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1 Hardness vs. Randomness

Definition 1.1 (Boolean Circuits). A Boolean circuit C with n inputs is a directed acyclic graph
with the following properties: i) There are n vertices of in-degree 0; these are called the inputs to
the circuit and are labeled x1,x2,- -+ ,x,. There is one vertex with out-degree 0; this is called the
output of the circuit. ii) Every vertex v that is not an input or the output is labeled with one Boolean
function b(v) from the set {AND, OR, NOT}. A vertex labeled with NOT has in-degree 1. iii) Every
input to the circuit is assigned a Boolean value. Under such an assignment of input values, each
vertex v computes the Boolean function b(v) of the values on the incoming edges, and assigns this
value to its outgoing edges. The value of the output is thus a Boolean function of x1,x2, - ,Tn;
the circuit is said to compute this function. iv) The size of the circuit |C| is the number of vertices
labeled AND or OR (note that size is more often defined as the number of vertices in C).

Definition 1.2 (Circuit Family). Consider a Boolean function f : {0,1}* — {0,1}. We denote
by fn the function f restricted to inputs from {0,1}". A sequence C = C1,Cy,- -+ of circuits is a
circuit family for f if Cy, has n inputs and computes fn(x1,22,--- ,x,) at its output for all n-bit
inputs (x1,--- ,Tn). We may denote the family C by {Cy}n>1. We say {Cp}n>1 is polynomial-sized
if the size of C,, is bounded above by S(n) for every n, where S(-) is a polynomial.

Fact 1.3. For any f : {0,1}" — {0, 1}, there ezists C which computes f and satisfies |C| = O(2").
Proof. Write the truth table of f and express it in conjunctive normal form (CNF). O

Fact 1.4. There exists f: {0,1}" — {0,1} such that if C computes f, |C| = 2 (2)

n

Proof. A non-constructive proof can be obtained by a counting argument, but explicitly showing
such a function is non-trivial. O

Fact 1.5. Suppose £ C {0,1}" is decided by a Deterministic Turing Machine (DTM) which halts
after t(n) steps. Then, there exists {Cy,}n>1 satisfying |Cy| = O (t(n)) such that {Cp}n>1 decides
L.

Definition 1.6 (Hard Functions). f: {0,1}" — {0, 1} is average case (S, €)-hard if for all circuits
C satisfying |C| < S, we have

Pr [f(z) = C)] < 5 +e

z~Up, -

Intuitively, a function is hard on average if it is hard to compute correctly on randomly chosen
inputs. In other words, no efficient algorithm can compute f much better than random guessing.



Definition 1.7 (Pseudorandom). A random variable X on {0,1}" is (S, €)-pseudorandom if

L [Clz)=1] - Pr[Cz) =1]) <¢,

where C' is any circuit satisfying |C| < S.

Definition 1.8 (Pseudorandom Generator). A deterministic function G : {0,1}" — {0,1}" is a
(S, €) pseudorandom generator (PRG) if G(Uy) is (S, €)-pseudorandom.

Note that we will allow G to run in time 20().

2 Derandomize BPP

Our goal now is to derandomize BPP. Suppose there exists G with »r = O(logn), S = ION
e = 1/10. That is, suppose we have a dream PRG. Then, let A;(r) € BPP be a randomized
algorithm running in time n¢ (for some constant ¢) given x. A, (r) implies a circuit C, satisfying
|Cz| < n€ such that

1

|P1" [Cx(Un) = 1] — Pr [Cx(G(Ur)) = 1” < E

If this were the case, we could brute force over all seeds, obtaining a deterministic algorithm that
runs in n®W. Thus, we would have BPP = P.

3 Pseudorandom Generators from Average-Case Hardness

Lemma 3.1. Suppose f :{0,1}" — {0,1} is (S, €)-hard. Then, (U,, f(Uy)) is (S, €)-pseudorandom.
In other words, we stretch randommness by one bit.

Proof. Let X ~ U, and b ~ U;. We want to show that
Pr{C(z, f(z)) = 1] = Pr[C(z,b) = 1]| <,

where C' is any circuit satisfying |C| < S. By way of contradiction, suppose there exists C' that
satisfies the opposite. Consider the following algorithm A on input X. First, flip bit b. Then, if
C(z,b) = 1, output b, Otherwise, output 1 — b. We have the following claim.

Claim 3.2. Let C be as in our assumption. Then, Pr[A(z,b) = f(z)] > 5 +e.
Proof. Let € : b~ Uy. Then,

PrA(x,b) = f(x)] = PrlA(s,) = F(@)]é] Prie] + Pr{A(z,b) = f(z

= Pr{A(r,b) = f@)lé]; + PrlA(,b) = f()

= % (Pr[A(z,b) = f(2)[¢] + Pr[A(z,b) = f(2)|€])
= £ (Pr{O(a, f(2)) = 11€) + Pr(C(a, /() = 0[E)
1
> 5 + €,
where the inequality follows from our assumption. O



Claim 3.3. Pr[C(z, f(x)) = 1] — Pr[C(z, f(x)) = 1] > 2e.

Proof.
1 _
Pr(C(x, f(2)) = 1] = 5 (PrC(, [(2)) = 1] + Pr{C(z, f{2)) = 0]) >,
based on the previous claim. O
This is a contradiction on f being hard. O

Theorem 3.4 (Nisan and Wigderson). If f : {0,1}"* — {0,1} € E = DTIME(2°") is (S, €)-hard
with S = 297, € = 279" for some 6 > 0, then there exists a dream PRG.

Proof. We use the following definition.

Definition 3.5. S1,---,S,, C [d] is an (n, k)-design if
1. Yi,|T;| = n, and
2. Vi# j,|TiNT;| < k.

Let (f(Ziry, f(Zr,),- -+ > f(Zi,) € {0,1}, where Zz, denotes the projection of Z on T;. Let
G :{0,1}" — {0,1}!. We will continue the proof by contradicition.

We know use the hybrid technique. Let Do : f(Zi1y, f(Zi1,), - f(Z1y), D171, f(Zm,)s 5 f(Zymy),
Dy 11,79, f(Z|T3), e ,f(Z|Tl), ceoy Dpiry,re, f(Z‘TS), ---,1;. Note that D; and D;; differ only
at the ¢ + 1th position. By our assumption (and the triangle inequality), 3¢ such that

Pr[C(DY) = 1] — Pr[C(D"™) = 1] > ‘j

We will continue the proof next time. ]
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