Competitive Collaborative Learning

Baruch Awerbuch®! | Robert Kleinberg 2

& Department of Computer Science, Johns Hopkins University, 3400 N. Charles
Street, Baltimore MD 21218, USA.

b Department of Computer Science, Cornell University, Ithaca, NY 14853, USA.

Abstract

Intuitively, it is clear that trust or shared taste enables a community of users to
make better decisions over time, by learning cooperatively and avoiding one an-
other’s mistakes. However, it is also clear that the presence of malicious, dishon-
est users in the community threatens the usefulness of such collaborative learning
processes. We investigate this issue by developing algorithms for a multi-user online
learning problem in which each user makes a sequence of decisions about selecting
products or resources. Our model, which generalizes the adversarial multi-armed
bandit problem, is characterized by two key features:

(1) The quality of the products or resources may vary over time.

(2) Some of the users in the system may be dishonest, Byzantine agents.

Decision problems with these features underlie applications such as reputation and
recommendation systems in e-commerce, and resource location systems in peer-to-
peer networks. Assuming the number of honest users is at least a constant fraction
of the number of resources, and that the honest users can be partitioned into groups
such that individuals in a group make identical assessments of resources, we present
an algorithm whose expected regret per user is linear in the number of groups and
only logarithmic in the number of resources. This bound compares favorably with
the naive approach in which each user ignores feedback from peers and chooses
resources using a multi-armed bandit algorithm; in this case the expected regret
per user would be polynomial in the number of resources.

Email addresses: baruch@cs. jhu.edu (Baruch Awerbuch),
rdk@cs. cornell.edu (Robert Kleinberg).
I Partially supported by NSF grants CCF-0515080, ANIR-0240551, and CCR-
0311795.
2 Supported by a Fannie and John Hertz Foundation Fellowship and an NSF Math-
ematical Sciences Postdoctoral Fellowship. Portions of this work were completed
while the author was a graduate student in the MIT Department of Mathematics
and an NSF postdoctoral fellow in the UC Berkeley Computer Science Division.

Preprint submitted to Elsevier 15 March 2007

1 Introduction

Only a fool learns from his own mistakes. The wise man learns from the
mistakes of others.
— Otto von Bismarck

It is clear that leveraging trust or shared taste enables a community of users
to be more productive, as it allows them to repeat each other’s good decisions
while avoiding unnecessary repetition of mistakes. Systems based on this par-
adigm are becoming increasingly prevalent in computer networks and the ap-
plications they support. Examples include reputation systems in e-commerce
(e.g. eBay, where buyers and sellers rank each other), collaborative filtering
(e.g. Amazon’s recommendation system, where customers recommend books
to other customers), and link analysis techniques in web search (e.g., Google’s
PageRank, based on combining links — i.e. recommendations — of differ-
ent web sites). Not surprisingly, many algorithms and heuristics for such
systems have been proposed and studied experimentally or phenomenologi-
cally [10,17,19,20,23-25]. Yet well-known algorithms (e.g. eBay’s reputation
system [11,15,22], the EigenTrust algorithm [16], the PageRank [10,20] and
HITS [17] algorithms for web search) have thus far not been placed on a firm
theoretical foundation.

Our goal in this paper is to provide a theoretical framework for understanding
the capabilities and limitations of such systems in an idealized distributed
environment. We propose a paradigm for addressing these issues using online
learning theory, specifically a generalization of the adversarial multi-armed
bandit problem [2,3]. Our approach aims to highlight the following challenges
which confront the users of collaborative decision-making systems such as
those cited above.

Malicious users. The above systems are vulnerable to fraudulent manipu-
lation by dishonest (“Byzantine”) participants.

Distinguishing tastes. Agents’ tastes may differ, so that the advice of one
honest agent may not be helpful to another.

Temporal fluctuation. The quality of resources varies of time, so past ex-
perience is not necessarily predictive of future performance.

While our learning theory paradigm is different from prior approaches, and
the mathematical setting of our problem is quite distant from the applications
listed above, the resulting algorithms exhibit a striking resemblance to algo-
rithms previously proposed in the systems and information retrieval literature
(e.g. EigenTrust [16]) indicating that our approach may provide a theoretical
framework which sheds light on the efficacy of such algorithms in practice
while suggesting potential enhancements to these algorithms.

1.1 Our approach

The problem we will consider is a generalization of the multi-armed bandit
problem studied in [2,3]. In that problem there is a single learner and a set
Y of m resources. In each of T consecutive trials, the learner chooses one of
the resources while the adversary chooses a cost (taking values in [0, 1]) for
each resource; both the learner and the adversary commit to their choices
without knowledge of the other party’s choice in the present trial. After the
trial, the cost of the resource chosen by the learner is revealed, and that cost is
charged to the learner. The goal is to choose a sequence of resources whose cost
performs nearly as well, on average, as the best single resource in hindsight.

We generalize this by considering a set X of n agents, some of which (possibly
a majority) may be dishonest. In each trial, each of the n agents chooses a
resource, and the adversary chooses a cost for each resource. Each agent then
learns the cost of the resource it selected, and this cost is charged to the
agent. We assume that the honest agents belong to k coalitions, such that
agents in the same coalition who choose the same resource at the same time
will perceive the same expected cost. All agents may communicate with each
other between trials, to exchange information (or possibly disinformation, in
the case of dishonest agents) about the costs of resources they have sampled.
However, agents are unaware of which coalitions exist and which ones they
belong to. In particular, they are unaware of the identities of the dishonest
agents.

The abstract notion of cost introduced in the preceding paragraph should
be interpreted, in the context of most applications, to mean disutility rather
than an actual monetary charge imposed on an agent. For example, if we are
modeling the decision problem faced by consumers shopping on eBay, then
the set of agents in this model corresponds to a set of consumers who are all
in the market for one particular type of good. The resources correspond to
sellers of this type of good. The cost of an agent (buyer) selecting a resource
(seller) incorporates the price the buyer paid to the seller as well as the buyer’s
subjective assessment of the disutility incurred by purchasing the product from
that seller, e.g. because of shipping delays or receiving the product in worse
condition than advertised. However, many features of the eBay example don’t
precisely match the assumptions of our model — for example, the assumption
that every agent participates in every trial is clearly unrealistic in the context
of a large, relatively unstructured electronic marketplace — so one should
interpret eBay-style reputation mechanisms as a distant application of the
abstract methodology we develop here.

For an application which matches the details of our problem definition more
closely, one may consider the following restaurant selection problem. A group

of travelers (i.e., agents) arrive simultaneously in a city which none of them has
visited before, and they spend several consecutive nights there. The city has
many restaurants (i.e., resources), and the quality (i.e., negative cost) of each
restaurant may vary from night to night and may depend on the subjective
taste of the particular diner eating at the restaurant. Each night, each of the
agents chooses to eat at one of the restaurants in the city, judges the quality
of that restaurant, and posts his or her opinion (on a scale from 0 to 1) on
a public bulletin board in the hotel where the travelers are staying. A subset
of the agents are honest, and these agents can be partitioned into a small
number of coalitions with identical tastes in food. Dishonest agents may post
misleading feedback maliciously. None of the honest agents know who the
other honest agents are, nor how they are partitioned into coalitions. The goal
is to optimize the dining experience of the honest agents.

