CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2018

Lecture 8: September 20
Lecturer: Eshan Chattopadhyay Scribe: Jesse Goodman

In which we obtain r-wise independence from linear codes, obtain e-balanced codes from e-biased spaces, and
explore Reed-Solomon and Reed-Muller (polynomial) codes.

8.1 Recap

We briefly recall a few definitions and observations from previous lectures:

e Cis alinear [n, k,d], code if C is a linear subspace of I} with dimension & := log,(|C|) and distance
d:=mingyec |{i € [n] : 2; # y;}| = mingec [{i € [n] : 2; # 0} (because it is linear).

e G € F}** is a generator matrix of C if C = {Gz : z € F}'}.

e Ct:={yc Fy : Ve € C,{c,y) = 0} is called the dual code of C. Basic linear algebra tells us that
C* has dimension n — k.

o H :=(G*)T is the parity check matrix of C if G+ € Fi*"™% ig the generator matrix of C'+. Using
the definitions above, it is straightforward to show that C' = {y € Fy:Hy = 0}. In other words, when
q = 2, C contains exactly the strings that evaluate to 0 under every parity function induced by a row
in H.

8.2 r-wise independence from linear codes

We show that generator matrices for certain linear codes can also generate r-wise independent distributions.

Claim 8.1 Let C be an [n,k,d)s linear code such that C+ is an [n,n — k,r + 1] linear code. Then, any r
rows in the generator matrix G of C' are linearly independent.

Proof: Note that the parity check matrix of C+ is GT, and thus C*+ = {y € F} : GTy = 0}. Let r* be
the smallest number of rows in G that are linearly dependent. Then, there are r* columns in G7, labeled
iy Vigs - -+, Vi, such that Zje[rﬂ v;; = 0 (recall we are working over Fz). Now, define a vector y € Fy that
equals 0 everywhere except at coordinates iy,is,...,i,+, where it equals 1. Then GTy = Zje[rﬂ v, =0,

and thus y € C+. Because Ct is a linear code with distance r + 1, every vector it contains must have
Hamming weight at least » + 1. Because the Hamming weight of y, defined above, is r*, we must have
rT > r+ 1. Thus, by definition of v+, any set of r rows in G must be linearly independent. ]

The corollary below follows from the observation that taking any r rows of G produces a matrix of rank r
that therefore outputs a vector uniformly from F% when applied to a vector sampled uniformly from F5.

Corollary 8.2 The distribution y = G, where x is sampled uniformly from F5, is r-wise independent on
Fy.
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8.3 e-balanced codes from e-biased spaces

Recall that an e-biased space, or e-biased distribution, can be thought of as the output of a pseudoran-
dom generator for the class of parity functions. In particular, it is a distribution D on {0, 1}* such that for
all nonempty T C [k],

1
;€< Pr @m,_l <
€T

w\»—‘

It is equivalent to think of an e-biased space as a uniform distribution D over subset S C {0, 1}]~c ; that is,
Pr[D = 2] =1/|5] for all z € S, and 0 otherwise.

We say that an [n, k,d]2 code C' is e-balanced if, for all nonzero ¢ € C,
1 1
G- n<id<(z+9-n

where | - | denotes the Hamming weight. Observe that if C is linear, then d > (1 — €) - n, because distance
in a linear code is equal to the smallest Hamming weight of any vector within it. We now see that we can
easily obtain an e-balanced code from an e-biased space.

Claim 8.3 Let D be an e-biased space on F5 that is supported (uniformly) on S. Let n :=|S|, and denote
the elements of S by {s1,s2,...,8,}. Define a matriz G € FSXk such that row i of G is s;. Then, C :=
{Gy :y € F&} is an e-balanced code.

Proof: This follows almost immediately from the definitions. Fix any nonzero y € F5. Define T := {i €
[k] : yi = 1} C [k]. (Notice T is not empty.) Then, element j of vector Gy € Fy is simply (s;,y) = @D;cr Sj.i»

where s;; is the i*" coordinate of the j* vector in S. Thus, letting | - | denote Hamming weight,
|Gy|:#{j€[n]:@sﬂf1}fn Pr @5”71 =n- Pr @xlfl
. i~In]
i€l €T
which completes the proof, because we assumed that D is an e-biased space. [ |

