
called the family interval of the ith group in this article].
Such a division should make the number of folds with a
different number of families in the same group as close as
possible. Thus, for the observed SCOP data (release 1.55),
we can divide the folds into 9 groups, each with a specific
interval [m;,n;] and O, folds fori =1, ...,9(n; + 1 =m; 4
fori = 1, ..., 8). Figure 2 shows the distribution of M, =
1494 protein families among N, = 566 folds for these data
and their related grouping. For example, group g, (the fold
numbers, with 4 and 5 families in each fold, being 20 and
21, respectively, are very close) is a remarkable one, with a
family interval [4,5] and the fold number O, = 41. This
kind of grouping method is often used in the statistical
literature.2**° Note that, as in the work by Govindarajan
et al.,'® we omit classes 5 (the multidomain proteins) and 6
(the membrane and cell surface proteins), because they
contain relatively few samples. In fact, in SCOP release
1.55, class 5 contains only 28 folds, and class 6, only 11
folds, and most of these folds include only a single family
per fold.

Maximum Probability Principle

Obviously, the observed fold, f;, comes from the fold S,
in nature (here, 2 = n), with a probability P(n,k) (Fig. 1).
Because P(n,k) is a unimodal function of n, a specific fold
S,, exists, having a maximal probability for f;; that is, f;,
comes from S, , with a probability larger than that of other
folds. For example, for the largest observed fold f5, in
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Fig. 2. The distribution of observed data and our grouping. Filled
squares represent the distribution of M, = 1494 protein families among
N, = 566 folds from SCOP release 1.55. The histogram shows the groups
of the folds with family interval [m,n] with [1,1], [2,2], [3,3], [4,5], [6,9],
[10,16], [17,24], [25,33] and [34,60], and related numbers of folds O, =
349, 85, 40, 41, 25,16,5,2,and 3fori= 1, ..., 9, respectively. The height
of each bar along the ordinate is the sum of the heights of filled squares
under the bars, which indicates that the total number of folds is the sum of
the numbers of various kinds of folds in this group.

SCOP release 1.55, there is a positive integer ¢5, = 804, so
that f5, comes from Sg,,, with maximum probability 5.7 X
10~ 2 for M = 23,100. Although we use M = 23,100 as an
illustrative number hereafter in the article, similar results
can be obtained for other values of M. Easily, the probabil-
ity of i, from S0 and S, 500 is 4.6 X 10" and 4.5 X 108,
respectively. Thus, we have no reason to consider this
observed fold coming from S;,, and S5, rather than from
Sgo4- More generally, we can say that the largest observed
fold f;5, comes from a fold including x families with larger
probability than that from the others, where x belongs to
the interval [620,1000] and the probability is between 0.01
and 0.058. Similarly, the largest observed folds f51, f33, 41,
faas Fa7> [55, @and f5; in SCOP releases 1.37, 1.41, 1.48, 1.50,
1.53, 1.57, and 1.59 come from folds Sggg, S799, Ss115 Ss145
Sgo4s S751, and S 5., respectively, with maximum probabil-
ity in nature. These results are amazingly consistent and
suggest that the largest superfold [i.e., the triosephos-
phate isomerase (TIM) barrel fold] in nature includes
about 800 families, if M = 23,100.

Grouping of Folds in Nature

We also arrange the folds in nature into 9 groups. Let X;
be the total number of folds and [,,/,] G =1,...,9,k, = 1,
and/; + 1 =%k, ,fori =1, ..., 8) be the family interval for
group G; in nature. Then, we can work out 2, and /, through
the endpoints m; and n; of the interval [m;, n,] of the
related group in the observed database, using the maxi-
mum probability principle (see the following).

