CS 6815: Lecture 20

Instructor: Eshan Chattopadhyay

Scribe: Juan C. Martínez Mori

November 6, 2018

1 Hardness vs. Randomness

Definition 1.1 (Boolean Circuits). A Boolean circuit C with n inputs is a directed acyclic graph with the following properties: i) There are n vertices of in-degree 0; these are called the inputs to the circuit and are labeled x_1, x_2, \dots, x_n . There is one vertex with out-degree 0; this is called the output of the circuit. ii) Every vertex v that is not an input or the output is labeled with one Boolean function b(v) from the set {AND, OR, NOT}. A vertex labeled with NOT has in-degree 1. iii) Every input to the circuit is assigned a Boolean value. Under such an assignment of input values, each vertex v computes the Boolean function b(v) of the values on the incoming edges, and assigns this value to its outgoing edges. The value of the output is thus a Boolean function of x_1, x_2, \dots, x_n ; the circuit is said to compute this function. iv) The size of the circuit |C| is the number of vertices labeled AND or OR (note that size is more often defined as the number of vertices in C).

Definition 1.2 (Circuit Family). Consider a Boolean function $f : \{0,1\}^* \to \{0,1\}$. We denote by f_n the function f restricted to inputs from $\{0,1\}^n$. A sequence $\mathcal{C} = C_1, C_2, \cdots$ of circuits is a circuit family for f if C_n has n inputs and computes $f_n(x_1, x_2, \cdots, x_n)$ at its output for all n-bit inputs (x_1, \cdots, x_n) . We may denote the family \mathcal{C} by $\{C_n\}_{n\geq 1}$. We say $\{C_n\}_{n\geq 1}$ is polynomial-sized if the size of C_n is bounded above by S(n) for every n, where $S(\cdot)$ is a polynomial.

Fact 1.3. For any $f : \{0,1\}^n \to \{0,1\}$, there exists C which computes f and satisfies $|C| = O(2^n)$.

Proof. Write the truth table of f and express it in conjunctive normal form (CNF).

Fact 1.4. There exists $f: \{0,1\}^n \to \{0,1\}$ such that if C computes $f, |C| = \Omega\left(\frac{2^n}{n}\right)$.

Proof. A non-constructive proof can be obtained by a counting argument, but explicitly showing such a function is non-trivial. \Box

Fact 1.5. Suppose $\mathcal{L} \subseteq \{0,1\}^*$ is decided by a Deterministic Turing Machine (DTM) which halts after t(n) steps. Then, there exists $\{C_n\}_{n\geq 1}$ satisfying $|C_n| = \tilde{O}(t(n))$ such that $\{C_n\}_{n\geq 1}$ decides \mathcal{L} .

Definition 1.6 (Hard Functions). $f : \{0,1\}^n \to \{0,1\}$ is average case (S,ϵ) -hard if for all circuits C satisfying $|C| \leq S$, we have

$$\Pr_{x \sim U_n} \left[f(x) = C(x) \right] \le \frac{1}{2} + \epsilon.$$

Intuitively, a function is hard on average if it is hard to compute correctly on randomly chosen inputs. In other words, no efficient algorithm can compute f much better than random guessing.

Definition 1.7 (Pseudorandom). A random variable X on $\{0,1\}^n$ is (S,ϵ) -pseudorandom if

$$\left|\Pr_{x \sim U_n} \left[C(x) = 1 \right] - \Pr_{x \sim X} \left[C(x) = 1 \right] \right| \le \epsilon,$$

where C is any circuit satisfying $|C| \leq S$.

Definition 1.8 (Pseudorandom Generator). A deterministic function $G : \{0,1\}^r \to \{0,1\}^n$ is a (S,ϵ) pseudorandom generator (PRG) if $G(U_r)$ is (S,ϵ) -pseudorandom.

Note that we will allow G to run in time $2^{O(r)}$.

2 Derandomize BPP

Our goal now is to derandomize BPP. Suppose there exists G with $r = O(\log n)$, $S = n^{O(1)}$, $\epsilon = 1/10$. That is, suppose we have a *dream PRG*. Then, let $A_x(r) \in BPP$ be a randomized algorithm running in time n^c (for some constant c) given x. $A_x(r)$ implies a circuit C_x satisfying $|C_x| \leq n^c$ such that

$$|\Pr[C_x(U_n) = 1] - \Pr[C_x(G(U_r)) = 1]| \le \frac{1}{10}$$

If this were the case, we could brute force over all seeds, obtaining a deterministic algorithm that runs in $n^{O(1)}$. Thus, we would have BPP = P.