If an agent chooses to ignore the feedback from other agents, and simply runs
the multi-armed bandit algorithm by itself, then the combined regret of all
agents (the difference between the costs of their choices and those of the best
choice in hindsight) grows linearly in the number of agents. On the other
hand, if each honest agent knew in advance the identities of the other honest
agents, as well as the partition of those agents into coalitions, then it seems
reasonable that the combined regret of all agents should scale linearly in the
number of coalitions and not the number of agents. Here, we show that this is
possible (up to a factor of log(n)) even if the agents do not know which other
agents are honest nor how the honest agents are partitioned into coalitions.
We present an algorithm whose combined regret is linear in klog(n), provided
that the total number of agents and resources exceeds the number of honest
agents by at most a constant factor.

Briefly, our algorithm works by having each agent select a resource in each
trial using a random walk on a “reputation network” whose vertex set is the
set of all agents and resources. Resources are absorbing states of this random
walk, while the transition probabilities at an agent x may be interpreted as the
probability that x will ask another agent 2’ for advice, or that x will choose
a resource y without asking for advice. When an agent learns the cost of the
resource chosen in a given trial, it uses this feedback to update its transition
probabilities according to a multi-armed bandit algorithm. In this way, agents
will tend to raise the probability of asking for advice from other agents who
have given good advice in the past. In particular, though the initial transition
probabilities do not reflect the partition of the honest agents into coalitions,
over time the honest agents will tend to place greater weight on edges leading
to other agents in the same coalition, since the advice they receive from such
agents is generally better (on average) than the advice they receive from agents
in other coalitions. Thus, the transition probabilities of the random walk can
be interpreted as measuring the amount of trust that one agent places in
another agent or resource.

An extended abstract of this work [5] appeared at COLT 2005. It is worth
pointing out the two most substantial differences between that extended ab-
stract and this paper. First, the algorithm in the earlier paper [5] depended
on a complicated subroutine called the “biased bandit algorithm” (BBA), a
version of the multi-armed bandit algorithm which was specifically designed
for its use in the collaborative learning setting. Here, instead, we use a simpler
algorithm called the “anytime bandit algorithm” (ABA), which was devel-
oped by Kleinberg in a later paper [18] that introduced multi-armed bandit
algorithms which outperform the standard algorithm [2,3] when near-optimal
strategies are highly prevalent among the set of all strategies. Our use of the
ABA algorithm not only simplifies the description of the collaborative learning
algorithm, but it also improves the bound on the expected regret per honest
user: the dependence of the regret on log(n) is improved from O(log*(n))
to O(log(n)). A second difference between this paper and the extended ab-
stract [5] is that the extended abstract assumes that agents can communicate
between rounds using a shared public channel. If communication instead takes
place on private channels between two parties, this makes the problem more
difficult because a Byzantine agent can give conflicting information to differ-
ent honest agents on different private channels. In Section 5 we show how to
adapt our algorithm to deal with private communication channels, under a
mild synchronization assumption.

1.2 Comparison with existing work

The adversarial multi-armed bandit problem [2,3], discussed above, forms the
basis for our work. We have indicated the ways in which our model generalizes
the existing multi-armed bandit model to the setting of collaborative learning
with dishonest users. Our work is also related to several other topics which we
now discuss.

1.2.1 Collaborative filtering — spectral methods:

Our problem is similar, at least in terms of motivation, to the problem of de-
signing collaborative filtering or recommendation systems. In such problems,
one has a community of users selecting products and giving feedback on their
evaluations of these products. The goal is to use this feedback to make recom-
mendations to users, guiding them to subsequently select products which they
are likely to evaluate positively. Theoretical work on collaborative filtering has
mostly dealt with centralized algorithms for such problems. Typically, theoret-
ical solutions have been considered for specific (e.g., stochastic) input models
[8,12-14,21]. In such work, the goal is typically to reconstruct the full matrix
of user preferences based on a small set of potentially noisy samples. This is

often achieved using spectral methods. In constrast, we consider a general, i.e.
adversarial, input model. Matrix reconstruction techniques do not suffice in
our model. They are vulnerable to manipulation by dishonest users, as was
observed in [6,7]. Dishonest users may disrupt the low rank assumption which
is crucial in matrix reconstruction approaches. Alternatively, they may report
phony data so as to perturb the singular vectors of the matrix, directing all
the agents to a particularly bad resource.

In contrast, our algorithm makes recommendations which are provably good
even in the face of arbitrary malicious attacks by dishonest users. To obtain
this stronger guarantee, we must make a stronger assumption about the users:
honest users are assumed to behave like automata who always follow the rec-
ommendations provided by the algorithm. (The work on collaborative filtering
cited above generally assumes that users will choose whatever resources they
like; the algorithm’s role is limited to that of a passive observer, taking note
of the ratings supplied by users and making recommendations based on this
data.)

1.2.2 Collaborative filtering — random sampling methods:

The only previous collaborative filtering algorithm designed to tolerate Byzan-
tine behavior is the “Random Advice Random Sample” algorithm in [6,7]; its
average regret per user is O(klogn). The model in [6] deals with the sta-
tic case, in which bad resources are consistently bad and good resources are
consistently good; the only changes in the operating environment over time
occur when resources arrive or depart. The algorithm in [6] uses the notion of
“recommendation”: once an agent finds a good resource, it sticks to it forever
and recommends it to others. As time elapses, progressively more agents stick
with the good advice. The bounds on regret and convergence time in [6] are
analogous to ours, and are in fact superior to those in our Theorem 2.1 be-
cause the regret is independent of the number of trials. However, [6] does not
handle costs which evolve dynamically as a function of time, and is limited to
{0, 1}-valued rather than real-valued costs.

A related pair of papers [1,4] use random sampling methods to design algo-
rithms for the problem of approximately reconstructing the entire cost matrizx,
again assuming costs are {0, 1}-valued and do not change over time. These al-
gorithms have polylogarithmic convergence time provided that the set of hon-
est agents can be partitioned into subsets, each containing a constant fraction
of the agents who are weakly consistent, in the sense that their cost vectors
have small Hamming distance from each other.

1.2.3 Reputation management in P2P networks:

Kamvar et al [16] proposed an algorithm, dubbed EigenTrust, for the prob-
lem of locating resources in peer-to-peer networks. In this problem, users of a
peer-to-peer network wish to select other peers from whom to download files,
with the aim of minimizing the number of downloads of inauthentic files by
honest users; the problem is made difficult by the presence of malicious peers
who may attempt to undermine the algorithm. Like our algorithm, Eigen-
Trust defines reputation scores using a random walk on the set of agents,
with time-varying transition probabilities which are updated according to the
agents’ observations. Unlike our algorithm, EigenTrust uses a different rule for
updating the transition probabilities, and they demonstrate the algorithm’s
robustness against a limited set of malicious exploits, as opposed to the arbi-
trary adversarial behavior against which our algorithm is provably robust. The
problem considered here is less general than the peer-to-peer resource loca-
tion problem considered in [16]; for instance, we assume that in each trial, any
agent may select any resource, whereas they assume that only a subset of the
resources are available (namely, those peers who claim to have a copy of the
requested file). Despite these differences, we believe that our work may shed
light on the efficacy of EigenTrust while suggesting potential enhancements
to make it more robust against Byzantine malicious users.

2 Statement of the Problem and the Results

Our algorithm operates in an environment consisting of a set X of n agents
and a set Y of m resources. A subset H C X is composed of honest agents,
and the rest are dishonest. Honest agents are assumed to obey the distributed
protocol to be specified, and to report their observations truthfully, while
dishonest agents may behave in a Byzantine manner, disobeying the protocol
or reporting fictitious observations as they wish. We will assume throughout
that the number of honest agents is at least an, where a > 0 is a parameter
which may be arbitrarily small. The agents do not initially know which ones
are honest and which are dishonest, nor are they assumed to know the value
of a.