The Moment Method of Estimation

The idea of the moment method of estimation is that the
expected sampling number of folds, E,, for the jth group,
from nature should be equal to that of the observed folds,
O,. In nature, for group G, there are [, — k; + 1 kinds of
folds (i.e., the folds having k; to /; families per fold). We
consider that the numbers of these various kinds of folds
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are basically equal or uniformly distributed in the group
G,, and each kind of folds appears with an equal probabil-
ity p = 1/(; — k; + 1). Thus, the number of folds for each
kindis X/(/; — k; + 1). As mentioned before, the probability
of sampling v (here, vE m,, ..., n;) families (to form a fold in
the database) from u families in a fold in nature (here, ue
k;, ..., 1;)is P(u,v). Thus, the expected number of folds with
v families from X /(I; — k; + 1) folds having u families each
in G;is [X/([; —k; + D]P(u,v). Clearly, such a sampled fold
with v families may come from any fold having u families
[v = u; if v = u, set P(u,v) = 0] of G;. Therefore, the
expected sampling number of folds having v families per
fold from the total X folds of G, is b y P@,u)X;/ (1 — Ry +
1)]; furthermore, the total expected sampling number of
folds for g; with the family interval [m;,n,] sampled from X
folds of G; is > m; fj:kj G -k + 1D '"Puy)X] = [(
— ki + DY > Puw)X, = CyXfori,j=1,...,
9. Because the sampling of g; could come from any of the
G, with j = 1, ..., 9, we have the expected sampling
number of folds of g;, namely, E; = >7_, C; X, Following
the moment method of estimation,2® then we have

9
> C;X;=0, withi=1,...,9. (1)

j=1

Solving these linear equations gives the estimated fold
distributions, then the total number of folds,

Consequently, based on the estimated distribution, we
obtain the estimated number of families,

9
M = (ki +1) X/2,

i=1

which should consistently be equal to the supposed value
of M.

The Most Likely Fold Distribution

For any given k; and [,,i = 1, ..., 9, we can easily obtain
X; (@ =1,...,9) by solving linear Eq. (1). However, k,and [,,
i=1,..,9, are also unknown. We should determine the
values of X, k;,, and [, G = 1, ..., 9) at the same time.
Because all the data indicate that the number of folds
decreases as the number of families per fold increases, and
that most folds have a single family each, the most likely
estimate for the distribution of folds should satisfy the
condition that the number of folds having a single family
each (i.e., X;, if/; = 1) is a lot larger than that of the other
kinds of folds, and X, decreases as i increases, although the
length of the family interval [k;/;] increases with an
increase in i. With this in mind, in the next section, we
determine the fold groups.
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Fig. 3. Determination of the family intervals for the last 5 groups in
nature based on the maximum probability principle. Arrows show the
mapping of the family interval [m,n] of the th group g; in the observed
database to the family interval [k, /] of the ith group G;in nature.

Determining Fold Groups in Nature

The last 5 groups in nature can be determined from the
related groups in the database by the maximum probabil-
ity principle. From Figure 2, we know that f, forn = 5 is
rare, indicating that S, for n = 5 in nature is also
relatively rare. Thus, the observed folds in the last 5
groups may mainly come from the folds of their related
groups in nature, implied by the maximum probability
principle. A simple method for determining these fold
groups is to choose k; = ¢, (which is like ¢5,), where a = m;
orn, ;(n,_y+1=m,),fori=5,...,9(thenl, =%, , — 1for
i=05,...,8),and ly = t,, where b = ng. But, in this case, we
may obtain estimates X, = 5, ..., 9, which are not close to
integers (especially for Xg and Xg, because these folds
contain many families and too many rounding-off errors
may reduce the accuracy of the estimates). In this re-
search, we use the following more elaborate method. From
the maximum probability principle, the family interval for
G, with i = 5 in nature should, at least, contain the interval
[t,.t,], where u = m; + 1 and v = n; — 1, and at the same
time should, at most, contain the interval [¢,,¢,], where g =
n,_, — land r = m;,; + 1 (otherwise, the neighboring
groups will not follow the maximum probability principle).
Therefore, we obtain the family interval [%,,/,] for G, with &,
=ty ..t,andl; =1, ..,¢,fori =5, .., 9 (see Fig. 3).
Here, both £,and [, belong to a set.

Once the last 5 fold groups have settled down, we could
divide the interval [1, k5 — 1] (k5 — 1 = [,) into 4 arbitrary
intervals, in principle, to determine the first 4 fold groups
in nature. This should give a consistent estimation for the
number of folds in these groups; that is, the longer the
interval [k;,[;]] G = 1, ..., 4), the larger the number of
related folds). However, to get the most likely estimates
mentioned above, it is necessary to search through all the
values of k;and [, We have a simple method to set ranges
fork,and!l,i=1,...,4:Setk, =k,_, +1,...,k;,; — 1for
i=2,3,4 (obviously, &k, =1,l,=k;,; — 1fori=1,...,4).

