CS 6815: Lecture 5

Instructor: Eshan Chattopadhyay

Scribe: Drishti Wali

 6^{th} September 2018

1 Introduction

Using the tools of Fourier Analysis which we developed last time, we will proceed to show how we can construct an ϵ -biased distribution which is almost k-wise independent but requires only O(k + log(n)) random bits compared to the lower bound of $k \times log(n)$ random bits for k-wise independent distributions. For this we would be requiring a result by Vazirani on comparing xor function based distributions to the uniform distribution.

2 Recap

Before constructing the ϵ -biased distributions, let us have a quick recap of the tools from Fourier Analysis we were building and would be needing in this lecture.

Group: In this lecture, $G = (\mathbb{F}_p^n, +)$ is a group over vectors of size n where each element comes from a field of size p with the addition operator as element-wise addition modulo p. **Characters:** We defined non-trivial characters of the group G as

$$\chi_v(y) := \chi(\langle v, y \rangle) = \omega^{\sum_{i=1}^n v_i y_i}$$

for all $v \in \mathbb{F}_p^n$ and where $\omega = e^{\frac{2\pi \iota}{p}}$ is a non-primitive p^{th} root of unity. Some general useful properties of these characters include:

Fact 2.1. The characters are ortho-normal to one another

 $\langle \chi_v, \chi_w \rangle = \mathop{\mathbf{E}}_{x \sim \mathbb{F}_p^n} [\chi_v(x) \overline{\chi_w(x)}]$ (By the definition of inner product defined last time)

 $= \mathbb{1}_{v=w}$ (By using the fact that the sum of all powers of a non-primitive root of unity is 0)

Fact 2.2. The set of characters form a basis for the set of functions $f : \mathbb{F}_p^n \to \mathbb{C}$

$$f(x) = \sum_{v \in \mathbb{F}_p^n} \hat{f}(v) \overline{\chi_v(x)}$$

where $\hat{f}(v) = \langle f, \chi_v \rangle = \underset{y \sim \mathbb{F}_p^n}{\mathbb{E}_p^n} [f(y)\chi_v(y)]$

Corollary 1. Setting p = 2 then for all $v \in \mathbb{F}_2^n$;

$$\chi_v(y) = (-1)^{\langle v, y \rangle} = (-1)^{\oplus y_T} = (-1)^{\sum_{i \in T} y_i} := \chi_T(y)$$

where $T = \{i \in [n] : v_i = 1\}$

3 ϵ - biased distributions

Let $\mathbf{D}: \mathbb{F}_2^n \to [0,1]$ be a distribution on \mathbb{F}_2^n . By using Fact 2.2 we can write

$$\mathbf{D}(x) = \sum_{T \subseteq [n]} \hat{\mathbf{D}}(T) \chi_T(x)$$

$$= \sum_{T \subseteq [n]} \sum_{y \sim \mathbb{F}_2^n} [\mathbf{D}(y) \chi_T(y)] \chi_T(x)$$

$$= \sum_{T \subseteq [n]} \frac{1}{2^n} \sum_{y \in \mathbb{F}_2^n} \mathbf{D}(y) \chi_T(y) \chi_T(x)$$

$$= \sum_{T \subseteq [n]} \frac{1}{2^n} \sum_{y \sim \mathbf{D}} \chi_T(y) \chi_T(x)$$

$$= \sum_{T \subseteq [n]} \frac{1}{2^n} \sum_{y \sim \mathbf{D}} (-1)^{\oplus y_T} \chi_T(x)$$

Definition 3.1 (ϵ -biased distribution). $\boldsymbol{D} : \mathbb{F}_2^n \to \mathbb{R}$ is an ϵ -biased distribution if $\forall T \subseteq [n], T \neq \emptyset$

$$|\hat{\boldsymbol{D}}(T)| \le \frac{\epsilon}{2^n}$$

Now as

$$\hat{\mathbf{D}}(T) = \frac{1}{2^n} \mathop{\mathbb{E}}_{y \sim \mathbf{D}}[(-1)^{\oplus y_T}]$$

and

$$\hat{\mathbf{D}}(T) \le \frac{\epsilon}{2^n} \Rightarrow |\underset{y \sim \mathbf{D}}{\mathbb{E}}[(-1)^{\oplus y_T}]| \le \epsilon$$

