
Algorithmic Game Theory Problem Set 2
CS 6840 Spring 2012 Due Wednesday, February 29th

There are 5 questions on this problem set of varying difficulty. For full credit you should solve
4 of the 5 problems. Solving all 5 results in extra credit. A full solution for each problem includes
proving that your answer is correct. If you cannot solve a problem, write down how far you got,
and why are you stuck.

You may work in pairs and hand in a shared homework with both of your names marked.
You may discuss homework questions with other students, but closely collaborate only with your
partner. You may use any fact we proved in class without proving the proof or reference, and may
read the relevant chapters of the book. However, you may not use other published papers, or
the Web to find your answer.

Solutions can be submitted on CMS in pdf format (only). If you have a partner, write both
names on the solution, but only upload or submit it once. In any case, please type your solution
or write neatly to make it easier to read. If your solution is complex, say more than about half a
page, please include a 3-line summary to help us understand the argument.

We will maintain a FAQ for the problem set on the course Web page.

(1) Recall that a fair cost-sharing game is a congestion game, where each congestible element e
has a total cost function ce(x) is the total cost of e is when x users are using e. We assumed ce(x)
is monotone non-decreasing, and concave. Here we consider when this game is guaranteed to have
strong Nash equilibria.

(a) Show that even when strategies congest only a single element each, the Nash minimizing the
potential function may not be a strong Nash.

(b) Suppose we make the strong Nash definition weaker than what we used in class, require only
that for any possible group deviation there is a player who is no better off after deviation
(that is, assume that on equal cost players are not willing to participate in a deviating group).
Does the statement in (a) remain true with this version of the definition also?

(b) Recall the prisoner dilemma game from the first lecture (or from Chapter 1). Show that the
prisoner dilemma game as no strong Nash.

(d) Show that strategy strong Nash is not guaranteed to exists, not even for 2 player cost-sharing
games.

(2) Consider a two player. Assume that there are 2 players, and each player chooses between n
pure strategies. Assume that the game is given by the matrices A and B, listing the payoffs for the
two players respectively for each n×n possible plays. This is the matrix that is traditionally called
payoff matrix. Assume that the matrix A and B has random entries, say all entries in the range
[0, 1] filed out uniformly independently at random. Show that the probability that this random
game has a pure (deterministic) Nash equilibrium is at least roughly 1− 1/e if n is large. You may
use the fact that for large n we have that (1− 1/n)n ≈ 1/e.

Warning. You may want to compute the probability that a pair of strategies (i, j) forms a
Nash. Unfortunately, these events are not independent!

(3) An action si of a player i is ε-dominated by action s′i if for all strategy profiles s−i of the
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other players ui(si, s−i) ≤ ui(s
′
i, s−i) − ε, that is si is at least an ε worse for i than s′i no matter

what the other payers do. Let si be an ε-dominated action of a player i.

(a) Show that if a player i uses the weighted majority algorithm discussed in class on Monday,
February 20, to choose his/her strategies, that the probability π(si) that he/she is playing
strategy si goes to zero over time.

(b) Give an example of a game with a coarse correlated equilibrium, and an ε-dominated action
of a player i, where player i is playing action si with positive probability.

(c) Can this also happen in correlated equiliria? (i.e., can there be a correlated equilibrium when
player i plays his/her ε-dominated action with positive probability?

(4) Recall the set-up for online regret-minimization from Lecture (Monday, February 20): there
is a fixed set A of actions; each day t = 1, . . . , T you pick an action at at ∈ A (possibly from a
probability distribution) based only on information from previous days; and then a cost vector
ct : A→ [0, 1] is unveiled. The goal is to design a (randomized) algorithm that, for every sequence
of cost vectors, has small expected average regret. [Recall that the (average, per time-step) regret
is the difference between your average cost 1

T

∑T
t=1 c

t(at) and the average cost of the best fixed

action 1
T mina∈A

∑T
t=1 c

t(a).]

(a) The most natural algorithm is to pick the strategy each day that seemed best so far, that is
at time t pick the strategy at that minimizes

∑t−1
s=1 c

s(a). Show that the average regret of this
algorithm can be Ω(1) as T goes to infinity. How large can you make the ratio between the
average cost of the best fixed action, and the average cost of this algorithm?

(b) Lets consider the following randomized pre-processing step: independently for each action a,
initialize the starting cumulative cost to a random variable: Xa to the number of coin flips
needed until you get heads, assuming that the probability of heads is ε, using independent
experiments for each action a. Then, every day t, you pick the action that minimizes the
perturbed cumulative cost prior to that day: −Xa +

∑t−1
s=0 c

s(a). We assume that the random
variables Xa are independent from the costs ct. Note that this selection can be implemented
if the algorithm has access to the whole vector ct after each day t.
Prove that, for each day t, with probability at least 1− ε, the smallest perturbed cumulative
cost, that is mina−Xa +

∑t−1
s=0 c

s(a), is at least 1 less than the second-smallest item in this
minimum.

(c) As a thought experiment, consider the (unimplementable) algorithm that, every day, picks the
action that minimizes the perturbed cumulative cost −Xa +

∑t
s=0 c

s(a), taking into account
the current days cost vector. Prove that the average regret of this algorithm is at most
maxaXa/T .

(d) Prove that E[maxaXa] = O(ε−1 log n), where n is the number of actions.
(e) Use the previous parts to prove that, for a suitable choice of ε, the algorithm in (b) has

expected average regret O(
√

logn
T ), just like the multiplicative weights algorithm covered in

class. (Make any assumptions you want about how ties between actions are broken.)

(5) Hotelling games is a general class of games when k providers for a set of customers. Here we
use the following simple case: G is a graph on n vertices. There are k providers, and each provider
selects one of the nodes of the game, you can think of the location as a souvenir stand. Once the
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sellers selected their locations. Each node v in the graph has nv > 0 customers (tourists), and each
costumer selects the closest seller. In case of ties divide the nv costumers uniformly among the
closest sellers (OK if the fractions are not integers). The goal of the sellers is to attract as many
buyers as possible. Let Ni be the total number of customers who selected seller i. In this game
the traditional social welfare is not a good measure, as I assumed all customers choose a seller, and
hence

∑
iNi =

∑
v nv = N . Instead we will look at a fairness measure, miniNi.

(a) Show that the price of anarchy for pure Nash equilibria in this game is bounded by 2. By
which we mean that if Opt denotes the value of the most fair allocation max miniNi, where
the maximum is taking over the possible locations of the k sellers, then for any pure strategy
Nash equilibria miniNi > Opt/2.

(b) In this game the utility of a player i is between [0, N ]. The weighted majority algorithm
assumed utilities are in the range [0, 1]. Show how to adopt the weighted majority algorithm
for this game.

(c) Show that if we play this game repeatedly, and a player i player used a no-regret algorithm,
than this payer is guaranteed to get Ni ≥ Opt/2 customers, independent of the strategies
used by other players. More precisely, assume that the player has small total regret over T
steps at most εTN , then he/she is guaranteed an average value at least Opt/2− f(ε), where
f(ε) goes to zero as ε goes to zero.
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