CS 6815 Pseudorandomness and Combinatorial Constructions

Fall 2018

Lecture 2: August 28

Lecturer: Eshan Chattopadhyay

Scribe: Jiazhen Tan

2.1 Pseudorandom Generators

To define a pseudorandom generator (PRG), we first fix a class of *distinguishers* or a class of tests, which we typically denote as \mathcal{F} . Informally, the PRG takes a short uniform string of length r bits to n bits, where r < n. For making the definition useful, we would require the PRG function should be "efficiently computable", where we make the notion of efficiency clear in later lectures.

Definition 2.1.1. A family of tests $\mathcal{F} = \bigcup_{n>0} \mathcal{F}_n$, where \mathcal{F}_n contains Boolean functions $f : \{0,1\}^n \to \{0,1\}$ that maps an n-bit string to a single bit.

Notation: Let U_m be a uniform distribution on $\{0, 1\}^n$. We are now ready to formally define a PRG.

- The function $r: \mathbb{N} \to \mathbb{N}$ maps n to the seed length needed to generate a string of length n.
- The function $\epsilon : \mathbb{N} \to [0, 1)$ is the error function.
- $\mathcal{G}_n: \{0,1\}^{r(n)} \to \{0,1\}^n$ is a function that maps r(n) bit strings to n bit strings.
- $\mathcal{G} = (\mathcal{G}_n)_{n>0}$ is a collection of \mathcal{G}_n .

Definition 2.1.2. Given an error function ϵ , we define \mathcal{G} to be a PRG for \mathcal{F} if $\forall n \in \mathbb{N}, \forall f \in \mathcal{F}_n$,

$$\left| \mathbf{E}_{x \leftarrow U_n} [f(x)] - \mathbf{E}_{y \leftarrow U_{r(n)}} [f(G(y))] \right| < \epsilon(n)$$

An important application of PRGs is to derandomization, i.e., reducing the amount of randomness used in algorithms. In particular, a good enough PRG could altogether eliminate the need for using random bits.

Example 2.1.3. Consider the class of polynomial time algorithms $A : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ that takes an input string of length n and n bits of randomness to outputs a single bit.

We assume that for all $z \in \{0,1\}^n$, when the answer is supposed to be yes,

$$\Pr_{x \leftarrow U_n} \left[A(z, x) = 1 \right] \ge \frac{2}{3}$$

and when the answer is supposed to be no,

$$\Pr_{x \leftarrow U_n} \left[A(z, x) = 0 \right] \ge \frac{2}{3}$$

Take $\mathcal{G}: \{0,1\}^{r(n)} \to \{0,1\}^n$ such that

$$\left| \mathbf{E}_{x \leftarrow U_n} [A(z, x)] - \mathbf{E}_{y \leftarrow U_{r(n)}} [A(z, G(y))] \right| < \frac{1}{10} = \epsilon(n)$$

Thus, if we iterate through all possible seeds y and take the majority vote, this algorithm will deterministically give us the right answer. When $r(n) = \log n$ (resp. $O(\log n)$), The number of possible seeds is $2^{r(n)} = n$ (resp. polynomial in n). This gives an efficient way to eliminate randomness assuming that \mathcal{G} is computable in polytime.

2.1.1 Pairwise Independent Generator

A simple but particularly useful pseudorandom distribution is a pairwise independent string defined as follows.

Definition 2.1.4. Let Σ be an alphabet. (For now, $\Sigma = \{0, 1\}$ or the field \mathbb{F}_q)

 $X = (X_1, X_2, \dots, X_n) \in \Sigma^n$ where each X_i is a random variable on Σ , and for all pairs $i, j \in [n]$, such that $i \neq j$, X_i and X_j are independent. Then we call X a Pairwise Independent Distribution on Σ^n .

