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1 Introduction

Concentration of measure is a central topic in the design and analysis of randomized algorithms. In
particular, concentration of measure allows one to argue that the observed behavior of a randomized
algorithm is essentially deterministic. Thus, tight concentration bounds are desired for the efficient
de-randomization of algorithms and probabilistic constructions.

Perhaps the most familiar example is Chernoff’s bound (Chernoff et al., 1952), which states that the
empirical mean of a sequence X1, . . . ,Xk of independent and identically distributed (IID) random
variables deviates from its true mean with a probability that decays exponentially in the number of
samples and the square of the deviation. That is,

P [∣
1

k

k

∑
i=1

Xi −E[X]∣ ≥ ε] ≤ 2 ⋅ exp (−Ω (kε2)) . (1)

An important generalization of this bound was achieved by Gilman (Gillman, 1998), who significantly
relaxed the independence assumption to Markov dependence. Specifically, suppose that v1, . . . , vk is
a k-length stationary random walk of a regular graph G = (V,E). Additionally, assume a scalar
valued function F ∶ [V]↦ C. Then, even though the random variables vi are not independent, one
has

P [∣
1

k

k

∑
i=1

F (vi) −E[F ]∣ > ε] ≤ 2 ⋅ exp(−Ω((1 − λ)kε2)), (2)

where 1 − λ is the spectral gap of the transition matrix of the random walk induced on the graph G.

Another important generalization Chernoff’s bound is that for matrix-valued IID random variables
(Rudelson, 1999; Ahlswede and Winter, 2002; Tropp et al., 2015). In particular, if X1, . . . ,Xk are
IID d × d complex Hermitian random matrices with ∥Xi∥ ≤ 1, then we have

P [∥
1

k

k

∑
i=1

Xi −E[X]∥ > ε] ≤ 2d ⋅ e−Ω(kε2), (3)

which is optimal. Note that this bound only differs from that for the scalar-valued case by a factor
of d.
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1.1 Motivation

Matrix-valued random variables are at the core of a variety of applications, including approximation
algorithms for classical combinatorial problems such as the Traveling Salesman Problem (TSP)
(Gharan et al., 2011) and the Asymmetric Traveling Salesman Problem (ATSP) (Asadpour et al.,
2010), solving Laplacian linear equations (Kyng and Sachdeva, 2016), solving Covering Semidefinte
Programs (SDPs) (?), and constructions of a class of expander graphs (?). Crucially, the efficient
de-randomization of randomized results in these applications may leverage the use of matrix-valued
random variables in dependent settings.

Concentration of measure in scalar-valued dependent settings is a mature area of research (Schmidt
et al., 1995; Kahale, 1997; Gillman, 1998). On the other hand, results for the matrix-valued setting
have only recently appeared (?Tropp, 2011; Tropp et al., 2011; Garg et al., 2018; Kyng and Song,
2018). In this project, we study two such recent results. First, we consider a matrix Chernoff
Bound for strongly Rayleigh distributions, due to Kyng and Zhao (Kyng and Song, 2018). Strongly
Rayleigh distributions are of special interest as they exhibit negative correlation, which intuitively
suggests good concentration. Moreover, these distributions have found applications in algorithm
design (Gharan et al., 2011; Asadpour et al., 2010). Their matrix Chernoff bound also implies results
in spectral sparsification of graphs by sampling random spanning trees, which follow a strongly
Rayleigh distribution. It is known that the union of two uniformly random spanning trees of the
complete graph has constant vertex expansion with high probability (Goyal et al., 2009), leading
us to the second result studied. In particular, we study a concentration result for matrix-valued
expander random walks, due to Garg, Lee, Song, and Srivastava (Garg et al., 2018). Their result
generalizes both Alhswede and Winter’s (Ahlswede and Winter, 2002) bound for IID matrix-valued
random variables and Gilman’s (Gillman, 1998) bound for scalar-valued expander random walks.
The main technique of (Garg et al., 2018) is a new multi-matrix extension of the Golden-Thompson
inequality derived through complex analysis of sub-harmonic functions, thus confirming a conjecture
by Wigderson and Xiao (Wigderson and Xiao, 2005).

The goal of the project is two fold. Firstly, we aim to become familiar with the techniques used in
developing concentration inequalities for dependent and matrix-valued random variables. Secondly,
we are interested in developing new applications of these results, and their connections to open
problems.

2 Notation

We will consider graphs G with vertex set V and edge set E. We will adhere to ∣V ∣ = n. Occasionally
we will consider a pseudo vertex set Ṽ , which is a copy of V . We will use z1, . . . , zk to denote a k-step
random walk on an expander graph G. Similarly, we will denote a random walk with rejections by
z′1, . . . , z

′
k. Throughout this work, the norm of a matrix refers to its spectral norm.
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3 A Matrix Chernoff Bound for Strongly Rayleigh Distributions
(Kyng and Song, 2018)

3.1 Preliminaries

Let x = (x1,⋯, xn) ∈ {0,1}n be a random vector with probability measure µ ∶ 2[n] → R≥0. The
generating polynomial fµ of µ is defined as

fµ(x) = ∑
S⊆[n]

µ(S) ⋅∏
i∈S

xi. (4)

The probability measure µ is said to be k-homogeneous if fµ is a homogeneous polynomial of degree
k. Moreover, fµ is said to be real if all of its coefficients are real, which is always true by definition
of µ. Lastly, fµ is said to be stable if Im(xi) > 0 for all i ∈ [n] implies that fµ(x) ≠ 0.

Definition 1 (Strongly Rayleigh Distribution). A probability measure µ is a strongly Rayleigh
distribution if fµ is real stable.

