
CS 6815: Lecture 3

Instructor: Eshan Chattopadhyay Scribe: Linus Setiabrata

Aug 30, 2018

Announcements:
Homework 0 is due; Homework 1 will come out today.

On the week of September 10, Bobby Kleinberg will guest lecture on capsets, polynomial
method, and Fourier analysis.

In the last lecture we were talking about PRGs. We had the pairwise independent generator
X = (X1, . . . , Xm) with (Xi, Xj) ∼ U2. We’ll be generalizing this:

k-wise independent distributions

LetX be a distribution on {0, 1}n. We sayX is a k-wise independent distribution if S ⊆ [n], |S| = k,
we have XS ∼ Uk (where XS = (Xi)i∈S). We’ll construct one of these by first constructing one
such X on Fnq , where q is large.

Indeed, consider a matrix M of size n× k such that any k rows are independent. If q ≥ n+ 1,
then one such matrix exists (take, for example, the Vandermonde matrix).

Randomly pick y ∈ Fkq and output My = x ∈ Fnq . We want to show X is k-wise independent,
that is, for S ⊆ [n] and |S| = k we have XS ∼ UFk

q
[he remarks again that we are doing this trick

to minimize the randomness needed]. But actually xS = MSy, where MS is the matrix minor
obtained by keeping only rows in S (and all the columns). But now MS is invertible because it
has k rows, and they’re independent. So MS a bijection, and XS is now uniform! The randomness
used was k log q (number of bits).

Exercise 1. (Unofficial homework) Verify the fact that the Vandermonde matrix has the property
that any k rows are independent. [my favorite proof is here, though this might be a standard proof
by now]

We use this to construct k-wise independence on Fn2 . Repeat the above construction, for
s = dlog(n + 1)e, q = 2s. We want to use this to construct a matrix, this time over F2, such
that any k rows are independent. Recall that there is a natural map ϕ : F2s → Fs2. For example,
you might recall that F2s

∼= F2[x]/(xs − 1), and ϕ will send [f ] ∈ F2[x]/(xs − 1) to the coefficients
of f (where the representative f of [f ] is chosen so that it has degree at most s− 1, of course...)

So this pushes to a map
ϕ̄ : M︸︷︷︸

n×k

7→ M ′︸︷︷︸
n×(1+s(k−1))

,
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acting elementwise on M . We claim that M ′ also has the property that any k rows are linearly
independent (prove the contrapositive.... why are you doing this). Here, too, the randomness used
is k log q ≈ k log(n+ 1) [modulo floors/ceilings].

Improving seed length

The claim is that it suffices to use

M1 =

1 α1 α3
1 α5

1 . . . αk−11

1 α2 α3
2 α5

2 . . . αk−12
...

...
...

...
. . .

...


where we drop the columns with even powers. This will allow us to shave off some columns so that
we can reduce randomness further. Indeed, we claim that any k rows are linearly independent over
F2.

Proof. Say that there was a T = {t1, . . . , tk} ⊆ [n]. Recall that any k rows of M are linearly
independent (over F2). Fix β1, . . . , βk ∈ F2 that are not all 0.

We have β1(M)t1 +β2(M)t2 + · · ·+βk(M)tk 6= ~0, where (M)i denotes the ith row of M (written
as a column vector, but never mind that). So for some `, the `th component of this matrix is
nonzero, ie., β1α

`
t1 + β2α

`
t2 + · · ·+ βkα

`
tk
6= 0.

Observe that if, for example, α12
1 + α12

3 + α12
7 = (α3

1 + α3
3 + α3

7)
4 6= 0 (recall that this field has

characteristic 2, and doesn’t contain any nilpotents), and so α3
1 + α3

3 + α3
7 6= 0.

