CS 6815: Lecture 20

Instructor: Eshan Chattopadhyay

Scribe: Juan C. Martínez Mori

November 6, 2018

1 Hardness vs. Randomness

Definition 1.1 (Boolean Circuits). A Boolean circuit C with n inputs is a directed acyclic graph with the following properties: i) There are n vertices of in-degree 0; these are called the inputs to the circuit and are labeled $x_{1}, x_{2}, \cdots, x_{n}$. There is one vertex with out-degree 0 ; this is called the output of the circuit. ii) Every vertex v that is not an input or the output is labeled with one Boolean function $b(v)$ from the set $\{A N D, O R, N O T\}$. A vertex labeled with NOT has in-degree 1. iii) Every input to the circuit is assigned a Boolean value. Under such an assignment of input values, each vertex v computes the Boolean function $b(v)$ of the values on the incoming edges, and assigns this value to its outgoing edges. The value of the output is thus a Boolean function of $x_{1}, x_{2}, \cdots, x_{n}$; the circuit is said to compute this function. iv) The size of the circuit $|C|$ is the number of vertices labeled AND or OR (note that size is more often defined as the number of vertices in C).

Definition 1.2 (Circuit Family). Consider a Boolean function $f:\{0,1\}^{*} \rightarrow\{0,1\}$. We denote by f_{n} the function f restricted to inputs from $\{0,1\}^{n}$. A sequence $\mathcal{C}=C_{1}, C_{2}, \cdots$ of circuits is a circuit family for f if C_{n} has n inputs and computes $f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ at its output for all n-bit inputs $\left(x_{1}, \cdots, x_{n}\right)$. We may denote the family \mathcal{C} by $\left\{C_{n}\right\}_{n \geq 1}$. We say $\left\{C_{n}\right\}_{n \geq 1}$ is polynomial-sized if the size of C_{n} is bounded above by $S(n)$ for every n, where $S(\cdot)$ is a polynomial.

Fact 1.3. For any $f:\{0,1\}^{n} \rightarrow\{0,1\}$, there exists C which computes f and satisfies $|C|=O\left(2^{n}\right)$.
Proof. Write the truth table of f and express it in conjunctive normal form (CNF).
Fact 1.4. There exists $f:\{0,1\}^{n} \rightarrow\{0,1\}$ such that if C computes $f,|C|=\Omega\left(\frac{2^{n}}{n}\right)$.
Proof. A non-constructive proof can be obtained by a counting argument, but explicitly showing such a function is non-trivial.

Fact 1.5. Suppose $\mathcal{L} \subseteq\{0,1\}^{*}$ is decided by a Deterministic Turing Machine (DTM) which halts after $t(n)$ steps. Then, there exists $\left\{C_{n}\right\}_{n \geq 1}$ satisfying $\left|C_{n}\right|=\tilde{O}(t(n))$ such that $\left\{C_{n}\right\}_{n \geq 1}$ decides \mathcal{L}.

Definition 1.6 (Hard Functions). $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is average case (S, ϵ)-hard if for all circuits C satisfying $|C| \leq S$, we have

$$
\operatorname{Pr}_{x \sim U_{n}}[f(x)=C(x)] \leq \frac{1}{2}+\epsilon .
$$

Intuitively, a function is hard on average if it is hard to compute correctly on randomly chosen inputs. In other words, no efficient algorithm can compute f much better than random guessing.

Definition 1.7 (Pseudorandom). A random variable X on $\{0,1\}^{n}$ is (S, ϵ)-pseudorandom if

$$
\left|\operatorname{Pr}_{x \sim U_{n}}[C(x)=1]-\operatorname{Pr}_{x \sim X}[C(x)=1]\right| \leq \epsilon,
$$

where C is any circuit satisfying $|C| \leq S$.
Definition 1.8 (Pseudorandom Generator). A deterministic function $G:\{0,1\}^{r} \rightarrow\{0,1\}^{n}$ is a (S, ϵ) pseudorandom generator ($P R G$) if $G\left(U_{r}\right)$ is (S, ϵ)-pseudorandom.

Note that we will allow G to run in time $2^{O(r)}$.

2 Derandomize BPP

Our goal now is to derandomize BPP. Suppose there exists G with $r=O(\log n), S=n^{O(1)}$, $\epsilon=1 / 10$. That is, suppose we have a dream $P R G$. Then, let $A_{x}(r) \in B P P$ be a randomized algorithm running in time n^{c} (for some constant c) given $x . A_{x}(r)$ implies a circuit C_{x} satisfying $\left|C_{x}\right| \leq n^{c}$ such that

$$
\left|\operatorname{Pr}\left[C_{x}\left(U_{n}\right)=1\right]-\operatorname{Pr}\left[C_{x}\left(G\left(U_{r}\right)\right)=1\right]\right| \leq \frac{1}{10} .
$$

If this were the case, we could brute force over all seeds, obtaining a deterministic algorithm that runs in $n^{O(1)}$. Thus, we would have $B P P=P$.