Now, we search through the above-determined ranges of
k; and [, to obtain the most likely estimate for the
distribution of folds under the following conditions:
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TABLE 1. Several examples of Groupings of Folds in Nature and Estimated Number of Folds and Distributions

Based on the Supposed Number of Families M

M N X kld Xolkols) Xslkglsl X lkyld  Xslkslsl X kgl X; k1] X [Rg,lg] Xolko,lo]
6000 1266  714[1,1] 348[2,4] 81[510] 80([11,19] 18([20,40] 17 [41,64] 3 [65,98] 2[99,135]  3[136,240]
9000 1569  874([1,1] 470[2,5] 92[6,14] 90[1528] 18[29,61] 17 [62,96] 3[97,150]  2[151,202] 3 [203,360]
12,000 1861 1115[1,1] 537[2,71 85[8,21] 82[22,37] 18[38,83] 17[84,129] 2[130,203] 2[204,271] 3 [272,480]
15,000 2092 1263 [1,1] 608(2,8] 91[9,25] 88([26,46] 18[47,104] 17[105,162] 2[163,259] 2[260,341] 3 [342,602]
18,000 2360 1515[1,1] 635[2,10] 87[11,33] 80([34,54] 18[55,123] 17[124,192] 3[193,309] 2[310,407] 3 [408,722]
21,000 2559 1659 ([1,1] 683[2,11] 91[12,37] 84[38,63] 18(64,144] 17[145,225] 2[226,357] 2[358,478] 3[479,843]
23,100 2714 1794[1,1] 703[2,12] 88[13,40] 87[41,69] 18[70,159] 17[160,249] 2 [250,396] 2[397,525] 3 [526,925]
30,000 3081 2051[1,1] 799(2,14] 95[1549] 93[50,89] 18[90,203] 17[204,317] 3[318,510] 2[511,680] 3 [681,1205]

Here, [k;;/;] represents the family interval of group G, X; is the estimated fold number for group G;, and N is the estimated total fold numbers in

nature.

1. Thereis an order in X;in which X; = X, ... = X [it is not
necessary that Xg = X, because few folds are observed
in the last two groups, and Og = 2, Oy = 3 (Og > Og)].

2. Without loss of generality, we choose the solutions of X;
for j = 8 to be close to an integer, such that we take
1.85 = Xg = 2.15and 2.85 = X, = 3.15 (as Og = 2 and
Oy = 3).

3. By choosing as large as possible value of X;, we obtain
the most likely estimate for the distribution of folds,
and, simultaneously, the related values of 2, and /; are
settled.

RESULTS AND DISCUSSION
Total Number of Folds and Their Distribution in
Nature

For each value of M, we work out the related grouping of
folds in nature, namely, the family intervals [%;,/;] of group
G,, and the values of X, for i = 1, ..., 9, then we obtain the
total number of folds NV in nature (Table I). Thus, we have
directly estimated the distribution of folds over the fami-
lies and the total number of folds (as a function of the total
number of families in nature). For example, we have N =
2714, X, = 1794, 703, 88, 87, 18, 17, 2, 2, 3, and [%,;,[;] =
[1,1], [2,12], [13,40], [41,69], [70,159], [160,249], [250,396],
[397,525], [626,925], respectively, for G; fori = 1, ..., 9 for
M = 23,100 (at the same time the estimated value of
families M’ = 23,114. Consistently, the supposed value M
and the estimated value M’ are quite in agreement with
each other. This consistency also exists for the other values
of M). Among the 2714 folds there are about 33 superfolds,
each including more than 100 families, and the largest
superfold composed of about 800 families is obtained from
the maximum probability principle. By fitting the num-
bers for N and M in Table I, a quadratic function,

N=-1.217 X 107°M? + 0.120M + 592.186

for M&[6000, 30,000] can be obtained (Fig. 4).

Most recent articles™ '3 imply that the most likely
number of families in nature may belong to the interval
[6000, 30,000]. Also, based on analysis of the “pfam A”
family collection,® Coulson and Moult'® suggested that the
higher limit of 50,000 families could be reached. In the
case in which M = 50,000, using our methods, we obtain
the total number of folds, N = 4478, X, = 3408, 850, 89, 88,

*  Predicted
Fit curve
30004
%)
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L
‘5 20004
-~
@
0
£
=
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O T T T
0 10000 20000 30000

Number of families

Fig. 4. The estimated number of folds, N, versus the number of
families M. Here, N = 1266, 1569, 1861, 2092, 2360, 2559, 2714, and
3081 for M = 6000, 9000, 12,000, 15,000, 18,000, 21,000, 23,100, and
30,000 are used. The solid curve is a fitting with N = —1.217 X 107% M? +
0.120 M + 592.186 for Me [6000, 30,000].