In each of T" consecutive rounds, a cost function ¢; : X x Y — [0, 1] is given.
We think of the cost ¢;(z,y) as agent x’s perception of the cost of resource y
at time t. The costs may be set by an adaptive adversary who is allowed to
choose ¢; based on the agents’ actions in rounds 1,...,¢f — 1 but not on their
random decisions in the present or future rounds; the adversary may also use
randomization in determining ¢;. Define two agents x1, x5 to be consistent if
for all y € Yt € {1,...,T}, the costs ¢;(x1,y), c;(x2,y) are random variables
with the same expected value, conditional on the choices of the adversary and

all agents in all rounds preceding ¢.3 We will assume that the honest agents
may be partitioned into k£ coalitions, such that two agents belonging to the
same coalition are consistent; the honest agents do not initially know which
coalitions the other honest agents belong to.

At the beginning of each round, each agent x € X must choose a resource y =
yi(x) € Y. Any agent is allowed to choose any resource in any round. The cost
of the choice is ¢;(z, y), and this cost (but not the cost of any other resource) is
revealed to x. The agents may communicate with each other between rounds,
and this communication may influence their decisions in future rounds. To
simplify the exposition we will assume throughout most of the paper that
all messages are exchanged using a shared public channel. In any round ¢
all agents (including the Byzantine dishonest agents) must commit to their
message on this channel before being able to read the messages posted by
other agents in round t. This public-channel assumption is for expositional
clarity only: in Section 5 we will indicate how to achieve the same results
(with slightly worse bounds) in a message-passing model where agents may
only exchange messages bilaterally on point-to-point communication links,
subject to the assumption that all agents can synchronize clocks and that
they have enough time to perform Q(logn) communication rounds in between
consecutive decision rounds. (The Byzantine agents may eavesdrop on all such
communications, whereas honest agents may not eavesdrop on any message if
they are not the sender or receiver.) As might be expected, some subtleties
arise in the message-passing model, due to ability of the Byzantine nodes to
give differing advice to different parties, and to eavesdrop on others’ messages.

The goal of the algorithm is to minimize the total cost incurred by honest
agents. As is typical with online decision problems, we will evaluate the al-
gorithm’s performance by measuring the difference between the algorithm’s
expected total cost and the minimum expected cost that can be achieved by
choosing a fixed resource for each agent, and instructing that agent to select
this resource every time. This parameter is called regret? and will be denoted
by R.

53 e ule)] - ppin 2| X ict<:c,y<x>>]. 1)

x€H t=1 xeH t=1

The following two parameters, closely related to R, are also of interest:

3 The randomness of the variables c;(x1,y),ci(x2,y), conditional on the history
preceding t, is due to the adversary’s potential use of randomness in determining
Ct.

4 An even stronger notion of regret would compare the algorithm’s cost with the
expectation of the minimum cost of a fixed mapping from agents to resources, rather
than using the minimum of the expected cost of such a mapping. In this paper we
consider only the weaker notion of regret.

e The normalized individual regret R = R/anT is the regret per unit time
of the average honest agent. For all of the algorithms we will consider, R
converges to zero as T' — 00.

e The d-convergence time of such an algorithm, denoted by 7(4), is defined as
the minimum value of T necessary to guarantee that R = O(0). Here, § is
a positive constant which may be arbitrarily close to zero.

2.1 Our results

We present a distributed algorithm, named TrustFilter, in Section 3. Let § =
14+ m/n.

Theorem 2.1. Suppose the set of honest agents may be partitioned into k
subsets S1, 59, ..., Sk, such that the agents in each subset are mutually consis-
tent. Then the normalized regret R and &-convergence time 7(8) of TrustFilter
satisfy

T7(6)=0 (((ﬁ) k3 1og®(n) log® (W)) : (3)

The d-convergence time bound follows from the regret bound. Typically we are
interested in the case where «, 3,6, k are constants, hence we will summarize
this result by saying that the algorithm has polylogarithmic convergence time.

R=0 <<6> klog(n) log(T)T1/3> (2)

3 The Algorithm TrustFilter
3.1 Intuition

As stated in the introduction, our algorithm is based on a Markov chain rep-
resenting a random walk in a directed graph, whose vertices represent the set
of resources and agents. We refer to this directed graph as the “reputation
network.” At each time, each agent picks an outgoing edge in the reputation
network with appropriate probability, and then traverses this edge. If the edge
leads to a resource, this resource is selected for sampling. Else, if the edge leads
to another agent, advice is sought from that agent, who forwards the request
for advice along a random edge of the reputation network (again chosen ac-
cording to the current transition probabilities of the random walk) and so on

until the random-walk path reaches a resource which the original agent selects
for sampling. Depending on the observed cost of the sampled resource, the
agent updates its transition probabilities in a manner to be specified later.

As an aid in developing intuition, consider the special case when the costs
of resources are {0,1}-valued and do not change over time. Hence, the ob-
jective of every agent is simply to find a resource with cost 0, if one exists,
and then to use this resource for all subsequent trials. In this special case let
us make the additional simplifying assumption that the values of «, 3, are
known to the algorithm designer. One may then use an algorithm in which the
Markov chain is based on a random graph and the transition probabilities are
updated according to a particularly simple rule. Specifically, at initialization
time, each agent picks at random a small subset of the other agents and a small
subset of the resources, takes their union, and sets equal transition probabili-
ties on all outgoing edges leading to members of this set. (The word “small”
in the foregoing sentence should be interpreted to mean, “independent of n,
and depending only polynomially on o=, 3,671.”) All other outgoing edge
probabilities are zero. Assume that agents adopt the following simple rule for
updating their transition probabilities: if an agent chooses an outgoing edge
and ends up selecting a resource with cost 0, it assigns probability 1 perma-
nently to that resource and probability 0 to all other edges; otherwise it leaves
the transition probabilities unchanged. This algorithm can be viewed as an
alternative to the Random Advice Random Sample algorithm in [7], and it
achieves logarithmic convergence time. The analysis of the algorithm is based
on the observation that with high probability, almost all of the honest agents
are contained in a giant strongly connected component of the reputation net-
work with logarithmic diameter, and that good advice propagates through the
reputation network at constant speed. Since we are interested in exploring the
algorithm only as an aid in developing intuition for the more difficult case of
time-varying costs, we will only sketch the proof. From the theory of random
graphs, we know that when we restrict the reputation network to the honest
agents, with high probability the induced subgraph has a “giant” strongly con-
nected component S, containing all but an arbitrarily small constant fraction
of the honest agents, in which every node can reach every other node using a
path of length O(logn). With high probability there is an edge in the reputa-
tion network from some agent xy € S to a resource with cost 0 (assuming such
a resource exists), and in a constant expected number of steps, xo will either
directly sample this resource, or will stumble on another zero-cost resource by
following the advice of others. Now we may argue that every other agent in
S finds a resource with cost 0 in time O(logn). Indeed, if there is a path of
length L, x =2, — 21 — ... — xg, from x to x(in S, then we may prove
by induction on L that = will find a zero-cost resource in O(L) steps. Indeed,
once xy_1 has found a zero-cost resource, only a constant number of steps are
required (in expectation) before z either asks xj_; for advice or follows some
other advice to discover a zero-cost resource.

