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1 Background and Notation.

Definition 1.1. Let a,b,c € . The elements are in arithmetic progression if they can be written as
a=x,b=x+vy,and c =x+2y for x,y € F. If y is non-zero, then they form a non-degerate arithmetic
progession. We will additionally abbreviate 3-term arithmetic progressions with 3APs.

The capset problem. If A CIF5 has no non-degenerate 3APs, how large can |A| be?

Immediately we can say two quick facts about 3APs in IF:
1. Using the arithmetic properties in %}, we have that

X0, X1, Xpis a 3AP in F}, &= x; —x9=x,—x;
— 0:X0+X2—2X1

— O0=xp+x1+x;

2. Consider a matrix of “random” 3APs generated by the rule in 1.:

1 1 21
01 0 2
2110

N = O
NN

1
0
2
The columns of 3APs are either three distinct elements or three of the same element.

An adjacent problem and some history. If A C [N] has no distinct elements in arithmetic pro-
gression, how large can |A| be?
* Roth (1930’s): |A| < O(N loglogN).

* Salem-Spencer-Gehrand-Elkins-Green-Wolff: There exists an A with |A] > N - 2~ CVlogN
which can be made larger than N!~¢ for any ¢ > 0.

« Sanders (2010): |A| = O(N(loglog N)>/log N).

* Related question: if A C IN and ) .4 1/n = co must A arbitraily long non-degenerate APs?
Must it contain 3APs?

Mathematicians studying these problems (mainly using Fouier analysis) saw the capset prob-
lem as an easier spinoff problem in which if they made progress, they may make progress on these
older problems. Thus, they were spurred on to use Fourier/Roth based techniques for the capset
problem but a much more simple and efficient solution was found in 2016 using the polynomial
method. Both methods will be useful for studying pseudorandomness.



2 Roth-Meshulam Theorem: upper bound using Fourier analysis.

Definition 2.1. If G is a finite abelian group and f,g: G — C, their convolution, f *g, is the function

(f &) lE [f(y)g(x—y)] = [f (¥)g(2)]

'y+z X

Properties 2.2. Let x, and x,, be two characters on G = I}, and f,g be two function on Fy,. We can
write f and g as f = ¥, f(v)y and g = ¥, ¢(w)¥w

Xo(x) ifv=w

(a) XV*XWZ{O ifvsw
(b) f+(g+h)=fxg+fxh
(c) f+g=Y,f)$@)xy

) frg=f-¢

Proof. (a)

(Xv* Xw)(x Xo (V) Xw(x=2)]

x(@, ) x(w,x—v))]

|
[x(

(X (v, ) +{w, x=p))]

(X (w, DB [x (v ~w,))]

=E
y
E
y
E
y
E
y
x((w, ) 1(v = w)

(b) By linearity of expectation.

(c)
pese (L )[Zg g
—ZZf %o+ Xw)  (by (b))

—Zf v, (by ()




Given A C IF}, let

1 ifxeA
f(x)_{o ifxeA
And define p to be E,[f(x)] = £(0).
Lemma 2.3. If% < 1u® and If (v)| < L2 for all v # 0, A must contain a non-degenerate 3AP.

Proof. Let N =3". Then

1 N 1
N2 Zf(x)f(}?)f(z) = l;\,—z +m#{non—degenerate 3APs}
X9,z ~——

# of degenerate 3APs

The left hand side and also be written as

(f+f+£)0) =) (f@)?

=(f)’+) (f@)
v=0
>pP=) )P
2

>w2 -5 Ifw)P

Since f is an {0, 1}-function,

Then,

by assumptions, and
1 1-
—NZ#{non—degenerate 3APs} > T‘u > 0.
L]

This lemma tells us that if u < 2/N%3, then |A| = uN < 2N?%3 (then, A is small and we are
done). Otherwise the |f (v)| > %yz for some v = 0. The idea is that IF3 will have a lower dimensional

subspace T such that
|[ANT]| S 1,

U+ —U".
IT] Bt g
Then, we can iterate this to get a contradiction.
To show this, define T; = {x | (v,x) = i} for i = 0,1, 2, where v is the vector assumed to exist
above. Define also

o |AﬂTZ| _

+6i7



and w = x(1) = exp(2mi/3). Then we have

3 3 3 3 3 3
_60 (51(1) 5261)
3 3 3
In addition,
Fo P12 0p 01 O3
Las U i8S o' 20,791,722
37373 T 3t3T3
We then have
@ 61&) 62(1) l 2
3773 3 |72V
NETHEA
3 3 3 2
2 _
51’ bz 1 2
Z(:s +’3') 2t
=0
Then there exists a iy such that
6i0 6i0 1 2
3 376!