Strongly Rayleigh distributions are of special interest because they are a class of discrete distribu-
tions that exhibit negative dependence. Crucially, strongly Rayleigh distributions are preserved
under conditioning and marginalization. In particular, suppose x follows a k-homogeneous strongly
Rayleigh distribution. We have the following facts.

Fact 1 (Conditioning Property). Suppose we have b = (b1,⋯, bt) ∈ {0,1}t with l non-zero entries
and some S ⊆ [n] such that ∣S∣ = t. Then, conditional on xS = b, the distribution of x[m]∖S is
(k − l)-homogeneous strongly Rayleigh.

Fact 2 (Stochastic Covering Property). Suppose we have an index i ∈ [m]. Let x′ = x[m]∖{i} be
the marginal distribution on the entries [m] ∖ {i} and let x′′ = x[m]∖{i} be the distribution on the
entries [m] ∖ {i} conditioned on xi = 1. Then, there exists a coupling between x′ and x′′ such that
in every outcome of the coupling, the value of x′′ can be turned into the value of x′ by flipping at
most one of its entries from 0 to 1.

The stochastic covering property is an indication that strongly Rayleigh distributions do not change
too quickly under conditioning. Intuitively, these facts are essential in the martingale-based proof of
the main results discussed in the next section.

Two corollaries of the main result deal with matrix concentration of randomly sampled spanning
trees. Given a weighted undirected graph G = (V,E,w), define its Laplacian matrix LG as follows.

Definition 2 (Laplacian Matrix). The Laplacian matrix LG ∈ Rn×n of a graph G is defined as

LG = ∑
e={u,v}∈E

webeb
T
e ,

where be is a signed {u, v}-incidence vector with 1 at u, −1 at v, and 0 otherwise.

For two symmetric matrices A,B ∈ Rn×n, we write A ⪯ B to indicate that xTAx ≤ xTBx, for all
x ∈ Rn. Moreover, A and B are spectrally similar if B/α ⪯ A ⪯ α ⋅B. Naturally, the notion of matrix
concentration of graphs considered herein is with respect to their Laplacian matrices.

3



Random spanning trees have been useful in the design and analysis of algorithms. Specifically, let
TG denote the set of all spanning trees of G and consider the following distribution.

Definition 3 (w-uniform Spanning Tree Distribution). A w-uniform distribution on TG, denoted
by DG, is a probability distribution such that

PX∼DG[X = T ]∝∏
e∈T

we.

Note that this can be sampled faster than matrix multiplication (Durfee et al., 2017).

Fact 3 (Edge Marginals). The probability P[e] that an edge e = {u, v} ∈ E appears in a tree samples
according to DG is given by

P[e] = webTe L
†
Gbe,

where L†
G is the pseudo-inverse of LG. This is referred to as the leverage score le of e ∈ E.

Fact 3 is of much importance as it provides the freedom of tuning w to produce the edge marginals
desired for the specific applications of random spanning tree sampling. Lastly, in connection to
matrix concentration, the following fact is essential for the corollaries presented.

Fact 4. If G is connected, DG is (n − 1)-homogeneous strongly Rayleigh.

3.2 Main Results

The main result relies on the following lemma, whose inductive proof relies on Fact 1.
Lemma 1 (Shrinking Marginals Lemma). Suppose ξ = (ξ1,⋯, ξm) ∈ {0, 1}m is a random vector that
follows a k-homogeneous strongly Rayleigh distribution. Then, for any set S ⊆ [m] with ∣S∣ ≤ k and
all j ∈ [m] ∖ S we have

P[ξj = 1∣ξS = 1S] ≤ P[ξj = 1].

Theorem 1 (Restatement of Theorem ??). Let ξ = (ξ1,⋯, ξm) ∈ {0,1}m be a random vector of
{0,1} variables whose distribution is k-homogeneous strongly Rayleigh. Let A1,⋯,Am ∈ Rn×n be a
collection of PSD matrices such that ∥E [∑e ξeAe]∥ ≤ µ and ∥Ae∥ ≤ R for all e ∈ [m]. Then, for any
ε > 0 we have

P [∥∑
e

ξeAe −E [∑
e

ξeAe]∥ ≥ εµ] ≤ n ⋅ exp(−
ε2µ

R(log k + ε)
Θ(1)) .

Proof sketch. For all e ∈ [m], associate a PSD matrix satisfying ∥Ye∥ ≤ R. The random vector
ξ may equivalently be represented as a sequence γ = γ1,⋯, γk, each representing the indices of
the entries that take value one in ξ. Thus, we have Z = ∑e∈[m] ξeYe = ∑

k
i=1 Yγi . Now, define

the martingale sequence given by M0 = E[Z] and Mi = Eγ≥i+1[Z ∣γ1,⋯, γi]. Denote the difference
sequence by Xi+1 =Mi+1−Mi. Via a coupling argument that relies on Fact 2, together with Lemma 1,
we may bound: i) λmax(Xi) and ii) the predictable quadratic variation Wi = ∑

i
j=1 Ej−1[X

2
j ]. Lastly,

we may use these bounds to apply the Matrix Freedman Inequality (Tropp et al., 2011) and complete
the proof.
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Theorem 2. Given a graph G = (V,E,w) with ∣V ∣ = n, let T be a random spanning tree. Then,
with probability at least 1 − 1/poly(n) we have

LT ⪯ O(logn)LG.

Proof sketch. Sample T = (V,E′) ∼ DG with an associated random vector ξ, which by Fact 4 is
(n− 1)-homogeneous strongly Rayleigh. Let the weight w′ of the edges in E′ be given by w′

e = we/le.
To apply Theorem 1, let ξe be the eth entry of ξ and let Ae = (L†

G)
1/2L′e(L

†
G)

1/2, where L′e is the
Laplacian of the subgraph of T induced by e ∈ E′. Then, we may apply Theorem 1 with R = 1,
µ = 1, and ε = 100 logn.