Remark 3.2. If D is an ϵ -biased distribution

$$\frac{1}{2} - \epsilon \le \Pr_{y \sim \mathbf{D}}[\oplus y_T = 1] \le \frac{1}{2} + \epsilon$$

3.1 Vazirani's XOR Lemma

Definition 3.3 (Statistical distance or Variational distance). Let D_1 , D_2 be a distribution on Ω ,

$$|\boldsymbol{D}_1 - \boldsymbol{D}_2| = \frac{1}{2} \sum_{w \in \Omega} \left| \Pr_{y \sim \boldsymbol{D}_1}[y = w] - \Pr_{y \sim \boldsymbol{D}_2}[y = w] \right|$$

Lemma 3.4. Let **D** be an ϵ -biased distribution on \mathbb{F}_2^n . Then,

$$|\boldsymbol{D} - \boldsymbol{U}_n| \le \epsilon imes 2^{n/2}$$

where U_n is the uniform distribution over n bits.

Proof: We know that

$$\hat{\mathbf{U}}(\emptyset) = \mathop{\mathbb{E}}_{x \sim \mathbb{F}_2^n} [\mathbf{U}(x)] = 2^{-n}$$

and

$$\hat{\mathbf{U}}(T) = \mathop{\mathbb{E}}_{x \sim \mathbb{F}_2^n} [\mathbf{U}(x)(-1)^{\oplus x_T}] = 0 \text{ for } T \subseteq [n], \, T \neq \emptyset$$

Consider $f: \mathbb{F}_2^n \to \mathbb{R}; f(x) = \mathbf{D}(x) - \mathbf{U}(x)$

$$\begin{aligned} |\mathbf{D} - \mathbf{U}| &= \frac{1}{2} ||f||_{l^1} & \text{(By construction)} \\ &\leq 2^{n/2} ||f||_{l^2} & \text{(By Cauchy-Schwartz)} \\ &= 2^n ||f||_{L^2} & \text{(By re-normalization)} \\ &= 2^n ||\hat{f}||_{l^2} & \text{(By Parseval's identity)} \\ &\leq 2^n ||\hat{\mathbf{D}}||_{l^2} & \text{(By the linearity of fourier coefficients)} \\ &\leq 2^n \sqrt{\frac{\epsilon^2}{2^n}} \leq 2^{n/2} \times \epsilon & \text{(By definition of ϵ-biased distribution)} \end{aligned}$$

4 δ -Almost k-wise independence

Now we will try to construct an almost k-wise independent distribution using an ϵ -biased distribution using much fewer bits.

Definition 4.1 (δ -almost k-wise distribution). A sequence of n bits $\mathbf{X} = (X_1, ..., X_n) \in \{0, 1\}^n$ is a δ -almost k-wise distribution if $\forall T \subseteq [n], |T| = k$

$$|X_T - U_k| \leq \delta$$

where $\mathbf{X}_T = (X_{i_1}, ..., X_{i_k})$ for $T = i_1, ..., i_k$

Theorem 2. An $\delta \times 2^{k/2}$ -biased distribution on $\{0,1\}^n$ **X** is also δ -almost k-wise independent

Proof: Given that **X** is ϵ -biased we can use Vazirani's XOR lemma which gives us

$$|\mathbf{X}_T - \mathbf{U}_k| \le \epsilon \times 2^{k/2}$$

Now if we pick $\epsilon \times 2^{k/2} \leq \delta \Rightarrow \epsilon \leq \delta \times 2^{-k/2}$ we would have a δ -almost k-wise independent distribution

The randomness required for an ϵ -biased distribution is $2\log(\frac{n}{\epsilon})$ bits and thus the total randomness used: $2\log n + 2\log(\frac{2^{k/2}}{\delta}) = 2\log n + k - 2\log \delta$

Remark 4.2. We can have an δ -almost k-wise independent distribution using only $2\log(n) + k - 2\log(\delta)$ random bits as compared to $k/2 \times \log(n+1)$ for exact k-wise independent distribution.

The random bits required for a δ -almost k-wise independent distribution can be further reduced to $k \log \log(n)$