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2.1 Pseudorandom Generators

To define a pseudorandom generator (PRG), we first fix a class of distinguishers or a class of tests,
which we typically denote as F. Informally, the PRG takes a short uniform string of length r bits
to n bits, where r < n. For making the definition useful, we would require the PRG function should
be “efficiently computable”, where we make the notion of efficiency clear in later lectures.

Definition 2.1.1. A family of tests F = |U,~¢Fn, where F, contains Boolean functions f :
{0,1}™ — {0,1} that maps an n-bit string to a single bit.

Notation: Let Uy, be a uniform distribution on {0, 1}".
We are now ready to formally define a PRG.

e The function r : N — N maps n to the seed length needed to generate a string of length n.
e The function € : N — [0, 1) is the error function.
e G, :{0,1}"™ — {0,1}" is a function that maps r(n) bit strings to n bit strings.

e G = (Gn)n>o0 is a collection of G,,.

Definition 2.1.2. Given an error function €, we define G to be a PRG for F if Vn € NVf € F,,

Ex(—Un [f(l')] - Ey<—UT(n) [f(G<y))] < 6(77,)

An important application of PRGs is to derandomization, i.e, reducing the amount of randomness
used in algorithms. In particular, a good enough PRG could altogether eliminate the need for using
random bits.

Example 2.1.3. Consider the class of polynomial time algorithms A : {0,1}" x {0,1}" — {0,1}
that takes an input string of length n and n bits of randomness to outputs a single bit.
We assume that for all z € {0,1}"™, when the answer is supposed to be yes,
2
Pr [A =1]> =
P AG) = 1] 2
and when the answer is supposed to be no,
Pr [A(z,z) =0] >

U,

Take G : {0,1}7(™ — {0,1}" such that

Wl N

1
Eocv,[A(z,2)] = Byev, ) [A(z, GW))]| < 15 = €(n)

Thus, if we iterate through all possible seeds y and take the majority vote, this algorithm will
deterministically give us the right answer. When r(n) = logn (resp. O(logn)), The number
of possible seeds is 2™ = n (resp. polynomial in n). This gives an efficient way to eliminate
randommness assuming that G is computable in polytime.
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2.1.1 Pairwise Independent Generator

A simple but particularly useful pseudorandom distribution is a pairwise independent string defined
as follows.

Definition 2.1.4. Let ¥ be an alphabet. (For now, ¥ = {0,1} or the field F)

X = (X1, Xy, - X,,) € X" where each X; is a random variable on X, and for all pairs i,j € [n],
such that i # j, X; and X; are independent. Then we call X a Pairwise Independent Distribution
on X",

Example 2.1.5. A simple example: Let ¥ = {0,1}. X = (X1, Xa, X3) is a distribution on {0,1}3
where X3 = X1 ® Xo, the XOR of X1 and X5 is a pairwise independent distribution on 3 bits. In
each column, each of the four combinations of the ftwo bits occurs with equal probability.

X= (X; X2 X3)

0 0 0
0 1 1
1 0 1
1 1 0

We generalize the above example to give an efficient construction of a pairwise independent
generator with seed length O(logn).

Construction 2.1.6 (Pairwise independent generator). Let r = [log(n+1)] and let Y1,Y>,...,Y,
be r uniform independent bits. For all nonempty subset S of [n], we define

Xs =Y

€S
Claim 2.1.7. The random variable X = (Xs)scn),5+0 1S pairwise independent.
Proof of Claim. Consider two nonempty subsets A, B C [n].
e If A and B are disjoint,
Pr[X, = 1|Xp = 1] = Pr[X4 = 1] = Pr[X4 = 1| X = 0]
The calculations for other cases are similar.

e If one is a subset of the other, with loss of generality A C B, then X, Xp\ 4 are both uniform
bits and Xp = 1|/X4 = 1 is equivalent to Xp\ 4 =0

1
Pr[Xp = 1Xa = 1] = Pr[Xp 4 = 0] = 5 = Pr[Xp = 1

e If neither above is true about A and B, then taking set intersection and set difference won’t
give us nonempty sets.

Xa=Xanp® Xa\B, XB=Xanp® Xp\a
where A\B, B\ A, AN B are disjoint. the first case says Xa\B:s Xp\a; Xanp are independent.
1
Pr[X4 =1|Xp = 1] = Pr[Xa\p # Xanp|Xp\a # Xanp = Pr[Xa\p # Xanp| = 5

So X4 and Xp are independent.
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The following is an alternate construction of a pairwise independent distribution.
Construction 2.1.8. Let I, be a finite field of q elements. We sample a,b randomly from Fy, and
let X; =ai+b foralli € F,.

Claim 2.1.9. Let X = (X1, Xo,...,X,) where all X; are defined as in 2.1.8. The X;’s are pairwise
independent.

Proof. For all pairs i # j, we can write <§z> =M <Z) where M = (1 ;) is invertible. Then,
J

for arbitrary m,n € Fy,

Pr[z; — m,a; — n] = Pr KZ) — M (’:ﬂ - quP — Prlz; = m] Pr[e; = n]

2.1.2 Application: Error reduction in algorithms

Lemma 2.1.10. (Chebyshev’s Inequality) Let X be a random variable with mean p, and variance
o. Then,
Pri| X —pu| > ¢ < ;:2.
Proof. If we apply Markov’s Inequality to (X — u)?, we get
Pr(|X —p|>el =Pr[(X —p)* > €%

- E[(X;u)z] _ 7

€ €

Claim 2.1.11. Let X be the average of t pairwise independent on the interval [0,1]. Then,
1
Pr{|X —ul >¢ < —
HIX > <

Proof. Given Chebyshev’s Inequality, we only need to show Var[X] < 1/t. Pairwise independence
says that for i # 7,
E[(X; — 1)(X; — p)] = E[Xi — pE[X; —p] =0

t

VarlX] = E[(X — )’ = E (M - u>

=1
=SB S Km0 )| =y B (X )
i,j€[t] 1,J€E[t]
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O]

The application to error reduction is now straightforward from the above lemma in the following
way: Say A is a randomized algorithm that takes a random symbol from Y. We repeat the
randomized algorithm ¢ times, using a pairwise independent distribution on ¥¢. The error analysis
now follows by letting the random variable X; indicate the probability of success of the ¢’th iteration
of the algorithm.
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