8.4 Polynomial codes

8.4.1 Reed-Solomon codes

A Reed-Solomon code is constructed as follows: consider a field Fy, any subset S C F, with n distinct
elements a1, a9, ..., ay, (typically, S = F, or S = F, \ {0} is used), and some k < n. Then, the code is
defined as

C = {(p(e))iepn) : p € Fola],deg(p) < k — 1}
To encode a message into C, the followmg protocol is used: given a message m = (mg, m1,...,M_1) € IF’;,
define a corresponding polynomial p,, € Fy[z] as Zf:ol m;z’. Clearly it has degree < k—1, 50 (pp, (a))iem) is
a codeword. Using this encoding scheme, we see that the generator for this code is, in fact, the Vandermonde
matrix:

1 o a% e alffl
1 s a% e ag_l
1 a, o2 ... aof!

Next, we relate this code to the types of codes we've already seen.
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Claim 8.4 C is an [n,k,n — k + 1], linear code.

Proof: To see that C is linear, simply observe that it is closed under linear combinations: for polynomials
D, q of degree < k — 1 and scalars 3,y € Fy, Bp 4 vq clearly has degree < k — 1. Because C is over [y, the
alphabet size of C is gq. Because each codeword C has n coordinates, its block length is n. C has dimension k
because there are ¢* polynomials of the specified type (i.e., think of the correspondence between polynomials
and the coefficients that can be attached to each power of ). To see that C has distance n — k + 1, observe
that because C' is a linear code, it suffices to show that this is a lower bound for the minimum Hamming
weight of any nonzero codeword. So, consider any message m that is encoded as a nonzero polynomial p,,.
Because deg(p,,) < k—1 (by our encoding protocol), the Fundamental Theorem of Algebra tells us that p,,
has at most k — 1 roots, and thus at least n — k + 1 elements of (pm(a;))ic)n) are nonzero. Note also that
this distance is tight, because there exist degree k — 1 polynomials that evaluate to 0 on k£ — 1 points. For

example, [[;cx_1)(z — a). [

8.4.2 Reed-Muller codes

Reed-Muller codes strictly generalize Reed-Solomon codes. To construct a Reed-Muller code, fix some
field F,, along with numbers m and r (which will correspond to number of variables and bound on total
degree, see below). A Reed-Muller code over these parameters is defined as:

C:= {(p(y))yEF;" ‘pE Fq[xlax% s ,xm],deg(p) < T}7

where deg(p) denotes the total degree of p. Observe that each polynomial p over which this code is defined

may be represented as the sum ). cral, where T = (t1,...,tn) is a string of powers that sum to at most
7, cr is some coefficient from F,, and the notation 2 denotes ' 2% - - - xim.

Next, we relate Reed-Muller codes on Fs to the types of code that we’ve already seen.

Claim 8.5 The Reed-Muller code RM(m,r) on Fy is a [2™, (Z1),2™ "] linear code.

Proof: RM(m,r) is a linear code because linear combinations of polynomials preserve degree. The block
length of this code is clearly 2™, from the definitions above. The dimension of RM(m,r) over Fy is () :=
> (™), and can be seen by counting the number of (multilinear) monomials on m variables with degree
at most r. Now, because RM(m, ) is linear, to see that the distance is 2", we just need to show that
all nonzero vectors in the code have hamming weight at least 2~"; i.e., that for all p € Falxq, ..., 2] of
total degree at most 7, |[{z € FJ* : p(x) # 0}] > 2™~". To see this, observe that we can write every nonzero
multilinear polynomial p(z1,...,z,,) of max total degree r as x;, x;, - - - x;, + q(x1, ..., T, ), where [ < r, each
i; € [m], and g(z1,...,%m) is a multilinear polynomial of max total degree < I. Now, notice that for any
{0,1} assignment to each variable z;,j ¢ {i1,...,%}, polynomial ¢ turns into a polynomial of max degree
< r —1, and thus p becomes a nonzero multilinear polynomial p’ over variables x;,, Z;,, ..., x;. Notice that
there is always some assignment to these variables such that p’ evaluates to 1: simply take the lowest degree

monomial in p’, set its variables to 1, and set all other variables in p’ to 0.

Since we may achieve this result for any {0,1} assignment to the variables {;};¢;, .. 4,3, We know that
H{x € F* : p(x) # 0} > 2™~ > 2m~" as desired. Note that this result is tight, considering the polynomial
P =21%2 " Tp. | |
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