Theorem 3. Given a connected graph G = (V,E,w) with ∣V ∣ = n and a parameter ε > 0, let
T1,⋯, Tt denote t independent inverse leverage score weighted random spanning trees. If we choose
t = O(ε−2 log2 n), then with probability 1 − 1/poly(n) we have

(1 − ε)LG ⪯
1

t

t

∑
i=1

LTi ⪯ (1 + ε)LG.

Proof sketch. The proof is similar to that of Theorem 3, except the edges of the t = O(ε−2 log2 n)
independent samples are seen as following a t(n − 1)-homogeneous strongly Rayleigh distribution;
this holds because the product of strongly Rayleigh distribution remains strongly Rayleigh. Then,
we apply Theorem 1 with R = 1/t and µ = 1.

4 A matrix Expander Chernoff Bound (Garg et al., 2018)

Generalizations to Matrix-Random Variables It is natural to wonder whether bounds like
Equation 3 could be extended for matrix-valued dependent random variables observed through
random walks on a graph (in the same spirit as (Gillman, 1998)). In this section, we will positively
answer the question and briefly discuss tools and techniques to derive them.

Theorem 4. Let G = (V,E) be a regular undirected graph whose transition matrix has second
eigenvalue λ, and let F ∶ V → Cd×d be a function such that:

1. For each v ∈ V , F (v) is Hermitian and ∥F (v)∥ ≤ 1.

2. ∑v∈V F (v) = 0.

Then, for a stationary random walk v1, . . . , vk with ε ∈ (0,1) we have:

P
⎡
⎢
⎢
⎢
⎢
⎣

λmax
⎛

⎝

1

k

k

∑
j=1

F (vj)
⎞

⎠
≥ ε

⎤
⎥
⎥
⎥
⎥
⎦

≤ d ⋅ exp (−Ω (ε2(1 − λ)k)) ,

P
⎡
⎢
⎢
⎢
⎢
⎣

λmin
⎛

⎝

1

k

k

∑
j=1

F (vj)
⎞

⎠
≤ −ε

⎤
⎥
⎥
⎥
⎥
⎦

≤ d ⋅ exp (−Ω (ε2(1 − λ)k)) . (5)

This theorem adds to the amazingly long list of pseudorandom properties of expander graphs, and
has numerous applications, a few of which are discussed in section 4.3.
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History Interestingly, an attempt to solve this problem was made by (Wigderson and Xiao,
2005) in 2005, but unfortunately a bug was discovered in the proof a year later and the gap could
not be fixed. Following which, an alternate proof was provided for the applications studied in
(Wigderson and Xiao, 2005) using ”the method of pessimistic estimators” (discussed in more details
in Section A.1). This is the first such attempt to positively answer the conjecture due to Wigderson
and Xiao, about existence of a chernoff-type (as (5)) for the matrix-valued dependent setting.

4.1 Proof Sketch

Let us first recall how the usual scalar Chernoff bound is proved, in both the iid and expander
random walk setting. The key observation is that if X1, . . . ,Xk are independent random variables
(for eg in (1)), then the moment generating function of the sum is equal to the product of the
moment generating functions:

E [exp(t
k

∑
i=1

Xi)] =
k

∏
i=1

E[exp(tXi)].

This is no longer true in case where the Xi come from a random walk (for the case in (2)), but we
still have the algebraic fact that

exp(t
k

∑
i=1

Xi) =
k

∏
i=1

exp(tXi), (6)

which allows one to decompose the sum as a product, allowing an independent analysis for each
step of the random walk.

The analogue of the moment generating function in the matrix setting is

E [tr [exp(t
k

∑
i=1

Xi)]] ,

and the main difficulty is that (6) no longer holds if the matrices Xi do not commute. A substitute
of this fact is given by the Golden-Thompson inequality, but with limited applications. In fact,
the old proof due to (Wigderson and Xiao, 2005) was based on an erroneous extension of the
Golden-Thompson inequality to more than two matrices (see Section A.2 for more details). The
main ingredient of the new proof is a multi-matrix generalization of the Golden-Thomspon inequality
(see Section A.3 for more details), as follows:

Theorem 5 (Bounded Multi-matrix Golden-Thompson inequality). Let H1, . . . ,Hk ∈ Cd×d be
Hermitian matrices. Then

log
⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

k

∑
j=1

Hj
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
≤

4

π
∫

π
2

−π
2

log
⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

k

∏
j=1

exp(
eıφ

2
Hj)

1

∏
j=k

exp(
e−ıφ

2
Hj)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
dµ(φ)

where µ is some probability distribution on [−π2 ,
π
2 ].
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Proof Sketch of Theorem 4

Proof. Due to symmetry, it suffices to prove just one of the statements. Let t > 0 be a parameter
to be chosen later. Then

P
⎡
⎢
⎢
⎢
⎢
⎣

λmax
⎛

⎝

k

∑
j=1

f(vj)
⎞

⎠
≥ kε

⎤
⎥
⎥
⎥
⎥
⎦

≤ P
⎡
⎢
⎢
⎢
⎢
⎣

tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
t
k

∑
j=1

f(vj)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≥ exp(tkε)

⎤
⎥
⎥
⎥
⎥
⎦

((using Markov’s Inequality))

≤
E [tr [exp (t∑kj=1 f(vj))]]

exp(tkε)
(7)

Using Theorem 5 and the concavity of log, we bound the RHS above as:

tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
t
k

∑
j=1

f(vj)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤
⎛

⎝
∫

π
2

−π
2

tr

⎡
⎢
⎢
⎢
⎢
⎣

k

∏
j=1

exp(
eıφ

2
tf(vj))