18, 17, 3, 2, 3, and [%,;,[;] = [1,1], [2,24], [25,88], [89,144],
[145,339], [340,530], [531,849], [850,1139], [1140,2010],
respectively, for G, with i = 1, ..., 9. Likewise, for M =
100,000, the estimated number of folds is about 8000, X; =
6609, 910, 94, 86, 18, 18, 2, 2, 3, and [%,;,/;] = [1,1], [2,47],
[48,180], [181,290], [291,685], [686,1081], [1082,1695],
[1696,2279], [2280,4020], respectively. Note that the re-
sults for other values of M in interval [30,000, 100,000] are
not shown here, and the relationship of N and M in this
interval is approximately linear.

Robustness of Results Against Changes in
Grouping

The estimate of the fold distribution is not sensitive to
the change in groupings of the last several fold groups, so
long as these formed groups are based on the maximum
probability principle. For example, for M = 23,100, assume
that the family intervals of the last 3 fold groups are
[250,404], [405,538], and [539,950] instead of [250,396],
[397,525], and [526,925] (the corresponding family inter-
vals of the other fold groups are the same; see Table I).
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TABLE II. Results for Various Versions of the SCOP Database

Version M, Ny 0, 0, O, 0O, Oy Oq 0, Oq O,
of SCOP N, E, E, E, E, E; Eq E, Eg E,
[m4,m4] [mg,nol [mgnsl [myng [ms,n5] [mgnel [monl [mg,nel [mgnel
1.37 808 375 242 57 27 16 14 10 5 2 2
381.93 252.97 58.32 25.56 13.33 13.07 9.32 5.08 2.35 1.93
[1,1] [2,2] [3,3] [4,4] 5,61 [7,9] [10,14] [15,21] (22,32]
141 961 426 277 65 29 17 20 11 5 2 2
428.29 277.50 65.38 29.76 16.13 19.79 10.62 4.95 2.62 1.54
[1,1] [2,2] [3,3] [4,4] (5,71 [8,11] [12,18] [19,29] [30,46]
1.48 1167 489 306 71 37 38 17 11 5 2 2
484.92 307.26 73.63 34.53 31.73 16.24 10.61 5.98 3.00 1.93
[L1] [2,2] [3,3] [4,5] [6,8] [9,12] [13,19] [20,32] (33,50]
1.50 1248 515 321 75 39 42 15 13 5 3 2
505.96 318.16 76.59 36.11 34.20 17.29 11.12 7.03 3.43 2.03
[1,1] [2,2] [3,3] [4,5] [6,8] [9,12] [13,19] [20,34] (35,55]
1.53 1317 528 325 81 39 40 18 13 7 2 3
523.36 327.15 79.04 37.34 36.24 18.30 1143 7.96 2.87 3.04
[1,1] [2,2] [3,3] [4,5] [6,8] [9,12] [13,19] [20,30] [31,60]
1.57 1626 605 367 102 39 41 28 17 6 2 3
595.66 364.52 89.46 41.77 4417 27.99 16.45 6.16 1.94 3.19
[1,1] [2,2] [3,3] [4,5] [6,9] [10,16] [17,24] [25,33] [34,60]
1.59 1750 640 392 103 43 43 27 18 9 2 3
622.99 378.37 93.53 43.24 46.63 31.16 16.82 753 2.23 3.49
[1,1] [2,2] [3,3] [4,5] [6,9] [10,16] [17,24] [25,34] [35,65]

The observed total numbers of folds NV, and their distributions O,, and the theoretical sampling total numbers of folds N, and their distributions E,
are shown for each version of SCOP, with M = 23,100. Here, O, (or E,) represents the observed number of folds (or the expected number of folds) in

group g;, whose family interval is [m;,n,].

