CS 6815 Pseudorandomness and Combinatorial Constructions

Fall 2018

Lecture 2: August 28

Lecturer: Eshan Chattopadhyay
Scribe: Jiazhen Tan

2.1 Pseudorandom Generators

To define a pseudorandom generator (PRG), we first fix a class of distinguishers or a class of tests, which we typically denote as \mathcal{F}. Informally, the PRG takes a short uniform string of length r bits to n bits, where $r<n$. For making the definition useful, we would require the PRG function should be "efficiently computable", where we make the notion of efficiency clear in later lectures.

Definition 2.1.1. A family of tests $\mathcal{F}=\bigcup_{n>0} \mathcal{F}_{n}$, where \mathcal{F}_{n} contains Boolean functions f : $\{0,1\}^{n} \rightarrow\{0,1\}$ that maps an n-bit string to a single bit.

Notation: Let U_{m} be a uniform distribution on $\{0,1\}^{n}$.
We are now ready to formally define a PRG.

- The function $r: \mathbb{N} \rightarrow \mathbb{N}$ maps n to the seed length needed to generate a string of length n.
- The function $\epsilon: \mathbb{N} \rightarrow[0,1)$ is the error function.
- $\mathcal{G}_{n}:\{0,1\}^{r(n)} \rightarrow\{0,1\}^{n}$ is a function that maps $r(n)$ bit strings to n bit strings.
- $\mathcal{G}=\left(\mathcal{G}_{n}\right)_{n>0}$ is a collection of \mathcal{G}_{n}.

Definition 2.1.2. Given an error function ϵ, we define \mathcal{G} to be a $P R G$ for \mathcal{F} if $\forall n \in \mathbb{N}, \forall f \in \mathcal{F}_{n}$,

$$
\left|\mathbf{E}_{x \leftarrow U_{n}}[f(x)]-\mathbf{E}_{y \leftarrow U_{r(n)}}[f(G(y))]\right|<\epsilon(n)
$$

An important application of PRGs is to derandomization, i.e, reducing the amount of randomness used in algorithms. In particular, a good enough PRG could altogether eliminate the need for using random bits.

Example 2.1.3. Consider the class of polynomial time algorithms $A:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ that takes an input string of length n and n bits of randomness to outputs a single bit.

We assume that for all $z \in\{0,1\}^{n}$, when the answer is supposed to be yes,

$$
\operatorname{Pr}_{x \leftarrow U_{n}}[A(z, x)=1] \geq \frac{2}{3}
$$

and when the answer is supposed to be no,

$$
\operatorname{Pr}_{x \leftarrow U_{n}}[A(z, x)=0] \geq \frac{2}{3}
$$

Take $\mathcal{G}:\{0,1\}^{r(n)} \rightarrow\{0,1\}^{n}$ such that

$$
\left|\mathbf{E}_{x \leftarrow U_{n}}[A(z, x)]-\mathbf{E}_{y \leftarrow U_{r(n)}}[A(z, G(y))]\right|<\frac{1}{10}=\epsilon(n)
$$

Thus, if we iterate through all possible seeds y and take the majority vote, this algorithm will deterministically give us the right answer. When $r(n)=\log n($ resp. $O(\log n)$), The number of possible seeds is $2^{r(n)}=n$ (resp. polynomial in n). This gives an efficient way to eliminate randomness assuming that \mathcal{G} is computable in polytime.

2.1.1 Pairwise Independent Generator

A simple but particularly useful pseudorandom distribution is a pairwise independent string defined as follows.

Definition 2.1.4. Let Σ be an alphabet. (For now, $\Sigma=\{0,1\}$ or the field \mathbb{F}_{q})
$X=\left(X_{1}, X_{2}, \cdots X_{n}\right) \in \Sigma^{n}$ where each X_{i} is a random variable on Σ, and for all pairs $i, j \in[n]$, such that $i \neq j, X_{i}$ and X_{j} are independent. Then we call X a Pairwise Independent Distribution on Σ^{n}.

Example 2.1.5. A simple example: Let $\Sigma=\{0,1\} . X=\left(X_{1}, X_{2}, X_{3}\right)$ is a distribution on $\{0,1\}^{3}$ where $X_{3}=X_{1} \oplus X_{2}$, the XOR of X_{1} and X_{2} is a pairwise independent distribution on 3 bits. In each column, each of the four combinations of the ftwo bits occurs with equal probability.
$\left.X=\begin{array}{ccc}\left(X_{1}\right. & X_{2} & X_{3}\end{array}\right)$

We generalize the above example to give an efficient construction of a pairwise independent generator with seed length $O(\log n)$.

Construction 2.1.6 (Pairwise independent generator). Let $r=\lceil\log (n+1)\rceil$ and let $Y_{1}, Y_{2}, \ldots, Y_{r}$ be r uniform independent bits. For all nonempty subset S of $[n]$, we define

$$
X_{S}=\bigoplus_{i \in S} Y_{i}
$$

Claim 2.1.7. The random variable $X=\left(X_{S}\right)_{S \subseteq[n], S \neq \emptyset}$ is pairwise independent.
Proof of Claim. Consider two nonempty subsets $A, B \subseteq[n]$.

- If A and B are disjoint,

$$
\operatorname{Pr}\left[X_{A}=1 \mid X_{B}=1\right]=\operatorname{Pr}\left[X_{A}=1\right]=\operatorname{Pr}\left[X_{A}=1 \mid X_{B}=0\right]
$$

The calculations for other cases are similar.