1

∏
j=k

exp(
e−ıφ

2
tf(vj))

⎤
⎥
⎥
⎥
⎥
⎦

dµ(φ)
⎞

⎠

4
π

Further nothing using the Jensen’s inequality:

tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
t
k

∑
j=1

f(vj)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≥ d4/π−1 ⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

π

4
t
k

∑
j=1

f(vj)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

4
π

we get,

tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

π

4
t
k

∑
j=1

f(vj)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ d1−π/4
∫

π
2

−π
2

tr

⎡
⎢
⎢
⎢
⎢
⎣

k

∏
j=1

exp(
eıφ

2
tf(vj))

1

∏
j=k

exp(
e−ıφ

2
tf(vj))

⎤
⎥
⎥
⎥
⎥
⎦

dµ(φ) (8)

The matrix-expander chernoff bound follows by using (8) along with Lemma 2 and then appropriately
trading off the parameter t.

Lemma 2. Let G be a regular λ-expander on V , let f be a function f ∶ V → Cd×d and ∑v∈V f(v) = 0,
let v1,⋯, vk be a stationary random walk on G, for any t > 0, γ ≥ 0, b > 0, t2(γ2 + b2) ≤ 1, and
tγ ≤ 1−λ

4λ we have

E
⎡
⎢
⎢
⎢
⎢
⎣

tr

⎡
⎢
⎢
⎢
⎢
⎣

k

∏
j=1

exp(
tf(vj)(γ + ıb)

2
)

1

∏
j=k

exp(
tf(vj)(γ − ıb)

2
)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

≤ d ⋅ exp(kt2(γ2
+ b2)(1 +

8

1 − λ
)) .

Proof. The proof of this lemma is analogous to the main lemma in (Healy, 2008) for the scalar
valued expander Chernoff bound, which proceeds by controlling how much does a uniform vector
shears on repeated application of the transition matrix (followed by the cost matrix) defining the
random walk (similar to Lemma 4).
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4.2 Extension: Random Walk with Rejection Sampling

The Chernoff type bounds for random walks on an expander (eg. (2) and Theorem 4) are already quite
strong and have numerous applications for efficient de-randomization. However, the constructions of
λ−expanding graphs have, unfortunately, been restricted to constant degree graphs in the literature.
Fact 5. Stationary distributions for constant degree graphs is a uniform distribution over the
vertices.

This restricts us to only handle deviations of X from 1
n ∑

n
i=1 f(vi) by running a random walk. How-

ever, in many applications, we are interested in controlling deviations of the rewards accumulated
along a random walk w.r.t. 1

n ∑
n
i=1 yif(vi) where yi ∈ [0,1]. This motivates us to look at analyzing

a random walk (with rejection) on a constant degree graph, where at each vertex vi, the reward
is only collected with probability yi, and is ignored otherwise (described by 1). Interestingly, we
can derive a similar chernoff-type bound for a random walk with rejection sampling but with a
multiplicate loss of 1

σ (≈ n) in the exponential tail.

Theorem 6. Let G(V,E) be a constant degree λ-spectral expander with ∣V ∣ = n. Let us further
assume that we are given constants y1, . . . , yn ∈ [0,1]. Additionally, we are given a scalar valued
function f ∶ V ↦ [−1,1]. Then for a random walk with rejectoin, z1, . . . , zk, as defined by Algorithm 1,
the following Chernoff-type bound holds:

Pr[∣X − ρk∣ ≥ εk] ≤
2

σ
e−

k(1−λ)ε2

4

where σ = 1
n min(y1, y2, . . . , yn,1 − y1, . . . ,1 − yn).

The proof for is provided in Section A.4.

Algorithm 1 Random walk with Rejection Sampling

Require: Given: (y1, y2, . . . , yn) ∈ [0,1]− Rejection probabilities at the vertices.
Require: A constant degree graph G(V,E) with spectral expansion λ.

X ← 0
z0 ∼ Uniform[n]
for t = 1, . . . k do
zt ← Random step(zt−1)

Let Xi ∶=

⎧⎪⎪
⎨
⎪⎪⎩

f(zt) w.p. q[zt]

0 w.p. 1 − q[zt]

X+ =Xi

end for
return X

4.3 Applications

4.3.1 O(logn) expanding generators for any group

One of the applications salvaged in (?) is the deterministic construction of a O(logn)-sized expanding
generator set for any group. Let H be a group and S ⊂H be a generating multi-set. The Cayley
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graph Cay(H;S) on H and S is a graph whose vertex set is H and where (h,h′) is in the edge
set if h′ = hs. Require S to be symmetric, that is s ∈ S if, and only if, s−1 ∈ S, making the graph
undirected. Let A be the normalized adjacency matrix of the graph and let λ (Cay(H;S)) denote
the second largest eigenvalue of the graph. Their main theorem is as follows.
Theorem 7. Fix γ < 1. Then, there exists a algorithm running in time poly(n) that, given any group
H of order n, constructs a symmetric set S ⊆H of size ∣S∣ = O( 1

γ2
logn) such that λ (Cay(H;S)) ≤ γ.

Their proof relies on an existential result of such generating sets (?). In particular, for any h ∈H, let
the matrix-valued function be f(h) = 1

2(I − J/n) (Ph + Ph−1), where J is the all ones matrix and Ph
is the permutation matrix representing the action of h on any element of the group. Then, one can
show that for all h ∈H, ∥f(h)∥ ≤ 1 and Eh∈H[f(h)] = 0, which is ready for the application of their
pessimistic estimators de-randomization of (Ahlswede and Winter, 2002), which has probability of
error < 1 when k = O( 1

γ2
logn).

