
CS 6815: Lecture 20

Instructor: Eshan Chattopadhyay Scribe: Juan C. Mart́ınez Mori

November 6, 2018

1 Hardness vs. Randomness

Definition 1.1 (Boolean Circuits). A Boolean circuit C with n inputs is a directed acyclic graph
with the following properties: i) There are n vertices of in-degree 0; these are called the inputs to
the circuit and are labeled x1, x2, · · · , xn. There is one vertex with out-degree 0; this is called the
output of the circuit. ii) Every vertex v that is not an input or the output is labeled with one Boolean
function b(v) from the set {AND,OR,NOT}. A vertex labeled with NOT has in-degree 1. iii) Every
input to the circuit is assigned a Boolean value. Under such an assignment of input values, each
vertex v computes the Boolean function b(v) of the values on the incoming edges, and assigns this
value to its outgoing edges. The value of the output is thus a Boolean function of x1, x2, · · · , xn;
the circuit is said to compute this function. iv) The size of the circuit |C| is the number of vertices
labeled AND or OR (note that size is more often defined as the number of vertices in C).

Definition 1.2 (Circuit Family). Consider a Boolean function f : {0, 1}∗ → {0, 1}. We denote
by fn the function f restricted to inputs from {0, 1}n. A sequence C = C1, C2, · · · of circuits is a
circuit family for f if Cn has n inputs and computes fn(x1, x2, · · · , xn) at its output for all n-bit
inputs (x1, · · · , xn). We may denote the family C by {Cn}n≥1. We say {Cn}n≥1 is polynomial-sized
if the size of Cn is bounded above by S(n) for every n, where S(·) is a polynomial.

Fact 1.3. For any f : {0, 1}n → {0, 1}, there exists C which computes f and satisfies |C| = O(2n).

Proof. Write the truth table of f and express it in conjunctive normal form (CNF).

Fact 1.4. There exists f : {0, 1}n → {0, 1} such that if C computes f , |C| = Ω
(
2n

n

)
.

Proof. A non-constructive proof can be obtained by a counting argument, but explicitly showing
such a function is non-trivial.

Fact 1.5. Suppose L ⊆ {0, 1}∗ is decided by a Deterministic Turing Machine (DTM) which halts
after t(n) steps. Then, there exists {Cn}n≥1 satisfying |Cn| = Õ (t(n)) such that {Cn}n≥1 decides
L.

Definition 1.6 (Hard Functions). f : {0, 1}n → {0, 1} is average case (S, ε)-hard if for all circuits
C satisfying |C| ≤ S, we have

Pr
x∼Un

[f(x) = C(x)] ≤ 1

2
+ ε.

Intuitively, a function is hard on average if it is hard to compute correctly on randomly chosen
inputs. In other words, no efficient algorithm can compute f much better than random guessing.

1

Definition 1.7 (Pseudorandom). A random variable X on {0, 1}n is (S, ε)-pseudorandom if∣∣∣∣ Pr
x∼Un

[C(x) = 1]− Pr
x∼X

[C(x) = 1]

∣∣∣∣ ≤ ε,
where C is any circuit satisfying |C| ≤ S.

Definition 1.8 (Pseudorandom Generator). A deterministic function G : {0, 1}r → {0, 1}n is a
(S, ε) pseudorandom generator (PRG) if G(Ur) is (S, ε)-pseudorandom.

Note that we will allow G to run in time 2O(r).

2 Derandomize BPP

Our goal now is to derandomize BPP. Suppose there exists G with r = O(log n), S = nO(1),
ε = 1/10. That is, suppose we have a dream PRG. Then, let Ax(r) ∈ BPP be a randomized
algorithm running in time nc (for some constant c) given x. Ax(r) implies a circuit Cx satisfying
|Cx| ≤ nc such that

|Pr [Cx(Un) = 1]− Pr [Cx(G(Ur)) = 1]| ≤ 1

10
.

If this were the case, we could brute force over all seeds, obtaining a deterministic algorithm that
runs in nO(1). Thus, we would have BPP = P .

3 Pseudorandom Generators from Average-Case Hardness

Lemma 3.1. Suppose f : {0, 1}n → {0, 1} is (S, ε)-hard. Then, (Un, f(Un)) is (S, ε)-pseudorandom.
In other words, we stretch randomness by one bit.

Proof. Let X ∼ Un and b ∼ U1. We want to show that

|Pr [C(x, f(x)) = 1]− Pr [C(x, b) = 1]| ≤ ε,

where C is any circuit satisfying |C| ≤ S. By way of contradiction, suppose there exists C that
satisfies the opposite. Consider the following algorithm A on input X. First, flip bit b. Then, if
C(x, b) = 1, output b, Otherwise, output 1− b. We have the following claim.

Claim 3.2. Let C be as in our assumption. Then, Pr[A(x, b) = f(x)] > 1
2 + ε.

Proof. Let ξ : b ∼ U1. Then,

Pr[A(x, b) = f(x)] = Pr[A(x, b) = f(x)|ξ] Pr[ξ] + Pr[A(x, b) = f(x)|ξ̄] Pr[ξ̄]

= Pr[A(x, b) = f(x)|ξ]1
2

+ Pr[A(x, b) = f(x)|ξ̄]1
2

=
1

2

(
Pr[A(x, b) = f(x)|ξ] + Pr[A(x, b) = f(x)|ξ̄]

)
=

1

2

(
Pr[C(x, f(x)) = 1|ξ] + Pr[C(x, ¯f(x)) = 0|ξ̄]

)
>

1

2
+ ε,

where the inequality follows from our assumption.

2

Claim 3.3. Pr[C(x, f(x)) = 1]− Pr[C(x, ¯f(x)) = 1] ≥ 2ε.

Proof.

Pr[C(x, f(x)) = 1]− 1

2

(
Pr[C(x, f(x)) = 1] + Pr[C(x, ¯f(x)) = 0]

)
> ε,

based on the previous claim.

This is a contradiction on f being hard.

Theorem 3.4 (Nisan and Wigderson). If f : {0, 1}n → {0, 1} ∈ E = DTIME(2O(n)) is (S, ε)-hard
with S = 2δn, ε = 2−δn for some δ > 0, then there exists a dream PRG.

Proof. We use the following definition.

Definition 3.5. S1, · · · , Sm ⊂ [d] is an (n, k)-design if

1. ∀i, |Ti| = n, and

2. ∀i 6= j, |Ti ∩ Tj | ≤ k.

Let (f(Z|T1 , f(Z|T2), · · · , f(Z|Tl) ∈ {0, 1}
l, where Z|Ti denotes the projection of Z on Ti. Let

G : {0, 1}r → {0, 1}l. We will continue the proof by contradicition.
We know use the hybrid technique. LetD0 : f(Z|T1 , f(Z|T2), · · · , f(Z|Tl), D1 : r1, f(Z|T2), · · · , f(Z|Tl),

D2 : r1, r2, f(Z|T3), · · · , f(Z|Tl), · · · , Dl : r1, r2, f(Z|T3), · · · , rl. Note that Di and Di+1 differ only
at the i+ 1th position. By our assumption (and the triangle inequality), ∃i such that

Pr[C(Di) = 1]− Pr[C(Di+1) = 1] >
ε′

l
.

We will continue the proof next time.

3

	Hardness vs. Randomness
	Derandomize BPP
	Pseudorandom Generators from Average-Case Hardness

