In which we obtain r-wise independence from linear codes, obtain ϵ-balanced codes from ϵ-biased spaces, and explore Reed-Solomon and Reed-Muller (polynomial) codes.

8.1 Recap

We briefly recall a few definitions and observations from previous lectures:

- C is a linear $[n, k, d]_{q}$ code if C is a linear subspace of \mathbb{F}_{q}^{n} with dimension $k:=\log _{q}(|C|)$ and distance $d:=\min _{x \neq y \in C}\left|\left\{i \in[n]: x_{i} \neq y_{i}\right\}\right|=\min _{x \in C}\left|\left\{i \in[n]: x_{i} \neq 0\right\}\right|$ (because it is linear).
- $G \in \mathbb{F}_{q}^{n \times k}$ is a generator matrix of C if $C=\left\{G x: x \in \mathbb{F}_{q}^{k}\right\}$.
- $C^{\perp}:=\left\{y \in \mathbb{F}_{q}^{n}: \forall c \in C,\langle c, y\rangle=0\right\}$ is called the dual code of C. Basic linear algebra tells us that C^{\perp} has dimension $n-k$.
- $H:=\left(G^{\perp}\right)^{T}$ is the parity check matrix of C if $G^{\perp} \in \mathbb{F}_{q}^{n \times(n-k)}$ is the generator matrix of C^{\perp}. Using the definitions above, it is straightforward to show that $C=\left\{y \in \mathbb{F}_{q}^{n}: H y=\mathbf{0}\right\}$. In other words, when $q=2, C$ contains exactly the strings that evaluate to 0 under every parity function induced by a row in H.

$8.2 r$-wise independence from linear codes

We show that generator matrices for certain linear codes can also generate r-wise independent distributions.

Claim 8.1 Let C be an $[n, k, d]_{2}$ linear code such that C^{\perp} is an $[n, n-k, r+1]_{2}$ linear code. Then, any r rows in the generator matrix G of C are linearly independent.

Proof: Note that the parity check matrix of C^{\perp} is G^{T}, and thus $C^{\perp}=\left\{y \in \mathbb{F}_{2}^{n}: G^{T} y=\mathbf{0}\right\}$. Let r^{+}be the smallest number of rows in G that are linearly dependent. Then, there are r^{+}columns in G^{T}, labeled $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{r^{+}}}$, such that $\sum_{j \in\left[r^{+}\right]} v_{i_{j}}=\mathbf{0}$ (recall we are working over \mathbb{F}_{2}). Now, define a vector $y \in \mathbb{F}_{2}^{n}$ that equals 0 everywhere except at coordinates $i_{1}, i_{2}, \ldots, i_{r^{+}}$, where it equals 1 . Then $G^{T} y=\sum_{j \in\left[r^{+}\right]} v_{i_{j}}=\mathbf{0}$, and thus $y \in C^{\perp}$. Because C^{\perp} is a linear code with distance $r+1$, every vector it contains must have Hamming weight at least $r+1$. Because the Hamming weight of y, defined above, is r^{+}, we must have $r^{+} \geq r+1$. Thus, by definition of r^{+}, any set of r rows in G must be linearly independent.

The corollary below follows from the observation that taking any r rows of G produces a matrix of rank r that therefore outputs a vector uniformly from \mathbb{F}_{2}^{r} when applied to a vector sampled uniformly from \mathbb{F}_{2}^{k}.

Corollary 8.2 The distribution $y=G x$, where x is sampled uniformly from \mathbb{F}_{2}^{k}, is r-wise independent on \mathbb{F}_{2}^{n}.

8.3ϵ-balanced codes from ϵ-biased spaces

Recall that an ϵ-biased space, or ϵ-biased distribution, can be thought of as the output of a pseudorandom generator for the class of parity functions. In particular, it is a distribution D on $\{0,1\}^{k}$ such that for all nonempty $T \subseteq[k]$,

$$
\frac{1}{2}-\epsilon \leq \operatorname{Pr}_{x \sim D}\left[\bigoplus_{i \in T} x_{i}=1\right] \leq \frac{1}{2}+\epsilon
$$

It is equivalent to think of an ϵ-biased space as a uniform distribution D over subset $S \subseteq\{0,1\}^{k}$; that is, $\operatorname{Pr}[D=x]=1 /|S|$ for all $x \in S$, and 0 otherwise.