Then, we have X; = 2.2, Xg = 2.2, and X, = 2.9, instead of
X, =21,Xg = 2.1, and Xy = 3.0 (the other corresponding
components of these two estimated fold distributions are
the same). This gives us the same results for the estimate
on both the total number of folds and the distribution.
Though a different classification of the first several
groups may give somewhat different estimated numbers of
folds for these groups, the estimated distribution of folds is
similar, and the estimate for the total number of folds is
about the same; that is, the estimated distribution of folds
and the estimate for the total number of folds are also
robust against change in groupings of the first several fold
groups. For example, in the case of M = 23,100, let the
family intervals for the first four groups be respectively
[1,1], [2,7], [8,13], and [14,69] instead of [1,1], [2,12],
[13,40], and [41,69] (the remaining corresponding family
intervals are the same; see Table I). Then we have X =
(1728, 452, 291, 169, 18, 17, 2, 2, 3) instead of X = (1794,
703, 88, 87, 18, 17, 2, 2, 3). However, the estimated
numbers of folds for both groupings are approximately
equal (2682 and 2714, with a relative error within 2%). We
can determine that the number of folds of the fourth group
for the first estimated distribution is approximately equal
to the sum of the number of folds of the third and fourth
groups for the second estimated distribution, and the
number of folds of the second group for the second esti-

mated distribution is approximately equal to the sum of
the number of folds of the second and third groups for the
first estimated distribution. It follows that these two
estimated distributions are consistent.

Consistency With Other Versions of SCOP

We used SCOP release 1.55 for our estimations. To
check whether our results are consistent with the observa-
tions of previous or following versions of SCOP, consider
the sample of M, families (e.g., M, = 808 for SCOP release
1.37) drawn from the universe of M families distributed
among folds in accordance with our estimated distribution.
We compare the theoretical sampling numbers of folds Ng
with the observed numbers N, (here, M = 23,100 for all
comparisons). Our results are in good agreement with the
observations, and the relative errors are found to be only
within 3% (Table II). It is also noted that we have similar
results on the comparison with different values of M.

Next, we further show how well the theoretical sampling
distributions of folds compared with the observed ones. To
illustrate a problem of hypothesis testing, here, our null
hypothesis concerns whether the theoretical sampling
distributions fit the observations well. If our null hypoth-
esis is true (i.e., our results fit the observations), the
Pearson xZ statistic, defined as
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C= T,
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should satisfy the so-called x? distribution. Here, the
degree of freedom is 9 — 1 = 8, because the expected
frequencies E; (i.e., the theoretical sampling number of
folds) are calculated without using any estimate of un-
known parameters.®! For any of the 7 SCOP releases
(Table II) in which we obtain a value ¢ of the variable C,
then the goodness of fit is given by the probability g =
P(C = ¢). Generally, the comparison between the observed
and the expected distribution is considered good if the
goodness g > 0.3. For these 7 releases of SCOP data, we
have the values of g = 0.99, 0,97, 0.98, 0.91, 0.99, 0.97, and
0.95, respectively, providing strong evidence that our
estimated distributions fit the observed data very well.

Several Remarks

Our estimates in this article relate to aspects of the
database and the definition of folds in the families. It is
assumed in our model (also in previous models® ') that
the structural database is random samples drawn from the
universal populations of protein families. However, the
process of selecting protein families for structural determi-
nation may not be ideally random. It may be that certain
folds are more likely to be solved by crystallography or
NMR spectroscopy, or are found easily in the organisms
under study, then over-represented. For example, the
superfolds are among the most extensively studied taxa in
the protein world, and many distantly related families
have already been identified with various sequence-
matching techniques.?~%2” Then the superfolds, such as
TIM-barrel, P-loop, and so on, may be over-represented in
the database; that is, each contains more families than
those found by a random sampling. Thus, the estimated
number of families included in each of these folds may be a
little larger with use of this database. However, we would
argue that the effect of the over-representation of the
observed superfolds in the database is small and basically
does not affect our estimates, because the increase in the
number of families included in each superfold is basically
smooth, with the increase in the family count (from the old
to the new version of SCOP). Furthermore, as mentioned
above, our estimates based on SCOP release 1.55 are
consistent with the observations of previous or following
releases of the database, and especially, the largest folds in
different SCOP releases suggest an amazingly consistent
largest superfold in nature (i.e., the TIM barrel fold), based
on the same principle.