3 Pseudorandom Generators from Average-Case Hardness

Lemma 3.1. Suppose $f : \{0,1\}^n \to \{0,1\}$ is (S,ϵ) -hard. Then, $(U_n, f(U_n))$ is (S,ϵ) -pseudorandom. In other words, we stretch randomness by one bit.

Proof. Let $X \sim U_n$ and $b \sim U_1$. We want to show that

$$|\Pr[C(x, f(x)) = 1] - \Pr[C(x, b) = 1]| \le \epsilon,$$

where C is any circuit satisfying $|C| \leq S$. By way of contradiction, suppose there exists C that satisfies the opposite. Consider the following algorithm A on input X. First, flip bit b. Then, if C(x, b) = 1, output b, Otherwise, output 1 - b. We have the following claim.

Claim 3.2. Let C be as in our assumption. Then, $\Pr[A(x,b) = f(x)] > \frac{1}{2} + \epsilon$.

Proof. Let $\xi : b \sim U_1$. Then,

$$\begin{aligned} \Pr[A(x,b) &= f(x)] = \Pr[A(x,b) = f(x)|\xi] \Pr[\xi] + \Pr[A(x,b) = f(x)|\bar{\xi}] \Pr[\bar{\xi}] \\ &= \Pr[A(x,b) = f(x)|\xi] \frac{1}{2} + \Pr[A(x,b) = f(x)|\bar{\xi}] \frac{1}{2} \\ &= \frac{1}{2} \left(\Pr[A(x,b) = f(x)|\xi] + \Pr[A(x,b) = f(x)|\bar{\xi}] \right) \\ &= \frac{1}{2} \left(\Pr[C(x,f(x)) = 1|\xi] + \Pr[C(x,f\bar{x})) = 0|\bar{\xi}] \right) \\ &> \frac{1}{2} + \epsilon, \end{aligned}$$

where the inequality follows from our assumption.

Claim 3.3. $\Pr[C(x, f(x)) = 1] - \Pr[C(x, f(x)) = 1] \ge 2\epsilon.$

Proof.

$$\Pr[C(x, f(x)) = 1] - \frac{1}{2} \left(\Pr[C(x, f(x)) = 1] + \Pr[C(x, f(x)) = 0] \right) > \epsilon$$

based on the previous claim.

This is a contradiction on f being hard.

Theorem 3.4 (Nisan and Wigderson). If $f : \{0,1\}^n \to \{0,1\} \in \mathbb{E} = \mathbb{DTIME}(2^{O(n)})$ is (S,ϵ) -hard with $S = 2^{\delta n}$, $\epsilon = 2^{-\delta n}$ for some $\delta > 0$, then there exists a dream PRG.

Proof. We use the following definition.

Definition 3.5. $S_1, \dots, S_m \subset [d]$ is an (n, k)-design if

- 1. $\forall i, |T_i| = n, and$
- 2. $\forall i \neq j, |T_i \cap T_j| \leq k$.

Let $(f(Z_{|T_1}, f(Z_{|T_2}), \dots, f(Z_{|T_l}) \in \{0, 1\}^l)$, where $Z_{|T_i}$ denotes the projection of Z on T_i . Let $G: \{0, 1\}^r \to \{0, 1\}^l$. We will continue the proof by contradicition.

We know use the hybrid technique. Let $D_0: f(Z_{|T_1}, f(Z_{|T_2}), \cdots, f(Z_{|T_l}), D_1: r_1, f(Z_{|T_2}), \cdots, f(Z_{|T_l}), D_2: r_1, r_2, f(Z_{|T_3}), \cdots, f(Z_{|T_l}), \cdots, D_l: r_1, r_2, f(Z_{|T_3}), \cdots, r_l$. Note that D_i and D_{i+1} differ only at the i + 1th position. By our assumption (and the triangle inequality), $\exists i$ such that

$$\Pr[C(D^{i}) = 1] - \Pr[C(D^{i+1}) = 1] > \frac{\epsilon'}{l}.$$

We will continue the proof **next time**.