3 Pseudorandom Generators from Average-Case Hardness

Lemma 3.1. Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is (S, ϵ)-hard. Then, $\left(U_{n}, f\left(U_{n}\right)\right)$ is (S, ϵ)-pseudorandom. In other words, we stretch randomness by one bit.

Proof. Let $X \sim U_{n}$ and $b \sim U_{1}$. We want to show that

$$
|\operatorname{Pr}[C(x, f(x))=1]-\operatorname{Pr}[C(x, b)=1]| \leq \epsilon,
$$

where C is any circuit satisfying $|C| \leq S$. By way of contradiction, suppose there exists C that satisfies the opposite. Consider the following algorithm A on input X. First, flip bit b. Then, if $C(x, b)=1$, output b, Otherwise, output $1-b$. We have the following claim.
Claim 3.2. Let C be as in our assumption. Then, $\operatorname{Pr}[A(x, b)=f(x)]>\frac{1}{2}+\epsilon$.
Proof. Let $\xi: b \sim U_{1}$. Then,

$$
\begin{aligned}
\operatorname{Pr}[A(x, b)=f(x)] & =\operatorname{Pr}[A(x, b)=f(x) \mid \xi] \operatorname{Pr}[\xi]+\operatorname{Pr}[A(x, b)=f(x) \mid \bar{\xi}] \operatorname{Pr}[\bar{\xi}] \\
& =\operatorname{Pr}[A(x, b)=f(x) \mid \xi] \frac{1}{2}+\operatorname{Pr}[A(x, b)=f(x) \mid \bar{\xi}] \frac{1}{2} \\
& =\frac{1}{2}(\operatorname{Pr}[A(x, b)=f(x) \mid \xi]+\operatorname{Pr}[A(x, b)=f(x) \mid \bar{\xi}]) \\
& =\frac{1}{2}(\operatorname{Pr}[C(x, f(x))=1 \mid \xi]+\operatorname{Pr}[C(x, f \overline{(x)})=0 \mid \bar{\xi}]) \\
& >\frac{1}{2}+\epsilon,
\end{aligned}
$$

where the inequality follows from our assumption.

Claim 3.3. $\operatorname{Pr}[C(x, f(x))=1]-\operatorname{Pr}[C(x, f \overline{(x)})=1] \geq 2 \epsilon$.
Proof.

$$
\operatorname{Pr}[C(x, f(x))=1]-\frac{1}{2}(\operatorname{Pr}[C(x, f(x))=1]+\operatorname{Pr}[C(x, f(x))=0])>\epsilon,
$$

based on the previous claim.
This is a contradiction on f being hard.
Theorem 3.4 (Nisan and Wigderson). If $f:\{0,1\}^{n} \rightarrow\{0,1\} \in \mathbb{E}=\mathbb{D T I M E}\left(2^{O(n)}\right)$ is (S, ϵ)-hard with $S=2^{\delta n}, \epsilon=2^{-\delta n}$ for some $\delta>0$, then there exists a dream PRG.

Proof. We use the following definition.
Definition 3.5. $S_{1}, \cdots, S_{m} \subset[d]$ is an ($\left.n, k\right)$-design if

1. $\forall i,\left|T_{i}\right|=n$, and
2. $\forall i \neq j,\left|T_{i} \cap T_{j}\right| \leq k$.

Let $\left(f\left(Z_{\mid T_{1}}, f\left(Z_{\mid T_{2}}\right), \cdots, f\left(Z_{\mid T_{l}}\right) \in\{0,1\}^{l}\right.\right.$, where $Z_{\mid T_{i}}$ denotes the projection of Z on T_{i}. Let $G:\{0,1\}^{r} \rightarrow\{0,1\}^{l}$. We will continue the proof by contradicition.

We know use the hybrid technique. Let $D_{0}: f\left(Z_{\mid T_{1}}, f\left(Z_{\mid T_{2}}\right), \cdots, f\left(Z_{\mid T_{l}}\right), D_{1}: r_{1}, f\left(Z_{\mid T_{2}}\right), \cdots, f\left(Z_{\mid T_{l}}\right)\right.$, $D_{2}: r_{1}, r_{2}, f\left(Z_{\mid T_{3}}\right), \cdots, f\left(Z_{\mid T_{l}}\right), \cdots, D_{l}: r_{1}, r_{2}, f\left(Z_{\mid T_{3}}\right), \cdots, r_{l}$. Note that D_{i} and D_{i+1} differ only at the $i+1$ th position. By our assumption (and the triangle inequality), $\exists i$ such that

$$
\operatorname{Pr}\left[C\left(D^{i}\right)=1\right]-\operatorname{Pr}\left[C\left(D^{i+1}\right)=1\right]>\frac{\epsilon^{\prime}}{l} .
$$

We will continue the proof next time.