In contrast, some folds may be inaccessible to the
sampling process. It is well known that some protein
families are very difficult to crystallize, and their struc-
tures will be under-represented in the current structure
database. For example, because the crystallization of
membrane proteins have presented many technical difficul-
ties in the past, and the classification of transmembrane
proteins in SCOP might be oversimplified (but, according
to Murzin,will be improved in the future; personal commu-
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nication), the samples in class 6 (the membrane and cell
surface proteins) are few and have been omitted in our
study. Therefore, the estimates based on the current
structural database may reflect solely the results for
nontransmembrane protein folds,”'® or more generally,
results for the “accessible” folds. However, as Zhang and
DelLisi® pointed out, though the number of natural trans-
membrane folds is unknown, it is expected to be small
compared with the nontransmembrane folds, because of
the severe sequence constraints imposed by the hydropho-
bic nature of the membrane.

In another example, class 5 (the multidomain proteins)
of SCOP also contains few sample folds, whereas there
may be many multidomain proteins in SWISS-PROT. This
may not present a serious bias for SCOP. In fact, because
the unit of classification is usually the protein domain in
the SCOP database, there are many multidomain proteins
in the whole SCOP database,only a small part of which are
classified as class 5. Classes 1 to 4 contain multidomain
proteins composed only of domains of the respective classes.
Class 5 contains proteins composed of domains of different
classes (e.g., a and o/f). A multidomain protein will be
split into domains and classified accordingly in SCOP, if
there is a good evidence of independent evolutionary
origins of the domains. Such evidence might mean the
presence of domains of similar sequence or structure in
proteins of different domain organization (Murzin, per-
sonal communication). There are plenty of multidomain
proteins in the Protein Data Bank (PDB). Some are split
into domains in SCOP, whereas others remain where they
are presently. If there is a bias in the PDB, it is historical
in origin. Earlier structures were of smaller proteins or
protein domains, because of the limitations of methods for
structure determination at the time.

In principle, our estimates of the total folds may be
affected by the fluctuation in V,, namely, the number of
folds including exactly { families per fold in the data-
base, due to the randomness of sampling, errors in the
methods, and so on, but we expect these to be small,
because the data are sufficient in a statistical sense (also
see above discussion). In a word, the SCOP database
reflects well the “accessible” inter-relationship of the
folds and the families.

In addition, the definitions of folds and families can
affect the results of this research. For example, CATH,*
another widely used database, has more folds for the set of
PDB entries considered than does SCOP.® Based on CATH
classification, the estimated number of folds of each group
considered in this article may be a little larger than that
based on SCOP. However, the physical implications of the
model are similar. In this article, we use the SCOP
classification directly, and it has been systematically used
to estimate the total number of folds.”'® As Wolf et al.'*
have pointed out, the SCOP classification is generally
compatible with the other, fully automatic classifications,
such as CATH, and provides a reasonably robust partition-
ing of the protein universe.
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Comparison with Previous Model and Results

In this article, we have estimated directly the distribu-
tion of folds over families in nature by using the observed
database most sufficiently. Our results are consistent and
depend on the total number of families in nature. How-
ever, under the geometric distribution with parameter
N/M in the Zhang and DeLisi'? model, the estimated
number of folds is insensitive to the total number of
families, M, and the results are not consistent. From their
results, the 1250 folds having less than 7 families per fold
contain at most M = 1250 X 3.5 = 4375 families, and the
33 folds having more than 6 families per fold contain 423
families. Thus, the total number of families is at most
4789, which may not be in accord with the assumption that
M >> M,. In fact, the geometric distribution I', = (1 —
@' q, with ¢ = N/M, does not necessarily describe the
probability that a fold is composed of exactly x families.
Regard M families (belonging to N folds) in nature as
sequentially numbered sites along a straight line, with the
families belonging to an individual fold represented by
consecutive sites (see Fig. 1 in Zhang and DeLisi®). Thus,
each fold is related to a boundary site and a separate
section (there are N folds in nature; therefore, N boundary
sites and N sections). Then, the probability I', is accurately
the probability of a random sampling of x sites, with
replacement in which the first x — 1 sites are not boundary
sites and the last is a boundary site. In this sampling, the
first x — 1 sites that are not boundary sites may come from
different sections (a section means an individual fold), and
the last that is a boundary site may come from any section.
However, when a fold is composed of exactly x families, the
x sites come from the same section, and this section has
only x sites. In the example illustrated in Figure 1 in
Zhang and DelLisi,? the 3rd, 11th, 14th, 19th, and (M —
3)th families are selected (suppose that no other families
are selected). I'; does describe the probability of this
sampling; however, it does not necessarily describe the
probability that a fold is composed of exactly 5 families,
because, obviously, these 5 families belong to 4 different
folds (folds 1-3 and fold V).