The same result may be obtained by considering an expander G = (V,E) with a bijection between
V and H together with the bounds in Theorem 4, bypassing the need for the pessimistic estimators.
This may turn out to be more efficient, as even though one will need to take more samples when
considering de-randomization by evaluating all random walks on the expander, performing each
step is comparatively cheaper than sampling all of them.

4.3.2 Approximation Algorithms for Covering SDP’s

More recently, a more general class of relaxations, semi-definite programs (SDPs), have been used
by computer scientists (e.g. (Goemans and Williamson, 1995) and (Arora et al., 2009)) to give
better approximation guarantees to NP-hard problems. SDPs may be solved in polynomial time
(using e.g. the ellipsoid method or interior-point methods), and again the solution may be rounded
to give an integral solution to the original problem. In this application, we study a restricted class
of SDPs of the following form: given c ∈ [0,1]n and f ∶ [n]↦ [0, Id], find y where,

minimize ⟨c, y⟩

with feasibility constraint
n

∑
i=1

yif(vi) ⪰ I and y ∈ Nn (9)

This is relaxed into a covering SDP by allowing y ∈ Rn+, and then an integral solution is found by
rounding the proposed solution, as stated in the following theorem:
Theorem 8. Suppose we have a program as in (9) and suppose we have a feasible solution vector
y∗ ∈ Rn+. Then, we can find in time poly(n, d) a feasible integral solution ŷ such that

⟨c, ŷ⟩ ≤ O(log d)⟨c, y∗⟩

Proof. Let us denote the optimal value of the relaxed covering SDP by OPT. The classical rounding
techniques follows as below:

1. Take 8∥y∗∥1 log(2d) iid samples from the distribution induced by y∗ and treat them as a bag
of samples ŷ (i.e. ŷ[i] is equal to the number of times the ith coordinate was sampled). Then,
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with probability strictly greater than 0, the proposed solution ŷ is feasible and satisfies the
constraint

⟨ŷ, c⟩ ≤ O(logn)⟨y∗, c⟩

2. Derandomize the above probabilistic construction using the method of pessimistic estimator
(discussed more in Section A.1) to get a deterministic feasible solution ŷ such that ⟨ŷ, c⟩ ≤
O(logn)⟨y∗, c⟩.

We will be looking at an alternative (and more efficient) de-randomization strategy using expander
walks with rejection sampling as follows:

1. Perform a k = 8 ⋅
∥y∗∥1
(1−λ) ⋅ log(2d

σ ) length random walk on a λ-expander with rejection sampling

with probabilities defined by yi
∥y∗∥1

at the ith node. Treat the collected nodes as a bag of

samples ŷ (i.e. ŷ[i] is equal to the number of times the ith coordinate was seen and selected
in the random walk). Then, with probability strictly greater than 0, the proposed solution ŷ
is feasible and satisfies the constraint

⟨ŷ, c⟩ ≤ O(logn)⟨y∗, c⟩

2. Derandomize the above probabilistic construction by evaluating all possible k−length walks on
the expander graph G to get a deterministic feasible solution ŷ such that ⟨ŷ, c⟩ ≤ O(logn)⟨y∗, c⟩.

The second approch uses strictly more samples as compared to the first approach but getting each
one of them is cheaper, as one only needs O(log d) bits of randomness to walk on the graph whereas
one would need entropy(y∗) pure random bits for sampling and derandomization. The second
approach can be strictly more efficient than the first approach in the case of well behaving y∗.

Conclusions For this project, we explored various tools and techniques to derive strong concen-
tration bounds in matrix-valued dependent settings and their applications for de-randomization
and in theoretical computer science. We also extended the previous results for a new concentration
inequality for random walks on expander graphs with rejection. We are particularly excited in
exploring the applications of random walks on an expander as pseudo-random generators, and look
forward to working on it in the future.
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A Additional Results

A.1 Method of Pessimistic Estimators

The method of pessimistic estimators was first introduced by Raghavan (?). In essence, given a
random variable X, the method consists of transforming an existential statement of the occurrence of
some event σ(X), i.e., P[σ(X) = 1] > 0, into an efficient and deterministic procedure that finds some
x ∈ supp(X) such that σ(x) = 1. This method may be applied, for instance, in the derandomization
of probabilistic algorithms and constructions.

Wigderson and Xiao (?) take this approach to salvage the applications described in (Wigderson and
Xiao, 2005), which was later retracted (Wigderson and Xiao, 2006) due to a fatal flaw in the proof
of their main theorem. If X⃗ = (X1, . . . ,Xk) denotes a random variable, the main observation is that
by averaging, for any i, there must exists some xi such that

P[σ(X⃗) = 0∣X1 = x1, . . . ,Xi = xi] ≤ EX1,...,Xi [P[σ(X⃗) = 0∣X1 = x1, . . . ,Xi = xi]] . (10)

By the existential statement, this chain of reasoning leads to P[σ(x⃗)] ≤ P[σ(X⃗) = 0]. Note that x⃗ is
a fixed vector and that P[σ(X⃗) = 0] < 1, meaning that σ(x⃗) = 1. The main difficulty in turning this
observation into an algorithm lies in computing P[σ(X⃗) = 0∣X1 = x1, . . . ,Xi = xi]. To avoid this, the
method of pessimistic estimators produces estimators φ0, . . . , φk ∶ [n]

i → [0,1] such that for any i
and any fixed x1, . . . , xi ∈ [n] we have that

P[σ(X⃗) = 0∣X1 = x1, . . . ,Xi = xi] ≤ φi(x1, . . . , xi), (11)

together with

EXi+1φi+1(x1, . . . , xi,Xi+1) ≤ φi(x1, . . . , xi). (12)

Obviously, we require φ0 < 1 and φ1, . . . , φk to be efficiently computable.