10

Our algorithm for the case of dynamic costs looks quite different from the al-
gorithm for static costs presented in the preceding paragraph, but it is based
on the same intuition: by structuring the reputation network as a random
graph, good advice will propagate among honest agents at sufficient speed for
the vast majority of them to identify the lowest-cost resource in logarithmic
time. The main technical difference is that agents must update their transition
probabilities using the multi-armed bandit algorithm, rather than shifting all
of their probability mass to one outgoing edge as soon as they discover a re-
source with zero cost. This modification is necessary in order to deal with the
fact that a resource which has zero cost at one time may not have zero cost
at future times. More subtly, when agents are using the multi-armed bandit
algorithm to update their transition probabilities, they must use an anytime
bandit algorithm as defined in Section 3.2.5 This is because the agents do not
know how many other honest agents belong to their coalition, so they must
consider all other vertices of the reputation network as potential neighbors
to avoid being cut off from the lowest-cost resource by a ring of dishonest
peers. Classical multi-armed bandit algorithms (e.g. [2,3]) will have a regret
of Q(v/BnT) in such a scenario, whereas we seek an algorithm whose regret
depends polylogarithmically on n when the coalition size is (fn). Accord-
ingly, we use an anytime bandit algorithm ABA whose salient feature is that it
satisfies a significantly better bound on regret when nearly-optimal strategies
constitute a large fraction of all strategies. (The usage of the word anytime
here parallels the use of the term anytime algorithm in the artificial intelli-
gence literature, e.g. [9,26], to refer to optimization algorithms which generate
imprecise answers quickly and proceed to construct progressively better ap-
proximate solutions over time, eventually converging to the optimal solution.)

3.2 The anytime bandit algorithm

The anytime bandit algorithm [18] is a multi-armed bandit algorithm with
strategy set N, the set of natural numbers. ® By this, we mean that the algo-
rithm outputs, in each time step ¢, a finitely-supported probability distribution
m; on N — based only on the inputs observed at times preceding ¢ — and that
its input at the end of step ¢ is an ordered pair (7, c) where ¢ is a random sam-
ple from 7; and ¢ € [0, 1] is interpreted as the algorithm’s cost for choosing i
at time ¢. (We assume here that this cost is specified by an adaptive adversary
who defines a cost function ¢; : N — [0,1] in each step.) The algorithm’s

® Anytime bandit algorithms were first defined in [18]. The algorithm is explained
in Section 3.2 for the purpose of making our exposition self-contained.

6 For the application in this paper, it would have been possible to use an anytime
bandit algorithm with a finite strategy set, namely X UY, but we will work with the
infinite strategy set N — mapping its elements to the finite set X UY via a many-
to-one correspondence — in order to keep our terminology consistent with [18].

11

objective is the same as that of the usual multi-armed bandit algorithm: to
use the feedback from past trials to tune its probability distribution so that
it becomes concentrated on the strategies with the lowest average cost. Since
there are infinitely many strategies, it cannot accomplish this goal in a finite
amount of time. Instead, the algorithm starts by trying to do nearly as well
as the lowest-numbered strategies, and competes against the higher-numbered
strategies only as time progresses. Thus, if the algorithm is stopped at any fi-
nite time 7', one finds that the average cost of its choices in steps 1,2,...,T is
nearly as good as the average cost of the best strategy in some initial segment
{1,2,...,7} C N, and the value of j tends to infinity with 7.

Using the multi-armed bandit algorithm Exp3 of [2,3] as a subroutine, it is
easy to describe the anytime algorithm ABA. For each k& > 0, at time 8%, it
initializes an instance of Exp3 with strategy set {1,2,...,2%}. From time 8* to
8+l — 1, it uses this instance of Exp3 to define a probability distribution on
N supported on the subset {1,2,...,2*}, and this is the distribution 7; which
ABA outputs in step t. In each trial a strategy 4, is sampled from 7, the cost
¢i(1;) is revealed by the adversary, and this feedback is reported back to Exp3.

The performance of ABA is characterized by the following theorem. We refer
the reader to [18] for a simple proof of the theorem, which is listed as Corollary
4.3 in that paper.

Theorem 3.1. For every adaptive adversary, every natural number 7 € N,
and every time limit T' > 0, the regret of ABA satisfies the following bound, in
which i; denotes a random sample from the distribution m, defined by ABA:

T

E [; > (cilie) = Ct(j))] =0 (j 1og(T)T’1/3) : (4)

t=1

It is illuminating to compare this regret bound with the regret of the algorithm
Exp3, which runs as a subroutine inside ABA. The normalized regret of Exp3
is O (w/mlog m/T) where m is the number of elements in the algorithm’s
strategy set. Thus, ignoring the dependence on j or m, the regret of Exp3 is
O(T~'/?) while the regret of ABA is O(T~'/3). This difference is explained
by the fact that at time 7' = 8%, the size of the strategy set used by ABA
is m = 2¥ = T3 Hence, when evaluating the regret of the version of Exp3
running inside ABA at time 7', we find that it is

mlogm T'/31og (T3 S (—1/3
o(,/Tg):oW 5 >):o<T/>.

See Corollary 4.1 of [18] for alternate versions of the anytime bandit algorithm
whose regret achieves a superior dependence on T at the cost of an inferior
dependence on j. In fact, the exponent of T" in the regret bound can be made

12

arbitrarily close to —1/2 while retaining polynomial dependence on j, though
the exponent of j tends to infinity as the exponent of T tends to —1/2. The
version considered here, with regret depending linearly on j, is particularly
convenient for our purposes because it dovetails cleanly with the random graph
analysis conducted in Section 4.

For the analysis of TrustFilter in Section 3.5, it is necessary to extend the
analysis of ABA to a more general feedback model which we call the “noisy
feedback model.” This generalization is described as follows. In each round ¢,
instead of specifying one random cost function ¢;, the adversary specifies two
random cost functions ¢, ¢, satisfying

Vi € NE[c,(i) | F<i] = Elei (i) | Fdl,

where F_; denotes the o-field generated by all random variables revealed by
the algorithm and adversary prior to time ¢t. Rather than receiving ¢;(i;) as
feedback, the algorithm’s feedback is ¢(i;). However, the cost charged to the
algorithm is still ¢;(4;). The following easy proposition demonstrates that the
regret of ABA is unaffected by the noisy feedback.

Proposition 3.2. In the noisy feedback model, the regret experienced by algo-
rithm ABA relative to strategy j still satisfies

E [jlv Z(Ct(’it) - Ct@))] =0 (j 10g(T)T71/3> :

t=1

Proof. Applying Theorem 3.1 to the sequence of cost functions ¢, c,, ..., dp,
gives that

E H A c;<j>>] — O(jlog(T)/T'?).

t=1
To finish proving the proposition, it suffices to prove that

B[S () - ali)] -0

and

E li(dﬁ(it} - ct(it))] —0.

t=1
These follow from the fact that E(c,(i)) = E(¢(i)) and E(c,(i;)) = E(c(4y)),
both of which are consequences of the equation

Elci(k) | i1, F<i] = Blcy(k) | ir, Fil,

which holds for all k¥ € N. O]

13

We conclude this section with a simple observation about ABA which will be
needed later.

Lemma 3.3. For every positive integer t, the distribution m, which ABA out-
puts in step t satisfies m (1) > 0.

Proof. The lemma follows immediately from the fact that Exp3 always assigns
positive probability to each of its strategies, and the instance of Exp3 running
inside ABA always has strategy set {1,2,..., 2%} for some k > 0. O

3.3 The algorithm TrustFilter

Here we present the algorithm TrustFilter, using ABA as a subroutine. Let
be an arbitrary element of Y. When TrustFilter is initialized, each agent x
initializes an instance ABA(z) of the anytime bandit algorithm, and it chooses
a random function g, : N — X UY such that g,(1) = yo and the values
gz(1) for i > 2 are independent uniformly-distributed elements of X U Y.
We may consider the strategy set N of ABA(x) as comprising many “virtual
copies” of each strategy s € X UY: the decision of ABA(x) to play strategy
i corresponds, in TrustFilter, to a decision by agent z to play strategy g¢. (7).
(The initialization step, as described above, requires the algorithm to make
an infinite number of random choices at start-up time, which obviously is
impossible in practice. In an actual implementation, the same result can be
accomplished by lazy evaluation, i.e. the value of g,(i) is undefined until the
algorithm reaches a step which requires it to examine the value of g,(i). At
that moment, if i > 1, ¢,(4) is initialized to be a uniformly-distributed random
sample from X UY | drawn independently of previous random choices. If i = 1
then g, (7) is initialized to be yqg.)