In a recent article,!®> Coulson and Moult divided the
universe of folds into 3 zones, that is, the zones of unifolds,
mesofolds, and superfolds. This classification may be bet-
ter than that in previous models. However, first of all, the
division of folds is still rough, and the boundary between
the zone of mesofolds and the zone of superfolds should
depend on the total family number M. If the total number
of families in nature is less than 6000, the definition of
mesofolds could be suitable (a mesofold includes 2-12,
inclusive, families). If M is more than 23,100, the zone of
mesofolds should include more kinds of folds; say, for
example, that a mesofold has 2-40, inclusive, families
(according to our estimation). Second, the geometric distri-
bution according to Zhang and DeLisi model'? was used to
estimate the number of the mesofolds, which results in the
inconsistency of their results. For example, 452 mesofolds
contain 14,923 families (Table I in Coulson and Moult'?).
Then, a mesofold includes an average number of 33
(14923/452) families for M = 23,100, which contradicts the
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definition that a mesofolds has 2-12, inclusive, families.
Third, the distribution of the superfolds has not been
estimated reasonably. The authors assumed that the
number of the superfolds (having more than 12 families
each) is only 9, whereas it is already 19 in SCOP release
1.57. Also, based on this assumption, the 9 superfolds
contain 4042 families for M = 23,100 (Coulson and Moult’s
Table I'3). Thus, a superfold includes an average number
of about 450 families. This number is far larger than the
family number in a mesofold; therefore, the zone of meso-
folds is far from the zone of superfolds, which is unlikely to
occur (no further information about the superfolds). Fi-
nally, the estimation of the total number of unifolds relates
to the estimated numbers of mesofolds and superfolds in
the study by Coulson and Moult.'® Because the estimated
number of mesofolds is insensitive to the total number of
families M under the geometric distribution, and the
estimated number of superfolds is smaller than that in
nature, the estimated number of unifolds is considerably
larger when M is large. For example, the estimated
number of unifolds is 4135 for M = 23,100 (Coulson and
Moult’s Table I'). Apart from the above points we have
raised, the concept for classifying the folds into three zones
may be reliable. Alternatively, in our study, the estimated
number of families from the predicted distribution of folds
over families is consistent with the supposed number of
families showing a good self-consistency, and our results
are also consistent with the observations of all previous or
following versions of SCOP. Our results indicate that the
number of folds having more than 12 families each is about
200 for M = 23,100, and we work out a definite long tail of
fold distribution that shows a smooth fall-off. In addition,
the number of superfolds is only about 1800.

CONCLUSIONS AND IMPLICATIONS

The main results of this article are as follows:

1. The distribution of folds over families in nature, in
particular, the long tail of the distribution, and the
number of the families in the largest superfold in
nature, and so on, are first estimated in this article. Our
results indicate that although the majority of folds have
only a single family per fold, there are a considerably
larger number of folds including many families each
than in the database. Also, the number of families
contained in each of these folds, which depends on the
total number of families in nature, is far larger than the
number of observations in the database. Therefore, the
distribution of folds over families in nature differs
markedly from the sampled distribution. The results
have been checked by goodness-of-fit tests.

2. We found a quadratic relation between the number of
families and folds. From this relation we can estimate
the number of folds for any possible number of families
belonging to a given interval.

3. We introduce a very useful method that makes a direct
“enlargement” of the sample to the population.

We have employed the maximum probability principle
by which a fold in nature can be found, such that a certain
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observed fold in the database derives from it (e.g., accord-
ing to this principle, all versions of observed data indicate
an amazingly consistent largest fold in nature). This
principle enables our model to match the real cases.
Therefore, our results may provide the first insight into
the whole distribution of folds over families quantitatively,
and will be very useful for studies on the structure
prediction of proteins, proteomics, and systematic biology.
Our method has general significance for inferring distribu-
tion of species in different fields, such as zoology, botany,
and so on.