Thus, the main contribution of (?) is the design of pessimistic estimators to de-randomize matrix-
valued Chernoff bounds (Ahlswede and Winter, 2002). In turn, this allows them to de-randomize
a construction of O(logn) expanders as well as an approximation algorithm for covering SDPs.
However, as noted by Garg et al. (Garg et al., 2018), their method requires an efficient approach to
compute matrix moment generating functions, which is problem dependent, and hence their result
does not constitute a black box derandomization of matrix-valued Chernoff bounds.

A.2 Golden Thompson Inequality

Golden-Thompson inequality (due to (Golden, 1965) and (Thompson, 1965)) states that for any
Hermitian A,B:

tr[exp(A +B)] ≤ tr[exp(A) exp(B)]. (13)

The latter expression may further be bounded by ∥ exp(A)∥tr[exp(B)], and this is sufficient to
prove (3) in the independent case as is done in (Ahlswede and Winter, 2002), where an inductive
application of it yields

E [tr [exp(t
k

∑
i=1

Xi)]] ≤ tr[I] ⋅
k

∏
i=1

∥E[exp(tXi)]∥ .

11



However, this approach is too crude to handle the Markov case, roughly because in the absence of
inependence, passing to the norm makes it difficult to utilize the fact that the expectation of each
Xi is zero.

The original proof of Wigderson-Xiao was based on the following plausible multi-matrix generalization
of (13):

tr [exp(
k

∑
i=1

Ai)] ≤ tr [
k

∏
i=1

exp(Ai)] ,

which turns out to be false for k > 2, as demonstrated by the following counter-example. This lead
to a fatal gap in their proof.

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 −2
0 1 0
−2 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, C =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1
0 1 0
1 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

A.3 Bounded Multi-Matrix Golden Thompson Inequality

Here we provide intuition and proof sketch for the new multi-matrix golden thompson inequality.
Theorem 9 (Theorem 5 repeated). Let H1, . . . ,Hk ∈ Cd×d be Hermitian matrices. Then

log
⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

k

∑
j=1

Hj
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
≤

4

π
∫

π
2

−π
2

log
⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

k

∏
j=1

exp(
eıφ

2
Hj)

1

∏
j=k

exp(
e−ıφ

2
Hj)

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
dµ(φ)

where µ is some probability distribution on [−π2 ,
π
2 ].

The proof relies on Hirschman’s interpolation theorem (see Lemma 3) in complex analysis, which
intuitively states that the value of a holomorphic function at any point inside a domain is a weighted
average of the values that the function takes on the boundary (see (Sutter et al., 2017) for a more
detailed discussion).

Proof. Define G(z) ∶= ∏kj=1 exp ( z
2Hj). We thus have,

log
⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

k

∑
j=1

Hj
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠
= log

⎛

⎝
tr

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝

k

∑
j=1

Hj/2 +
1

∑
j=k

Hj/2
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

(by the Lie-Trotter formula)

= log (tr [ lim
θ→0+

(G(θ)G(θ)∗)1/θ
])

(since the Hj are Hermitian and log is continuous away from 0)

= lim
θ→0+

2

θ
log ∥G(θ)∥2/θ

(by Lemma 3 with p0 =∞ and p1 = 2)
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≤ lim
θ→0+

2(
4

π
+O(θ))∫

π/2

−π/2
log ∥G(eiφ)∥2dµθ(φ)

= lim
θ→0+

(
4

π
+O(θ))∫

π/2

−π/2
log (tr [G(eiφ)G(eiφ)∗])dµθ(φ),

When θ → 0+, µθ(φ) converges to some probability distribution µ, thus completing the proof.

We state without proving an auxillary lemma used in the proof of Theorem 9. The proof of the
above lemma requires heavy complex analysis and is out of the scope of this report. We recommend
the reader to look at the proof of Theorem 3.3 (Garg et al., 2018) for more details.

Lemma 3 (Riesz-Thorin-type inequality, Also see Theorem 3.1 in (Sutter et al., 2017)).
Let S = {z ∈ C ∶ ∣z∣ ≤ 1 and Re(z) ≥ 0} and let G be a holomorphic map from S to square matrices.
Further, let p0 ≥ p1 ∈ [1,∞], for θ ∈ (0,1), define pθ by

1

pθ
=

1 − θ

p0
+
θ

p1
.

If z → ∥G(z)∥pRe(z)
is uniformly bounded on S and ∥G(it)∥p0 ≤ 1, then for any 0 ≤ θ ≤ 1/4,

log ∥G(θ)∥pθ ≤ (
4θ

π
+O(θ2

))∫

π/2

−π/2
log ∥G(eiφ)∥p1dµθ(φ)

where µθ is some probability distribution on [−π2 ,
π
2 ] depending only on θ.

A.4 Proof of Theorem 6

Our proof is similar to the analysis of Theorem-1 from (Healy, 2008) with some changes to handle
rejection sampling.