At the beginning of each round ¢, each agent x queries its local bandit algo-
rithm ABA(x) to obtain a probability distribution 7;(z) on a finite subset of
N; this defines a probability distribution p,(z) on X UY", according to the rule
that
pe(z,s) = Y m(z,i).
i€gz ' (s)

Here p,(x, s) denotes the probability assigned by p;(z) to any s € X UY, and
similarly for m;(x,7) when ¢ € N. If agent « is an honest agent, it posts this
distribution g (x) on the public channel. Of course, if x is a Byzantine agent, it
may announce an arbitrary distribution rather than using the one which would
be supplied by ABA(x). For all x € X let v4(x) denote the distribution which
x chooses to post on the public channel. Lemma 3.3 ensures that v;(z,y9) > 0
for all honest agents x. Accordingly, if we define p,(z) to be equal to v (z) if
vi(z,90) > 0 and otherwise to be a distribution which assigns probability 1 to

14

Yo, then we have the following properties:

(1) The distribution py(x) is common knowledge to all agents at time ¢.
(2) For all z € X, p(x,yo) > 0.
(3) If x is an honest agent, then pi(z) = v (z) = pe(x).

The distributions p;(z) determine a Markov chain with state space X UY', in
which the elements of Y are absorbing states and each element z € X has
transition probabilities governed by the distribution p,(z). A sample path of
this Markov chain, starting from a state x € X, can be described as a real-
ization of the following stochastic process: x generates a request for advice
and sends it to a random neighbor sampled according to p;(z). If the ran-
dom neighbor is an element y € Y, the advice request stays at y; if it is an
element ' € X, then 2’ forwards the advice request to one of its neighbors
sampled from the distribution p;(z'), and the process continues recursively. In
Section 3.4 below, we prove that with probability 1, the process is absorbed
at an element y € Y. Letting ¢;(x,y) denote the probability that the random
walk starting from z is absorbed at y, we will also prove that there is an ef-
ficient algorithm to compute ¢;(x,y), given the transition probabilities of the
Markov chain (which can easily be computed from the contents of the public
channel at time t).

To select a resource y = y,(x) € Y, x samples a number i; € N from the distri-
bution m;(z) and puts s = g, (i;). It then samples a resource y randomly using
the probability distribution ¢(s), i.e. the distribution which assigns probabil-
ity q:(s,y) to each element y € Y. It learns the cost ¢;(y), and returns the
feedback (i, c:(y)) to ABA(x).

3.4 Analysis of the Markov chain

As explained above, the behavior of the algorithm TrustFilter at time ¢ is
governed by a Markov chain with state space X UY, in which every state in
Y is an absorbing state, and the transition probability from any state x € X
to any state s € X UY is equal to p(z,s). If we define

lifs=y
Pt(% S) =
0 otherwise

forally €Y, s € X UY, then the transition matrix of this Markov chain is a
matrix M; whose rows and columns are indexed by the elements of X UY', and
whose entries are given by (M;),s = pi(r, s). We say that a sequence of states
S1, 82, ... is absorbed at a state s if there exists some integer ry > 0 such that
s, = s for all r > rq.

15

Lemma 3.4. If s1, S9, ... is a sample path of the Markov chain M;, then with
probability 1 the sample path is absorbed at an element of Y.

Proof. 1If s,, =y € Y then s, =y for all » > 7y because y is an absorbing
state of M;. Hence the lemma is equivalent to the assertion that the sample
path contains an element of Y with probability 1. Recall that the transition
probabilities p; were defined so that pi(x,yo) > 0 for all z € X. Letting
g, = mingex py(T,yo), we find that Pr({sy,s9,...,5.} C X) < (1 —g)"'. As
g; > 0, this establishes that the expected number of state transitions that take
place before hitting Y is finite. By the First Borel-Cantelli Lemma, it follows
that with probability 1 the sample path eventually hits Y. Il

Recall from Section 3.3 that for any state s € X UY', we define ¢(s,y) to be
the probability that a sample path of M; is absorbed at y, conditional on the
sample path starting at s. Lemma 3.4 ensures that for all s, -, ¢y q,(s,y) = 1.
Hence ¢(s) is a well-defined probability distribution on Y. The remainder of
this section describes a formula for computing ¢;(s) algebraically.

Let (); denote the matrix whose rows are indexed by X UY, whose columns
are indexed by Y, and whose entries are given by the formula (Q;)s, = ¢:(s,y).

Lemma 3.5. M;Q; = Q.

Proof. Let si,s9,... denote a sample path of the Markov chain M,;. Let the
notation si, so,... — y denote the event that sq, ss,... is absorbed at y. For
any s € X UY,y € Y we have

(Qt)syZQt(s7y)

=Pr(s1,59,... = y|s1 = s)

= Z Pr(sy =1|sy = s)Pr(sy,s9,... > y|s1 = 8,8 =7)
reXuy

= Z pt(577")9t(7’7 y)

reXuY

= Z (Mt)sr(Qt)ry

reXuy

= (MtQt>sy

We pause here to make an observation which will be useful later.

16

Corollary 3.6. For any x € H,

Z Zﬂt(x,i)qt(gx(i), y)ez,y) = Z q(z,y)e(x, y).

yeY ieN yey

Proof. We can write the left side as

Z Z Z (2, 4)qi (s, y)ce(,).

yeY seXUY iEg;l(s)

Recalling that 3. -1 m(z,9) = p(x,1) and that p(z) = pi(z) because
xr € H, we see that the expression above is equal to

S il s)als,y)a(z,y) =0 Y (My)as(Qr)syce(,y)

yeY seXUY yeY seXUY

= > (M Q1)wycr(, y)

yey

= Z (Qt)xyct(l'a y)

yey

= Z g(z,y)ee(x, y),

yey

as claimed. O

For any matrix L with rows indexed by a set I and columns indexed by a
set J,if U C I and V C J are any subsets of the rows and columns, let us
use the notation L[U, V] to denote the submatrix of L consisting of all entries
belonging to a row and column whose indices are in U and V', respectively.
Define

A:Qt[X7Y]
B=M[X, X]
C'=M[X,Y]
so that we have
B C A
Mt -) Qt - 9 (5)
01 1

where I denotes the m-by-m identity matrix and 0 denotes the zero matrix.
The problem of computing () is equivalent to the problem of computing A.
From (5) we have

BA+C

MtQt =)
1

17

which together with Lemma 3.5 implies

BA+C=A
(I-B)A=C

The following lemma allows us to deduce that A = (I — B)~'C, which com-
pletes our description of the formula for computing the distributions g¢:(s).

Lemma 3.7. The matriz I — B is invertible.

Proof. For any z € X, let B, denote the z-th row of B, i.e. the row vector
whose z-th component is py(x, z). Observe that

1Bl = 3 pola2) < (zpt<x,s>) o) < 1.

zeX seS

For any non-zero vector v we have
| BY||oe = m§X|BmU| < mg?XHBle”UHOO < [|v]] oo,

hence Bv # v. This implies that (I — B)v # 0 whenever v # 0, hence [— B
is invertible. O

3.5 Analysis of Algorithm TrustFilter

In this section we analyze the algorithm TrustFilter, thereby proving Theo-
rem 2.1.