- If one is a subset of the other, with loss of generality $A \subseteq B$, then $X_{B}, X_{B \backslash A}$ are both uniform bits and $X_{B}=1 \mid X_{A}=1$ is equivalent to $X_{B \backslash A}=0$

$$
\operatorname{Pr}\left[X_{B}=1 \mid X_{A}=1\right]=\operatorname{Pr}\left[X_{B \backslash A}=0\right]=\frac{1}{2}=\operatorname{Pr}\left[X_{B}=1\right]
$$

- If neither above is true about A and B, then taking set intersection and set difference won't give us nonempty sets.

$$
X_{A}=X_{A \cap B} \oplus X_{A \backslash B}, \quad X_{B}=X_{A \cap B} \oplus X_{B \backslash A}
$$

where $A \backslash B, B \backslash A, A \cap B$ are disjoint. the first case says $X_{A \backslash B}, X_{B \backslash A}, X_{A \cap B}$ are independent.

$$
\operatorname{Pr}\left[X_{A}=1 \mid X_{B}=1\right]=\operatorname{Pr}\left[X_{A \backslash B} \neq X_{A \cap B} \left\lvert\, X_{B \backslash A} \neq X_{A \cap B}=\operatorname{Pr}\left[X_{A \backslash B} \neq X_{A \cap B}\right]=\frac{1}{2}\right.\right.
$$

So X_{A} and X_{B} are independent.

The following is an alternate construction of a pairwise independent distribution.
Construction 2.1.8. Let \mathbb{F}_{q} be a finite field of q elements. We sample a, b randomly from \mathbb{F}_{q}, and let $X_{i}=a i+b$ for all $i \in \mathbb{F}_{q}$.
Claim 2.1.9. Let $X=\left(X_{1}, X_{2}, \ldots, X_{q}\right)$ where all X_{i} are defined as in 2.1.8. The X_{i} 's are pairwise independent.
Proof. For all pairs $i \neq j$, we can write $\binom{x_{i}}{x_{j}}=M\binom{a}{b}$ where $M=\left(\begin{array}{ll}1 & i \\ 1 & j\end{array}\right)$ is invertible. Then, for arbitrary $m, n \in \mathbb{F}_{q}$,

$$
\operatorname{Pr}\left[x_{i}=m, x_{j}=n\right]=\operatorname{Pr}\left[\binom{a}{b}=M^{-1}\binom{m}{n}\right]=\frac{1}{\left|\mathbb{F}_{q}\right|^{2}}=\operatorname{Pr}\left[x_{i}=m\right] \operatorname{Pr}\left[x_{j}=n\right]
$$

2.1.2 Application: Error reduction in algorithms

Lemma 2.1.10. (Chebyshev's Inequality) Let X be a random variable with mean μ, and variance σ. Then,

$$
\operatorname{Pr}[|X-\mu|>\epsilon] \leq \frac{\sigma}{\epsilon^{2}}
$$

Proof. If we apply Markov's Inequality to $(X-\mu)^{2}$, we get

$$
\begin{aligned}
\operatorname{Pr}[|X-\mu|>\epsilon] & =\operatorname{Pr}\left[(X-\mu)^{2}>\epsilon^{2}\right] \\
& \leq \frac{\mathbf{E}\left[(X-\mu)^{2}\right]}{\epsilon^{2}}=\frac{\sigma}{\epsilon^{2}} .
\end{aligned}
$$

Claim 2.1.11. Let X be the average of t pairwise independent on the interval $[0,1]$. Then,

$$
\operatorname{Pr}[|X-\mu|>\epsilon] \leq \frac{1}{t \epsilon^{2}}
$$

Proof. Given Chebyshev's Inequality, we only need to show $\operatorname{Var}[X] \leq 1 / t$. Pairwise independence says that for $i \neq j$,

$$
\begin{aligned}
& \mathbf{E}\left[\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right]=\mathbf{E}\left[X_{i}-\mu\right] \mathbf{E}\left[X_{j}-\mu\right]=0 \\
& \operatorname{Var}[X]= \mathbf{E}\left[(X-\mu)^{2}\right]=\mathbf{E}\left[\left(\frac{\sum_{i=1}^{t} X_{i}}{t}-\mu\right)^{2}\right] \\
&= \frac{1}{t^{2}} \mathbf{E}\left[\left(\sum_{i=1}^{t}\left(X_{i}-\mu\right)\right)^{2}\right] \\
&= \frac{1}{t^{2}} \mathbf{E}\left[\sum_{i, j \in[t]}\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right]=\frac{1}{t^{2}} \sum_{i, j \in[t]} \mathbf{E}\left[\left(X_{i}-\mu\right)\left(X_{j}-\mu\right)\right] \\
&= \frac{1}{t^{2}} \sum_{i \in[t]} \mathbf{E}\left[\left(X_{i}-\mu\right)^{2}\right] \quad \text { (pairwise independence) } \\
& \leq \frac{1}{t^{2}} t=\frac{1}{t}
\end{aligned}
$$

The application to error reduction is now straightforward from the above lemma in the following way: Say A is a randomized algorithm that takes a random symbol from Σ. We repeat the randomized algorithm t times, using a pairwise independent distribution on Σ^{t}. The error analysis now follows by letting the random variable X_{i} indicate the probability of success of the i 'th iteration of the algorithm.