We first define some additional notation for analysis
Let AG be the normalized adjacency matrix for the graph G. Define pseudo-vertices Ṽ such that
f(ṽi) = 0 for all i ∈ [n]. We can thus analyze our random walk by looking at an equivalent random
walk defined on the graph induced on V ∪ Ṽ. In the extension of the graph G with pseudo-vertices,
number ṽi as n + i respectively, and define the transition matrix P as follows:

P [i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y1 ⋅AG[i, j] if i ∈ V and j ∈ V

(1 − y1) ⋅AG[i, j − n] if i ∈ V and j ∈ Ṽ

y1 ⋅AG[i − n, j] if i ∈ Ṽ and j ∈ V

(1 − y1) ⋅AG[i − n, j − n] if i ∈ Ṽ and j ∈ Ṽ

Additionally, also define a rewards matrix E:

E[i, j] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

erf(vi) if i = j ≤ n

1 if i = j > n

0 otherwise

Under the new notation and setup, we observe that:

13



1. The stationary distribution of the random walk induced by the transition matrix P is given by

π =
1

n
[y1, . . . , yn,1 − y1, . . . ,1 − yn]

2. Let X be the random variable denoting the total reward accumulated so far (as in Algorithm 1).
Aditionally, define bt as follows:

bt ∶= EPEP . . .EP
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

t times

π

and let (b)∥ = ⟨π, b⟩π and b� = b − b∥. We thus have, after k-steps of the random walk:

E[erX] = 1T bk

which can be controlled as

E[erX] = 1T bk

=
n

∑
i=1

bk[i] +
n

∑
i=1

bk[n + i]

=
1

σ
(
n

∑
i=1

σbk[i] +
n

∑
i=1

σbk[n + i])

=
1

σ
πT bk

=
1

σ

∥b
∥

k∥

∥π∥
(14)

where σ = 1
n min(y1, . . . , yn,1 − y1, . . . ,1 − yn).

3. Additionally, ∥Pb∥∥ = ∥b∥∥ and ∥Pb�∥ ≤ λ∥b�∥.

4. Observe that E[X] = 1
n ∑

n
i=1 yi ⋅ f(vi).

Proof. (Proof of Theorem 6) Let us first start by looking at Pr[X ≥ ρk + εk]. Using the Markov’s
inequality, we have:

Pr[X ≥ ρk + εk] ≤
E[erX]

erρk+rεk
(15)

Recalling that ∥b
∥

0∥ = ∥π∥, and using 6 we have:

∥b
∥

j∥ ≤ ∥π∥
j

∏
i=1

exp{(er − 1)ρ +
λ ⋅ (er − 1)2

2(1 − λ)
}

and thus, using this with (14) we have:

E[erX] =
1

σ

∥b
∥

k∥

∥π∥
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≤
1

σ

k

∏
i=1

exp{(er − 1)ρ +
λ ⋅ (er − 1)2

2(1 − λ)
}

≤
1

σ
exp{(er − 1)ρk +

λ ⋅ (er − 1)2k

2(1 − λ)
}

To simplify this expression, we shall assume that r ≤ 1
2 (and thus, er − 1 ≤ r + 2r2/3 ≤ 4r/3) and we

note that ρ ≤ 1. Thus,

E[erX] ≤
1

σ
exp{(r + r2)ρk +

λ ⋅ (4r/3)2k

2(1 − λ)
} (16)

Using (16) with (15), we get:

Pr[X ≥ ρk + εk] ≤
1

σ
exp{(r + r2)ρk +

λ ⋅ (4r/3)2k

2(1 − λ)
− rρk − rεk}

≤
1

σ
exp{(r2)ρk +

λ ⋅ (r)2k

(1 − λ)
− rεk}

≤
1

σ
exp{k(r2ρ +

λr2

(1 − λ)
− rε)}

≤
1

σ
exp{−

kε2(1 − λ)

2(λ + ρ − ρλ)
}

≤
1

σ
exp{−

k(1 − λ)ε2

4
}

Using the same argument for the starting function to be 1 − f , we get:

Pr[∣X − ρk∣ ≥ εk] ≤
2

σ
e−

k(1−λ)ε2

4

Auxillary Lemma’s
The following lemma bounds the length of b

∥

i+1 and b�i+1 relative to b
∥

i and b�i .

Lemma 4. (Stretching Bounds) Let the matrices P and E be as defined above. Also, let us define

the mean ρ = 1
n ∑

n
i=1 yif(vi) and 0 ≤ r ≤

log(1/λ)
2 . Then for any b ∈ R2n:

1. ∥(EPb∥)
∥
∥ ≤ (1 + (er − 1)ρ) ⋅ ∥b∥∥

2. ∥(EPb∥)
�
∥ ≤ er−1

2 ⋅ ∥b∥∥

3. ∥(EPb�)
∥
∥ ≤ er−1

2 ⋅ λ ⋅ ∥b�∥

4. ∥(EPb�)
�
∥ ≤

√
λ∥b�∥
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Proof. Recall that b0 = π and bi+1 = (EP ) bi.

1. (EPb∥)
∥
= (Eb∥)∥ = ⟨π,Eπ⟩b∥ ≤ ⟨1,Eπ⟩b∥ = Ev∼π[erf(v)]b∥, and using the fact that erx ≤

(1 + (er − 1)x) for all x ∈ [0,1], we have:

∥(EPb∥)∥∥ = Ev∼π[erf(v)]∥b∥∥ = Ev[1 + (er − 1)f(v)]∥b∥∥ = (1 + (er − 1)ρ)∥b∥∥

2. Recalling that (b∥)� = 0 for all b, we note that for any α ∈ R,

(EPb∥)� = (Eb∥)� = ((E − α ⋅ I)b∥)�

Thus, choosing α = er+1
2 so that E − α ⋅ I is diagonal with entries bounded by er−1

2 in absolute

value (since er − α = er−1
2 and e0 − α = − e

r−1
2 ). Then,

∥(EPb∥)�∥ = ∥(E − α ⋅ I)Pb∥)�∥ ≤
er − 1

2
∥Pb∥∥

3. The proof is similar to part-2 with the extra property that ∥Pb�∥ ≤ λ∥b�∥.

4. ∥(EPb�)�∥ ≤ ∥EPb�∥ ≤ er ⋅ ∥Pb�∥ ≤ erλ∥b�∥, and since we assumed that r ≤
log(1/λ)

2 , this is

at-most
√
λ ⋅ ∥b�∥.