Proof of Theorem 2.1. Let F-; be the o-field generated by the random vari-
ables

{g:(1) - x € X,i e N}U{yu(z) : € X,u <t} U{c,(y) : y€Y,u <t}

i.e. the entire history preceding round ¢. In particular, 7., denotes the o-field
generated by the random variables {g.(i) : z € X,i € N}. For z € X,s €
XUY, let
Ci(z,5) = Y a(s, y)Ele(z,y) | Fal.
yey

From the standpoint of agent z, the bandit algorithm ABA(zx) is running in
the noisy feedback model with cost functions Cy(i) = ¢(z, g.(7)) and random
feedback variables Cj(i) distributed according to the cost ¢;(z,y) of a random
resource y € Y sampled according to ¢;(g.(7)). For u € Hyv € X UY, let

((u,v) =min{i € N : g,(i) = v}. (6)

18

It follows from Proposition 3.2 that for each u € H and v € X UY,

T T
E SN mi(u, i) (u, gi(w) = al f<1]
t=1:eN t=1
= O (l(u,v)log(T) T 1/3) (7)

Furthermore, applying Corollary 3.6 we have

Zm(u,i)ét(u,gi(u)):E ZZ7rt(u,i)qt(gu(i),y)ct(u,y) f<t]
=E Z qt(u,y)ct(u, y) «7:<t]
—E[(u,u) | ol
Hence we may rewrite (7) as
;E [;(s (u,u) — & (u,v)) ‘]—“<1] =0 (U(u,0)log(T)T7) . (8)

Recall that two agents u,xz € H are called consistent if Elc;(u,y) | F<] =
E[ci(x,y) | F< for all t,y. Thus, when u, z € H are consistent, ¢(u, s) = ¢(z, s
for all s € X UY. It follows that we may rewrite equation (8) as

1 T

E lTZ(Et(x,u) — &(x,v)) ‘]—"<1] =0 (U(u,v)log(T)T74), (9)

t=1

provided that x and u are consistent elements of H. Let S C H be a consistent
coalition containing z. For u € S, let

_ 1 &
c(u)=E <T ;ct(;ﬂ, w) .7-"<1> .
Then (9) may be rewritten as
c(u) = e(v) = £(u,v) - O (log(T) T~/%). (10)

Note that for a resource y € Y,

i.e. ¢(y) is the conditional expectation of the average cost of y according to z,
conditioned on the random functions sampled during the initialization of the
algorithm. Also,

F<1>)

i.e. ¢(x) is the conditional expectation of the average cost of the resources sam-
pled by z. Let y* denote a resource with minimum expected cost for members
of S. If x and y* are joined by a directed path x = wgy, u1,us,...,u; = y* in
S UY, we may sum up the bounds (10) over the edges of this path to obtain

T

() = B (zcxx,yt(x))

t=1

@) — oly") = 3 (eluir) —) = 3 s 1,) - O (log(T) T-3) . (11)

i=1 =1

Letting d(z,y*) denote the length of the shortest path from x to y* in the
directed graph with vertex set SUY and edge lengths given by /(-,-), we may
rewrite (11) as

() — ely’) = d(z,y") - O (log(T)T 7). (12)

Observe that the left side is the expected normalized regret of agent z, condi-
tioned on F.q. The random edge lengths ¢(u,v) on the m+n outgoing edges of
u are derived from the random function g, : N — X UY using the formula (6).
For graphs with random edge lengths specified according to this distribution,
we analyze the expected distance between two given vertices in Section 4.
Applying Proposition 4.1 from that section, we may conclude that the ex-
pectation of the right side of (12) is O ((ﬁ/a(S))log(oc(S)n) log(T') T‘l/g) :
where a(S) denotes the ratio |S|/n. It follows that the normalized regret and
d-convergence time for agents in the coalition S satisfy

P ((jﬁ) 10g(oz(5T)172 10g(T)> (13)

#6)=0 ((Oé(ﬁs,)&)glog?’(a(S)n) log? (i l(fgg):;)) | (14)

Note that (14) can be interpreted as saying that the large consistent coalitions
learn to approximate the cost of the best resource much more rapidly than
do the small coalitions, which accords with one’s intuition about collaborative
learning. To obtain Theorem 2.1, we must average over the k consistent coali-
tions Si, ..., Sg. We may multiply the regret bound for a coalition S in (13) by

the size of S, to obtain an upper bound of O (ﬁn log nlog(T') T‘1/3) on the sum
of the normalized regret of all users in .S. Summing over k such coalitions, the
cumulative normalized regret of all honest users is O (kﬂn log nlog(T) T~Y 3),
so the average individual normalized regret and the convergence time satisfy:

20

T1/3

7(6)=0 (k3 - (fd) log®(n) log® <ﬂk;o(sgn>) : (16)

R=0 (k: <ﬁ> IOg(n)log(T)> (15)

4 A random graph lemma

Let G = (V, E) denote the directed graph with vertex set V= X UY, in
which each x € X has outgoing edges to every element of V' (including a
self-loop to itself), and each y € Y has no outgoing edges. Suppose | X| =n
and |V| = fn. Let Xy C X be any subset consisting of at least an elements,
and let yg be an arbitrary element of Y. For each x € X, sample a random
function g, : N — V by putting g.(1) = yo and, for all i > 1, letting g, (7)
be independent uniformly-distributed elements of V. Define an edge length
{(u,v) for each directed edge (u,v) by specifying that

((u,v) =min{i € N : g,(i) = v}.

Note that ¢(u,v) is well-defined with probability 1, since Pr(Ai g, (i) = v) = 0.

Proposition 4.1. For all x € Xy,y € Y, the expected length of the shortest
path from x toy in XoUY is O((G/a)log(an)).

Proof. The fact that g,(1) = yo for every v is a nuisance in the proof, so we
begin by adopting a trick to circumvent this nuisance. For each edge e = (u, v)
define the modified length of e to be the number A(u,v) = ¢(u,v) — 1. Let Gy
be the induced subgraph on the vertex set XoUY'. For u,v € XoUY let d(u,v)
(resp. 6(u,v)) denote the minimum total length (resp. modified length) of a
path in Gy from u to v. Note that ¢(u,v) < 2\(u,v) except when (u,v) = 1,
and the case ¢(u,v) = 1 occurs only when v = g, in which case v has no
outgoing edges. It follows that for every path P, ¢(P) < 2A(P) + 1; here ¢(P)
and A(P) denote the length and modified length of P, respectively. Hence, to
prove the proposition, it suffices to put an upper bound on E(é(z,y)).

For an integer r > 0, let By(z,r) denote the set of all v € X, such that
d(z,v) < r. Let b(r) denote the number of vertices in By(x,r) and let

r* =min{r : b(r) > an/3}.

We will prove separate bounds on the expected values of r* and d(x,y) — r*.
To bound the expected value of r*, we make use of the following lemma.

21

Lemma 4.2. For allr > 0,

E [ln(b(r)) — In(b(r — 1)) | b(r — 1)] > g“ﬂl[b@_l)m/gh

where 1ig) denotes the indicator random variable of an event &.

Proof. Let us assume that b(r—1) < an/3, as otherwise the lemma is trivial. In
that case, for each v € By(x,r—1) let i, = 1+r—3(z,v), and let w(v) = g,(iy).
We have A(v,w(v)) < r — §(z,v), which implies

Iz, w(v)) < o(z,v) + ANv,w(v)) <7

Hence w(v) € Bo(z, 7). We will prove that in expectation, at least g5b(r —1) of
the vertices w(v) belong to Xy \ Bo(z,r—1). Label the elements of By(x,r—1)
as V1, Vg, ..., Upr—1). For 1 <7 <b(r —1), let

S; = By(x,r — 1) U (Xo N{w(vy),w(va),...,w(v,)}).