In general, let ` = 2ab with b odd. Whenever ` 6= 0, we can write ` uniquely in this way; assume
` 6= 0 for now and we’ll treat the special case later. Before, we had concluded that β1α

`
t1 + β2α

`
t2 +

· · ·+βkα
`
tk
6= 0. Observe now that β1α

`
t1 +β2α

`
t2 + · · ·+βkα

`
tk

= (β1α
b
t1 +β2α

b
t2 + · · ·+βkα

b
tk

)2
a 6= 0.

Again, fields don’t have nilpotents, so β1α
b
t1 + · · ·+ βkα

b
tk
6= 0, and b is odd.

This argument works for any βi not all 0, so it follows that any k rows of M1 are linearly
independent; we’ve proven that if T = {t1, . . . , tk} ⊆ [n] and β1, . . . , βk ∈ F2 are not all 0, there is
an odd number b such that β1α

b
t1 + · · ·+ βkα

b
tk
6= 0.

We shouldn’t forget about the case where ` = 0. But in that case, it is already a column of M1.
[In particular, I don’t see right now how to get rid of the column of 1’s. I think in class we asked
whether one could get rid of them to save a random bit]

Let’s switch gears:

Almost k-wise independence and small biased distributions

There are two definitions.
There’s an L∞ definition: Let X be a random variable on {0, 1}n. Let T ⊆ [n], with |T | = k.

We say that X is almost k-wise independent if for a fixed parameter ε > 0 (where ε quantifies

“almost”), we have for all all α ∈ {0, 1}k, the inequality∣∣∣∣Pr[XT = α]− 1

2k

∣∣∣∣ ≤ ε.
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There’s also an L1 definition: For all T ⊆ [n], with |T | = k, we say X is almost k-wise independent
if for a fixed parameter ε > 0 (quantifying “almost”), we have for all∑

α∈{0,1}k

∣∣∣∣Pr[XT = α]− 1

2k

∣∣∣∣ ≤ ε.
There is the usual trickery: if you are ε-almost k-wise independent in the L1 sense, then you are
ε-almost k-wise independent in the L∞ sense. For a partial converse, if you are ε-almost k-wise
independent in the L∞ sense, then you are 2kε-almost k-wise independent in the L1 sense.

We also define ε-biased distribution in the following way:
Let X be a distribution on {0, 1}n, and T ⊆ [n]. Define ⊕XT =

∑
i∈T Xi (mod 2) to be the

parity of XT .

Define

Bias(⊕XT ) =

∣∣∣∣Pr[⊕Xi = 1]− Pr[⊕Xi = 0]

∣∣∣∣.
Now we say that X is a ε-biased distribution if for all nonempty subsets T ⊆ [n], we have

Bias(⊕XT ) ≤ ε.
Notice that we have ∣∣∣∣E[⊕UT ]− E[⊕XT ]

∣∣∣∣ =

∣∣∣∣1/2− E[⊕XT ]

∣∣∣∣
so if X is a ε-biased distribution then |Pr[⊕Xi = 1]−Pr[⊕Xi = 0]| ≤ ε and (1− ε)/2 ≤ Pr[⊕Xi =
1] ≤ (1 + ε)/2 (there’s a boring computation here that I’m hiding). Thus (1 − ε)/2 ≤ E[⊕XT ] ≤
(1 + ε)/2 and |1/2−E[⊕XT ]| ≤ ε/2. So ε-biased distributions are pseudoranom generators for the
class of parity functions.

Construction of ε-biased spaces

Let r = dlog2(n/ε)e, and let q = 2r ≈ n/ε.
Pick a random y, z ∈ Fq. For i ∈ {0, 1, . . . , r − 1}, we map y → ~y as a vector in Fr2 (the

same trick as above; think of F2r as polynomials and map to the coefficients), and z 7→ ~z. Define
xi =< yi, z >, where yi is a product first taken in Fq and then interpreted as a vector in Fr2. Now
consider X = (x0, x1, . . . , xr−1). We won’t prove that this is a ε-biased space (that’ll happen next
lecture), but we can say that the randomness used is 2 log(n/ε).
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