We now show that b�i remains short relative to previous b
∥

j .

Lemma 5. ∥b�i ∥ ≤
er−1
1−λ ⋅maxj<i{∥b

∥

j∥} for 1 ≤ i ≤ k.

Proof. By the triangle inequality, ∥b�i ∥ = ∥(EPbi−1)
�∥ ≤ ∥(EPb�i−1)

�∥ + ∥(EPb
∥

i−1)
�∥.

Thus, by items 2 and 4 from Lemma 4, we have ∥b�i ∥ ≤
er−1

2 ⋅ ∥b
∥

i−1∥ +
√
λ ⋅ ∥b�i−1∥.

Recursively applying this bound, and noting that ∥b�o∥ = 0, we have:

∥b�i ∥ ≤
er − 1

2
⋅
i−1

∑
j=0

(
√
λ)j∥b

∥

i−j+1∥ ≤
er − 1

2(1 −
√
λ)

⋅max
j<i

{∥b
∥

j∥}

The lemma follows by noting that 1

1−
√
λ
= 1+

√
λ

1−λ ≤ 2
1−λ since λ ∈ [0,1].

We now use Lemma 5 to bound ∥b
∥

i ∥ inductively.

Lemma 6. ∥b
∥

i ∥ ≤ exp{(er − 1)ρ +
λ⋅(er−1)2

2(1−λ) } ⋅maxj<i{∥b
∥

j∥}, for 1 ≤ i ≤ k

Proof. By the triangle inequality,

∥b
∥

i ∥ = ∥(EPbi=1)
∥∥ ≤ ∥(EPb

∥

i−1)
∥
∥ + ∥(EPb�i−1)

∥∥
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Thus, by items 1 and 3 of Lemma 4, we have ∥b
∥

i ∥ ≤ (1 + (er − 1)ρ) ⋅ ∥b
∥

i−1∥ +
er−1

2 ⋅ λ ⋅ ∥b�i−1∥, and so

by Lemma 5, we have,

∥b
∥

i ∥ ≤ (1 + (er − 1)µ) ⋅ ∥b
∥

i−1∥ +
λ ⋅ (er − 1)2

2(1 − λ)
⋅max
j<i−1

{∥b
∥

j∥}

≤ (1 + (er − 1)ρ +
λ ⋅ (er − 1)2

2(1 − λ)
) ⋅max

j<i
{∥b

∥

j∥}.

Finally using the fact that 1 + x ≤ ex for all x > 0, we conclude that this is at most,

exp{(er − 1)ρ +
λ ⋅ (er − 1)2

2(1 − λ)
} ⋅max

j<i
{∥b

∥

j∥}

A.5 Conjectures

Matrix-Valued Settings - Random walk with Rejection Since the proof of the matrix-
expander chernoff bound in Garg et al. (2018) follows the similar analysis as the proof of Theorem 1
in (Healy, 2008) and thus consequently to our proof of Theorem 6, we believe the following theorem
to be true:

Theorem 10. Let G(V,E) be a constant degree λ-spectral expander with ∣V ∣ = n. Let us further
assume that we are given scalars y1, . . . , yn ∈ [0,1]. Additionally, we are given a matrix valued
function F ∶ V ↦ [−Id, Id] ⊆ Rd×d. Then for a random walk with rejection, z1, . . . , zk, as defined by
Algorithm 1, the following Chernoff-type bound holds:

Pr

⎡
⎢
⎢
⎢
⎢
⎣

λmax
⎛

⎝

1

k

k

∑
j=1

F (vj) − ρ
⎞

⎠
≥ ε

⎤
⎥
⎥
⎥
⎥
⎦

≤
d

σ
e−Ω(ε2(1−λ)k)

Pr

⎡
⎢
⎢
⎢
⎢
⎣

λmin
⎛

⎝

1

k

k

∑
j=1

F (vj) − ρ
⎞

⎠
≤ −ε

⎤
⎥
⎥
⎥
⎥
⎦

≤
d

σ
e−Ω(ε2(1−λ)k)

where ρ = 1
n ∑

n
j=1 yiF (vi) and σ = 1

n min(y1, y2, . . . , yn,1 − y1, . . . ,1 − yn).

Multiplicative Chernoff Bound We also suspect that the following multiplicative versions of
the chernoff-type bound will follow from similar analysis using the new bound on E[etX].

Theorem 11. Let G(V,E) be a constant degree λ-spectral expander with ∣V ∣ = n. Let us further
assume that we are given scalars y1, . . . , yn ∈ [0,1]. Additionally, we are given a matrix valued
function F ∶ V ↦ [−Id, Id] ⊆ Rd×d. Then for a random walk with rejection, z1, . . . , zk, as defined by
Algorithm 1, the following multiplicative chernoff-type bound holds for all γ ∈ [0, 1

2]:
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Pr

⎡
⎢
⎢
⎢
⎢
⎣

1

k

k

∑
j=1

F (vj) ⪰ ρ(1 + γ)

⎤
⎥
⎥
⎥
⎥
⎦

≤
d

σ
e−Ω(γ2ρ(1−λ)k)

Pr

⎡
⎢
⎢
⎢
⎢
⎣

1

k

k

∑
j=1

F (vj) ⪯ ρ(1 − γ)

⎤
⎥
⎥
⎥
⎥
⎦

≤
d

σ
e−Ω(γ2ρ(1−λ)k)

where ρ = 1
n ∑

n
j=1 yiF (vi) and σ = 1

n min(y1, y2, . . . , yn,1 − y1, . . . ,1 − yn).
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