We say that an $[n, k, d]_{2}$ code C is ϵ-balanced if, for all nonzero $c \in C$,

$$
\left(\frac{1}{2}-\epsilon\right) \cdot n \leq|c| \leq\left(\frac{1}{2}+\epsilon\right) \cdot n
$$

where $|\cdot|$ denotes the Hamming weight. Observe that if C is linear, then $d \geq\left(\frac{1}{2}-\epsilon\right) \cdot n$, because distance in a linear code is equal to the smallest Hamming weight of any vector within it. We now see that we can easily obtain an ϵ-balanced code from an ϵ-biased space.

Claim 8.3 Let D be an ϵ-biased space on \mathbb{F}_{2}^{k} that is supported (uniformly) on S. Let $n:=|S|$, and denote the elements of S by $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. Define a matrix $G \in \mathbb{F}_{2}^{n \times k}$ such that row i of G is s_{i}. Then, $C:=$ $\left\{G y: y \in \mathbb{F}_{2}^{k}\right\}$ is an ϵ-balanced code.

Proof: This follows almost immediately from the definitions. Fix any nonzero $y \in \mathbb{F}_{2}^{k}$. Define $T:=\{i \in$ $\left.[k]: y_{i}=1\right\} \subseteq[k]$. (Notice T is not empty.) Then, element j of vector $G y \in \mathbb{F}_{2}^{n}$ is simply $\left\langle s_{j}, y\right\rangle=\bigoplus_{i \in T} s_{j, i}$, where $s_{j, i}$ is the $i^{\text {th }}$ coordinate of the $j^{\text {th }}$ vector in S. Thus, letting $|\cdot|$ denote Hamming weight,

$$
|G y|=\#\left\{j \in[n]: \bigoplus_{i \in T} s_{j, i}=1\right\}=n \cdot \operatorname{Pr}_{j \sim[n]}\left[\bigoplus_{i \in T} s_{j, i}=1\right]=n \cdot \operatorname{Pr}_{x \sim D}\left[\bigoplus_{i \in T} x_{i}=1\right]
$$

which completes the proof, because we assumed that D is an ϵ-biased space.

8.4 Polynomial codes

8.4.1 Reed-Solomon codes

A Reed-Solomon code is constructed as follows: consider a field \mathbb{F}_{q}, any subset $S \subseteq \mathbb{F}_{q}$ with n distinct elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ (typically, $S=\mathbb{F}_{q}$ or $S=\mathbb{F}_{q} \backslash\{0\}$ is used), and some $k<n$. Then, the code is defined as

$$
C:=\left\{\left(p\left(\alpha_{i}\right)\right)_{i \in[n]}: p \in \mathbb{F}_{q}[x], \operatorname{deg}(p) \leq k-1\right\}
$$

To encode a message into C, the following protocol is used: given a message $m=\left(m_{0}, m_{1}, \ldots, m_{k-1}\right) \in \mathbb{F}_{q}^{k}$, define a corresponding polynomial $p_{m} \in \mathbb{F}_{q}[x]$ as $\sum_{i=0}^{k-1} m_{i} x^{i}$. Clearly it has degree $\leq k-1$, so $\left(p_{m}\left(\alpha_{i}\right)\right)_{i \in[n]}$ is a codeword. Using this encoding scheme, we see that the generator for this code is, in fact, the Vandermonde matrix:

$$
\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \ldots & \alpha_{1}^{k-1} \\
1 & \alpha_{2} & \alpha_{2}^{2} & \ldots & \alpha_{2}^{k-1} \\
\vdots & & & \ddots & \vdots \\
1 & \alpha_{n} & \alpha_{n}^{2} & \ldots & \alpha_{n}^{k-1}
\end{array}\right)
$$

Next, we relate this code to the types of codes we've already seen.

Claim 8.4 C is an $[n, k, n-k+1]_{q}$ linear code.