ACKNOWLEDGMENTS

Our thanks to P.G. Wolynes for discussions of the
manuscript and to A.G. Murzin for discussion about
SCOP.

REFERENCES

1. Orengo CA, Jones DT, Thornton JM. Protein superfamilies and
domain superfolds. Nature 1994;372: 631-634.

2. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: A
structural classification of proteins database for the investigation
of sequences and structures. J Mol Biol 1995;247:536—540.

3. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnham-
mer EL. The pfam protein family database. Nucleic Acids Res
2000;28:263-266.

4. Pearl FMG, Martin N, Bray JE, Buchan DWA, Harrison AP, Lee
D, Reeves GA, Shepherd AJ, Sillitoe I, Todd AE, Thornton JM,
Orengo CA. A rapid classification protocol for the CATH domain
database to support structure genomics. Nucleic Acids Res 2001;29:
223-2217.

5. Hofmann K, Bucher P, Falquet L, Bairoch A. The PROSITE
database, its status in 1999. Nucleic Acids Res 1999;27:215-219.

6. Hadley C, Jones DT. A systematic comparison of protein structure
classifications. Struct Fold Des 1999;7:1099-1112.

7. Wang ZX. How many fold types of protein are there in nature?
Proteins 1996;26:186-191.

8. Zhang CT. Relations of the numbers of protein sequences, families
and folds. Protein Eng 1997;10:757-761.

9. Zhang C, Delisi C. Estimating the number of protein folds. J Mol
Biol 1998;284:1301-1305.

10. Govindarajan S, Recabarren R, Goldstein RA. Estimating the
total number of protein folds. Proteins 1999;35:408—414.

499

11. Wolf YI, Grishin NV, Koonin EV. Estimating the number of
protein folds and families from complete genome data. J Mol Biol
2000;299:897-905.

12. Zhang C, DeLisi C. Protein folds: Molecular systematics in three
dimensions. Cell Mol Life Sci 2001;58:72—79.

13. Coulson AW, Moult J. A unifold, mesofold, and superfold model of
protein fold use. Proteins 2002;46:61-71.

14. Berman HM, et al. The Protein Data Bank. Acta Cryst D
2002;58:899-907.

15. Levitt M, Chothia C. Structural patterns in globular proteins.
Nature 1976;261:552—-558.

16. Ptitsyn OB, Finkelstein AV. Similarities of protein topologies:
Evolutionary divergence, functional convergence or principles of
folding? Q Rev Biophys 1980;13:339-386.

17. Richardson JS. The anatomy and taxonomy of protein structure.
Adv Protein Chem 1981;34:167-339.

18. Chothia C, Finkelstein AV. The classification and origins of
protein folding patterns. Annu Rev Biochem 1990;59:1007-1039.

19. Chothia C. One thousand protein families for the molecular
biologist. Nature 1992;357:543-544.

20. Holm L, Sander C. Mapping the protein universe. Science 1996;273:
595-603.

21. Blundell TL, Johnson MS. Catching a common fold. Protein Sci
1993;2:877-883.

22. Alexandrov NN, Go N. Biological meaning, statistical significance,
and classification of local spatial similarities in non-homologous
proteins. Protein Sci 1994;3:866—875.

23. Bowie JU, Luthy R, Eisenberg D. A method to identify protein
sequences that fold into a known three-dimensional structure.
Science 1991;253:164-170.

24. Jones DT, Taylor WR, Thornton JM. A new approach to protein
fold recognition. Nature1992;358:86—89.

25. Baker D, Sali A. Protein structure prediction and structural
genomics. Science 2001;294:93-96.

26. Kitano H. Systems biology: A brief overview. Science 2002;295:
1662-1664.

27. Qian J, Luscombe NM, Gerstein M. Protein family and fold
occurrence in genomes: Power-law behaviour and evolutionary
model. J Mol Biol 2001;313:673—681.

28. Cramer H. Mathematical methods of statistics. Princeton, NJ:
Princeton University Press; 1946.

29. Dykstra RL, Kochar S, Robertson T. Statistical inference for
uniform stochastic ordering in several populations. Ann Stat
1991;19:870—-888.

30. Wang Y. A likelihood ratio test against stochastic ordering in
several populations. J Am Stat Assoc 1996;91:1676-1683.

31. Lehmann EL. Testing statistical hypotheses. New York: John
Wiley; 1986.