Note that |S;| < 2b(r — 1) < 2an/3 for all j, so X, always contains at least
an/3 elements which are not in S;. The following bound holds for all j:

«

Pr(w(v;) € Xo \ Sj_1 | Sj-1) > 35 (17)

This is because w(v;) is uniformly distributed among the Sn elements of the
set XUY', at least an/3 of which belong to X\ S;_1, and the random variables
w(v;), Sj—1 are independent. Summing (17) for j = 1,2,...,b(r — 1), we find
that the expected number of elements of Sy,_1) \ Bo(z,r — 1), conditional on
the event bo(r — 1) < an/3, is at least g5b(r — 1). Since Sy,—1) C Bo(z,7) we
have [Sy,—1)| < b(r). Note also that [Sy—1y| < 2b(r — 1). Combining all these
bounds, we obtain

(o) o))

«
>1 51 r— an/3:
=1+ 33 b(r—1)<an/3

Let y = min{ b(l;@l), 2}. Using the identity In(z) > 2= > =1 which is valid

for all 1 < x <2, we find that

22

>
= 65 b(r—1)<an/3-

[
Lemma 4.2 implies that
?E(ln(b(r)) Cn(b(r — 1)) > Pr(b(r — 1) < an/3) = Pr(* >). (18)
Summing (18) for r = 1,2, ... we find that
O tim Bn(s())) = 3" Pr(r” > 1)
r=1
65 In(an) > E(r), (19)

where the last line was derived using the fact that By(z,7) C Xy — and hence
b(r) < an — for all r.

Having established an upper bound on E(r*), we turn now to the task of
bounding E(d(z,y) — r*). Let B = By(z,r*). For any v € B and any posi-
tive integer a, let w,(v) = ¢,(1 + 7 + a — d(x,y)). As before, observe that
Av,w,(v)) < r*+a— §(z,v) and consequently,

§(x,we(v)) < 0(x,v) + Av,we(v)) < r* +a.

For any positive integer d, the event 0(x,y) — r* > d implies that y # w,(v)
for all v € B and a < d. Conditional on the values of r* and B, the random
variables w,(v) (1 < a < d,v € B) are all mutually independent and uniformly
distributed in X UY. Consequently,

d d|B|
Praea) - >) < TPl A o) = (1- 2] @0

a=1veB Bn

Summing over d = 0, 1,2, ..., we obtain

23

1—(1—(Bn)~1)I"

Recalling that |B| = b(r*) > an/3, we have
(1- (ﬂn)—l)'B' < B/ < o=a/(38),

Using the inequality e™* <1 — 7, which is valid for 0 < z < 1, we obtain

_1\!Bl Q@
which implies
E(0(z,y) — 1) < 65. (21)

Combining (19) with (21), and recalling that d(z,y) < 2d(x,y) + 1, we obtain

B(d(e.) = 0 (Jtog(an)

as desired. O

5 Message-passing implementation of TrustFilter

In formulating the model in Section 2 we assumed the existence of a shared
public channel, to which all agents could post their probability distribution in
each decision epoch. It is natural to wonder whether the same outcome can be
achieved in a more distributed communication model. In this section we will
assume that each pair of agents can exchange messages over a private channel.
We will assume that every Byzantine agent can eavesdrop on every channel
(even if both parties participating in the channel are honest), i.e. it can read
but not modify the messages sent on such a channel. An honest agent can only
read messages on the channels in which it is a participant. We will also assume
that the agents’ clocks are sufficiently synchronized that they can determine
a sequence of L = [log(n)] non-overlapping time windows in each decision
epoch. More precisely, we assume that each honest agent x can define time
windows W;(z) for 1 < i < L, such that if a;(x), b;(z) are the start and end
of Wi(z) as measured according to some (non-observable) global clock, then
max, b;(x) < min, a;41(z) for 1 < i < L, where the maximum and minimum
are taken over the set of all honest agents.

24

There is an obvious protocol in this message-passing model which attempts
to emulate TrustFilter. Each agent initiates a request for advice at the begin-
ning of the decision epoch, and this advice is forwarded randomly through the
reputation network using the transition probabilities determined by the state
of the ABA at each node, until reaching a resource, at which point a response
is returned to the agent who originated the request for advice. However, the
message-passing model allows the Byzantine nodes to perpetrate sophisticated
exploits which are not available in the public-channel model. For example, they
may forward different advice requests according to different transition proba-
bilities, or even adjust their transition probabilities during the decision epoch
after observing which neighbors forward advice requests to them. Because of
adversarial exploits such as these, we are not able to prove that this naive
emulation of TrustFilter is effective.

Instead, we analyze an algorithm based on simulating a directed acyclic graph
G with levels 0,1,..., L and a complete directed bipartite graph joining level
1 to level i — 1, for 1 < ¢ < L. The vertex set in level 0 is identified with
Y, while the vertex set in each positively-numbered level is identified with
X. In this way, each agent x is identified with L nodes x1, s, ..., 2 of G.
The agent instantiates L separate instances of the ABA algorithm, one for
each corresponding node of GG. For each such ABA instance, the strategy set
N is mapped to the set dou(2;) of outgoing edges of the corresponding node
of G using a random one-to-one correspondence from {1,2,...,d} to dpu(z;)
combined with an arbitrary constant function from {d+1,d+2, ...} t0 dpu(z;).
(Here, d = n for nodes above level 1, and d = m in level 1.) The random
one-to-one correspondence is sampled independently for each of the nodes
1, To,...,xr. Using a message-passing protocol to be described below, in each
decision epoch the nodes of G will each choose a resource by emulating the
algorithm TrustFilter. (This emulation, unlike the one described above, will not
be susceptible to adversarial exploits because the nodes in different levels will
be forced to commit to their decisions during disjoint time windows.) Note
that it is not possible for every node of GG to receive feedback on its decision,
because each agent x corresponds to L nodes of G which may select different
resources in a decision epoch, whereas x itself is allowed to select only one
resource. To address this, x chooses a random level — assigning probability
1 — 46 tolevel L and §/(L — 1) to all other levels — and selects the resource
y chosen by the instance of x at that level. The resulting cost is supplied as
feedback only to the instances of x which selected y in this decision epoch; all
other instances of x in G receive no feedback.

The message-passing protocol operates as follows. As noted above, each agent
x defines L consecutive non-overlapping time windows W;(z) during the deci-
sion epoch. At the start of W;(x), the node z; € V(G) chooses an outgoing edge
using its ABA instance. If ¢ = 1, the other endpoint of this edge designates the
resource selected by x;. If ¢ > 1, the other endpoint of this edge corresponds

25

to an agent 2, and x sends a request for advice to this agent. If 2’ responds
before the end of time window W;(x), then z chooses the resource specified
in z”’s response. Otherwise = chooses an arbitrary resource. An honest agent
receiving a request for advice during its time window W;(x) responds with
the resource it chose during window W;_;(z). A Byzantine agent, of course,
responds however it wants.