Proof: To see that C is linear, simply observe that it is closed under linear combinations: for polynomials p, q of degree $\leq k-1$ and scalars $\beta, \gamma \in \mathbb{F}_{q}, \beta p+\gamma q$ clearly has degree $\leq k-1$. Because C is over \mathbb{F}_{q}, the alphabet size of C is q. Because each codeword C has n coordinates, its block length is n. C has dimension k because there are q^{k} polynomials of the specified type (i.e., think of the correspondence between polynomials and the coefficients that can be attached to each power of x). To see that C has distance $n-k+1$, observe that because C is a linear code, it suffices to show that this is a lower bound for the minimum Hamming weight of any nonzero codeword. So, consider any message m that is encoded as a nonzero polynomial p_{m}. Because deg $\left(p_{m}\right) \leq k-1$ (by our encoding protocol), the Fundamental Theorem of Algebra tells us that p_{m} has at most $k-1$ roots, and thus at least $n-k+1$ elements of $\left(p_{m}\left(\alpha_{i}\right)\right)_{i \in[n]}$ are nonzero. Note also that this distance is tight, because there exist degree $k-1$ polynomials that evaluate to 0 on $k-1$ points. For example, $\prod_{i \in[k-1]}\left(x-\alpha_{i}\right)$.

8.4.2 Reed-Muller codes

Reed-Muller codes strictly generalize Reed-Solomon codes. To construct a Reed-Muller code, fix some field \mathbb{F}_{q}, along with numbers m and r (which will correspond to number of variables and bound on total degree, see below). A Reed-Muller code over these parameters is defined as:

$$
C:=\left\{(p(y))_{y \in \mathbb{F}_{q}^{m}}: p \in \mathbb{F}_{q}\left[x_{1}, x_{2}, \ldots, x_{m}\right], \operatorname{deg}(p) \leq r\right\},
$$

where $\operatorname{deg}(p)$ denotes the total degree of p. Observe that each polynomial p over which this code is defined may be represented as the sum $\sum_{T} c_{T} x^{T}$, where $T=\left(t_{1}, \ldots, t_{m}\right)$ is a string of powers that sum to at most r, c_{T} is some coefficient from \mathbb{F}_{q}, and the notation x^{T} denotes $x_{1}^{t_{1}} x_{2}^{t_{2}} \cdots x_{m}^{t_{m}}$.

Next, we relate Reed-Muller codes on \mathbb{F}_{2} to the types of code that we've already seen.

Claim 8.5 The Reed-Muller code $\operatorname{RM}(m, r)$ on \mathbb{F}_{2} is a $\left[2^{m},\binom{m}{\leq r}, 2^{m-r}\right]_{2}$ linear code.

Proof: $\mathrm{RM}(m, r)$ is a linear code because linear combinations of polynomials preserve degree. The block length of this code is clearly 2^{m}, from the definitions above. The dimension of $\mathrm{RM}(m, r)$ over \mathbb{F}_{2} is $\binom{m}{\leq r}:=$ $\sum_{i=0}^{r}\binom{m}{i}$, and can be seen by counting the number of (multilinear) monomials on m variables with degree at most r. Now, because $\operatorname{RM}(m, r)$ is linear, to see that the distance is 2^{m-r}, we just need to show that all nonzero vectors in the code have hamming weight at least 2^{m-r}; i.e., that for all $p \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$ of total degree at most $r,\left|\left\{x \in \mathbb{F}_{2}^{m}: p(x) \neq 0\right\}\right| \geq 2^{m-r}$. To see this, observe that we can write every nonzero multilinear polynomial $p\left(x_{1}, \ldots, x_{m}\right)$ of max total degree r as $x_{i_{1}} x_{i_{2}} \cdots x_{i_{l}}+q\left(x_{1}, \ldots, x_{m}\right)$, where $l \leq r$, each $i_{j} \in[m]$, and $q\left(x_{1}, \ldots, x_{m}\right)$ is a multilinear polynomial of max total degree $\leq l$. Now, notice that for any $\{0,1\}$ assignment to each variable $x_{j}, j \notin\left\{i_{1}, \ldots, i_{l}\right\}$, polynomial q turns into a polynomial of max degree $\leq r-1$, and thus p becomes a nonzero multilinear polynomial p^{\prime} over variables $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{l}}$. Notice that there is always some assignment to these variables such that p^{\prime} evaluates to 1: simply take the lowest degree monomial in p^{\prime}, set its variables to 1 , and set all other variables in p^{\prime} to 0 .

Since we may achieve this result for any $\{0,1\}$ assignment to the variables $\left\{x_{j}\right\}_{j \notin\left\{i_{1}, \ldots, i_{l}\right\}}$, we know that $\left|\left\{x \in \mathbb{F}_{2}^{m}: p(x) \neq 0\right\}\right| \geq 2^{m-l} \geq 2^{m-r}$, as desired. Note that this result is tight, considering the polynomial $p=x_{1} x_{2} \cdots x_{r}$.