Then o;, +9; | > u?/2 and i, > u%/4. This completes the proof for the following proposition:

Proposition 2.4. If N = 3", A is a capset of T4, and p = |A|/N > 2N1/3, then T’y contains a capset
of density of greater than p+ p*/4.

What happens if we iterate this proposition?

i 2
Density p — p+ip’ = prppl+i(p+ ) -

2
R S T
Dimension n — n—1 — n—2 — n-3

Generally, at dimension n — k, we have density > p + %y. So if we start at density p, after
subtracting 4/p dimensions, the density has doubled. Now iterate this.

Density p — 2u - 4p — 8u — e
Dimension n — n-4/p — n—-4/u-4/2y — n-4/u-4/2u-4/4py — --- — n-8/u

Since the density cannot exceed 1, this process must stop at some density p <1 and dimension
d, where the premise of the proposition no longer holds: in other words, at that point, y < p <
2D1/3, where D = 3%, (*)



Assume for the sake of contradition that y > 16/#n, then

g <d (dimension never drops below 7 — 8/ in the chain)

= | oo
NSNS

D1/3 — 3d/3 > 3H/6

J

16 _ 2
= —<p<ps<2D 1/3<W (by (*))

The last line is always a contradiction for sufficiently large 1, so we have proven the following
theorem.

Theorem 2.5 (Roth-Meshulam). Let A be a capset in ;. Then there exists ny such that for all n > n,
Al 16
3" 7 n

3 Upper bound using polynomial method.

Theorem 3.1 (2016 Ellenberg-Gijswijt using Croot-Lev-Pach). Let A be a capset in IF%, then

|A] < 2.756" or l;inl <0.92".

Proof. The vector space of F3-valued function on F (as an F>-vector space) has two interesting
bases:

1. The functions

0 otherwise

5y(x):{1 ifx=yp

2. The monomials of max degree

f(xg,..x,) = x‘fl---xg" (a; €{0,1,2})

= x%.

where a is a tuple of the same length as x.

The 6-basis can be expressed in terms of degree-2 monomials via

o) = [ [t =i -0)?]
i=1

Suppose P(x,9) =) 45 Ca,ﬁx“yﬁ is a polynomial in 2n variables. Then

* the coefficient matrix C(P) is the 3" x 3" matrix (Cy,g)q,p With rows and columns indexed by
power vectors € {0, 1, 2}"

* the evaluation matrix E(P) is the 3" x 3" matrix (P(x,y))y, with rows and columns indexed
by n-variable input vectors € IF';.



Let V denote the Vandermonde matrix (x%), . Then
E(P)=vC(P)VT,

and hence rank E(P) < rank C(P). (In fact, they are equal since V is invertible.)
Let L, ; denote the subspace of IF3-valued functions on I% spanned by monomials of total
degree < d. Assume that n is a multiple of 3, and let d = 2n/3. Set K = dim(L,, ;). We have

dim(L, 4) + dim(L,, 541) = 3".

(Scribe note: we can see this by considering the bijection between the set of monomials with
coefficient vector a € {0,1,2}" of total degree ||@||; > 2d = 4n/3 and the set of monomials of total
degree <d = 2n/3 defined by a — (2,...,2) - a.)

Let W be the subspace of L, ,4_; consisting of polynomials that vanish on A. Since dim(L,, 54_1) =
3" — K and vanishing at each y € A puts one linear constraint on the coefficients, we have

dim(W) > (3"-K)-(3"-|A]|)
|A| - K.
Then there exists a polynomial Q(z) € W such that Q(x) =1 at |A| - K points x. Let S denote the

set of these points, i.e.
ADS={x|Q(x)=1}.

If x,yeS,x#y, then (x+y)/2 ¢ S. (Scribe note: otherwise the three elements would form a 3AP
in S and hence in A.) Let P(x,y) = Q(%) Then in E(P), we have an |S| x|S| identity matrix:

x Yy

1 0 x
Vx,pe$

0 1 y

Hence, rank E(P) > [S|. On the other hand, if we assume monomials to be ordered by their total
degree, C(P) has the following structure:

dega <d

dega <d




Hence, rank C(P) < 2K. (Scribe note: the first K rows may be linearly independent, and at most
K of the following rows since each of them only has K nonzero entries.) Combining inequalities,

|A|- K < S| < rank E(P) < rank C(P) < 2K

and hence
|A| < 3K.

Recall that K was the dimension of L, 4, i.e. the subspace spanned by monomials of total degree
at most 2n/3 (and, as before, individual powers at most 2). We find that if n is sufficiently large,
3K <(2.756)". O

Polynomial method: we used the fact that high-degree polynomials can be made to do what-
ever over finite fields, but low degree polynomials are much more constrained.
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