The analysis of this algorithm closely parallels the analysis of TrustFilter. The
d-convergence time is slower by a factor of O(log(n)/d), corresponding to the
fact that most of the nodes of G receive feedback once in every ¢/log(n)
decision epochs (on average) rather than in every decision epoch. Most of
the other steps of the analysis are identical with the analysis of TrustFilter.
However, there are two salient differences which illustrate the subtlety of the
message-passing model. The definition of the simulated cost function ¢(x, s)
is clear-cut only if s is a resource or an honest agent. (In these two cases,
e, s) = Yyey @(s,y)Elci(x,y) | F] as before.) If s is a Byzantine agent
and y denotes the advice which s would give to x assuming that x sends
a request to s, then é&(x,s) must be defined as the expectation of ¢;(z,y)
conditioned on all messages transmitted in all prior decision epochs as well as
those transmitted in the current decision epoch prior to x receiving a response
from s. Recall that the analysis of TrustFilter requires the fact that ¢ (v, w) =
¢(w,w) when v,w are consistent. Here we must prove something similar:
that if v,w are honest and consistent and (v,w) in an edge of G, then the
random variables ¢ (v, w) and & (w, w) have the same conditional expectation.
In the public-channel setting, this statement follows immediately from the
definition of “consistent”, whereas here there is a small subtlety. In order to
prove E[¢(v,w) | F;] = E[¢(w,w) | F<] in the private-channel setting, it is
necessary that the advice given by Byzantine nodes downstream from w is
independent of the event that v requests advice from w. This explains why it
is necessary for GG to be a directed acyclic graph, and why it is necessary for
the advice to propagate “backwards” (from the set of resources back to the
agents at the top level) rather than the conceptually more natural protocol in
which the agents at the top level initiate requests for advice and these progress
downwards until reaching a resource node at the bottom level of G.

6 Open Problems

In this paper we have introduced and analyzed an algorithm for a simple
model of collaborative learning. A key feature of our model is the presence of
a large number of dishonest agents who are assumed to behave in an arbitrary
Byzantine manner. However, other aspects of our model are quite idealized,
and there are some very natural extensions of the model which more closely
reflect the reality of collaborative learning systems such as eBay’s reputation

26

system and peer-to-peer resource discovery systems. It would be desirable to
identify algorithms for some of the following extensions.

(1)

(2)

(4)

This paper was concerned with a synchronous decision-making problem
in which each agent must choose one resource in each decision round.
One may instead study the asynchronous case, in which only a subset of
the agents act as decision-makers in each round and the rest are inactive.
We assumed that any agent could choose any resource at any time. One
may instead study cases in which an agent x is restricted to a choose
from a subset S(x,t) CY at time ¢. Useful special cases include the case
in which S(z,t) does not depend on t and the case in which it does not
depend on x. (In the latter case, it is not even clear how to formulate the
proper notion of “regret.”)

We assumed a very strict consistency condition for two agents x1, x5 in the

same coalition: at every time t, for every resource y, the random variables

ci(1,Y), ci(2,y) should have the same expected value, conditioned on
past history. Consider relaxations of this criterion, for instance:

o [Bleu(w1,y) | Fud] — Blei(w2,) | Fuil| <

o Elci(x1,y") | Foi] = Eler(22,y") | F<t], where y* is the best resource for
both x; and x5. No such equation is required to hold for other resources
Y.

e The mixture model: for each ¢, the functions f,(y) = Elci(x,y) | F<i]
belong to a k-dimensional linear subspace of the vector of functions
Y — R, as x ranges over X.

Study more structured collaborative decision-making problems, e.g. se-

lecting routing paths in a network, some of whose nodes are identified

with the agents.

Finally, it would be desirable to discover non-trivial lower bounds for the
convergence time of collaborative learning algorithms. At present the trivial
lower bound of Q(m/an) — the minimum number of rounds needed to ensure
that the best resource is sampled by at least one honest agent with constant
probability — is essentially the only known lower bound.

References

1]

Noga Alon, Baruch Awerbuch, Yossi Azar, and Boaz Patt-Shamir. Tell me
who I am: An interactive recommendation system. In Proceedings of the
18th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 1-10, 2006.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
Gambling in a rigged casino: The adversarial multi-armed bandit problem.

27

In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, pages 322-331. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
non-stochastic multi-armed bandit problem. SIAM Journal on Computing,
32(1):48-77, 2002.

[4] Baruch Awerbuch, Yossi Azar, Zvi Lotker, Boaz Patt-Shamir, and Mark R.
Tuttle. Collaborate with strangers to find own preferences. In Proceedings of the

17th Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 263-269, 2005.

[5] Baruch Awerbuch and Robert Kleinberg. Competitive collaborative learning.
In Proceedings of the 18th Annual Conference on Learning Theory (COLT),
pages 233-248, 2005.

[6] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mark Tuttle.
Collaboration of untrusting peers with changing interests. In Proceedings of
the 5th ACM Conference on Electronic Commerce (EC), pages 112-119, 2004.

[7] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mark Tuttle. Improved
recommendation systems. In Proceedings of the 16th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1174-1183, 2005.

[8] Yossi Azar, Amos Fiat, Anna Karlin, Frank McSherry, and Jared Saia. Spectral
analysis of data. In Proceedings of the 33rd ACM Symposium on Theory of
Computing (STOC), pages 619-626, 2001.

[9] M. Boddy. Anytime problem solving using dynamic programming. Proceedings
of National Conference on Artificial Intelligence (AAAI), 1991.

[10] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. In Proceedings of the 7th International World Wide Web
Conference (WWW), pages 107-117, 1998.

[11] Chrysanthos Dellarocas. Analyzing the economic efficiency of ebay-like
reputation reporting mechanisms. In Proc. 3rd ACM Conference on Electronic
Commerce (EC), pages 171-179, 2001.

[12] Petros Drineas, Iordanis Kerenidis, and Prabhakar Raghavan. Competitive
recommendation systems. In Proceedings of the 34th ACM Symposium on
Theory of Computing (STOC), pages 82-90, 2002.

[13] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Communications of
the ACM, 35(12):61-70, December 1992.

[14] Thomas Hofmann and Jan Puzicha. Latent class models for collaborative
filtering. In Proceedings of the International Joint Conference in Artificial
Intelligence (IJCAI), pages 688—693, 1999.

[15] D. Houser and J. Wooders. Reputation in auctions: Theory, and evidence from
ebay. Journal of Economics and Management Strategy, 15(2):353-369, 2006.

28

[16] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
FEigentrust algorithm for reputation management in P2P networks. In
Proceedings of the 12th International World Wide Web Conference (WWW),
pages 640-651, 2003.

[17] Jon Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604-632, 1999.

[18] Robert Kleinberg. Anytime algorithms for multi-armed bandit problems. In
Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 928-936, 2006.

[19] Pattie Maes, Robert H. Guttman, and Alexandros G. Moukas. Agents that buy
and sell. Communications of the ACM, 42(3):81-91, 1999.

[20] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
PageRank citation ranking: Bringing order to the Web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[21] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: An open architecture for collaborative filtering of netnews. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW), pages 175 — 186, 1994.

[22] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman.
Reputation systems. Comm. ACM, 43(12):45-48, 2000.

[23] Bin Yu and Munindar P. Singh. A social mechanism of reputation management
in electronic communities. In Cooperative Information Agents, pages 154-165,
2000.

[24] Giorgos Zacharia, Alexandros Moukas, and Pattie Maes. Collaborative
reputation mechanisms in electronic marketplaces. In HICSS ’99: Proceedings of
the Thirty-second Annual Hawaii International Conference on System Sciences-
Volume 8, page 8026, Washington, DC, USA, 1999. IEEE Computer Society.

[25] Oren Zamir and Oren Etzioni. Web document clustering: A feasibility
demonstration. In Research and Development in Information Retrieval, pages
46-54, 1998.

[26] Shlomo Zilberstein. Operational rationality through compilation of anytime
algorithms, 1993.

29