Example 2.1.5. A simple example: Let $\Sigma = \{0, 1\}$. $X = (X_1, X_2, X_3)$ is a distribution on $\{0, 1\}^3$ where $X_3 = X_1 \oplus X_2$, the XOR of X_1 and X_2 is a pairwise independent distribution on 3 bits. In each column, each of the four combinations of the flow bits occurs with equal probability.

X =	$(X_1$	X_2	X_3
	0	0	0
	0	1	1
	1	0	1
	1	1	0

We generalize the above example to give an efficient construction of a pairwise independent generator with seed length $O(\log n)$.

Construction 2.1.6 (Pairwise independent generator). Let $r = \lceil \log(n+1) \rceil$ and let Y_1, Y_2, \ldots, Y_r be r uniform independent bits. For all nonempty subset S of [n], we define

$$X_S = \bigoplus_{i \in S} Y_i$$

Claim 2.1.7. The random variable $X = (X_S)_{S \subseteq [n], S \neq \emptyset}$ is pairwise independent.

Proof of Claim. Consider two nonempty subsets $A, B \subseteq [n]$.

• If A and B are disjoint,

$$\Pr[X_A = 1 | X_B = 1] = \Pr[X_A = 1] = \Pr[X_A = 1 | X_B = 0]$$

The calculations for other cases are similar.

• If one is a subset of the other, with loss of generality $A \subseteq B$, then $X_B, X_{B\setminus A}$ are both uniform bits and $X_B = 1 | X_A = 1$ is equivalent to $X_{B\setminus A} = 0$

$$\Pr[X_B = 1 | X_A = 1] = \Pr[X_{B \setminus A} = 0] = \frac{1}{2} = \Pr[X_B = 1]$$

• If neither above is true about A and B, then taking set intersection and set difference won't give us nonempty sets.

$$X_A = X_{A \cap B} \oplus X_{A \setminus B}, \quad X_B = X_{A \cap B} \oplus X_{B \setminus A}$$

where $A \setminus B$, $B \setminus A$, $A \cap B$ are disjoint. the first case says $X_{A \setminus B}$, $X_{B \setminus A}$, $X_{A \cap B}$ are independent.

$$\Pr[X_A = 1 | X_B = 1] = \Pr[X_{A \setminus B} \neq X_{A \cap B} | X_{B \setminus A} \neq X_{A \cap B} = \Pr[X_{A \setminus B} \neq X_{A \cap B}] = \frac{1}{2}$$

So X_A and X_B are independent.

2 - 3

The following is an alternate construction of a pairwise independent distribution.

Construction 2.1.8. Let \mathbb{F}_q be a finite field of q elements. We sample a, b randomly from \mathbb{F}_q , and let $X_i = ai + b$ for all $i \in \mathbb{F}_q$.

Claim 2.1.9. Let $X = (X_1, X_2, ..., X_q)$ where all X_i are defined as in 2.1.8. The X_i 's are pairwise independent.

Proof. For all pairs $i \neq j$, we can write $\begin{pmatrix} x_i \\ x_j \end{pmatrix} = M \begin{pmatrix} a \\ b \end{pmatrix}$ where $M = \begin{pmatrix} 1 & i \\ 1 & j \end{pmatrix}$ is invertible. Then, for arbitrary $m, n \in \mathbb{F}_q$,

$$\Pr\left[x_i = m, x_j = n\right] = \Pr\left[\binom{a}{b} = M^{-1}\binom{m}{n}\right] = \frac{1}{|\mathbb{F}_q|^2} = \Pr\left[x_i = m\right]\Pr\left[x_j = n\right]$$

2.1.2 Application: Error reduction in algorithms

Lemma 2.1.10. (Chebyshev's Inequality) Let X be a random variable with mean μ , and variance σ . Then,

$$\Pr\left[|X - \mu| > \epsilon\right] \le \frac{\sigma}{\epsilon^2}$$

Proof. If we apply Markov's Inequality to $(X - \mu)^2$, we get

$$\Pr\left[|X - \mu| > \epsilon\right] = \Pr\left[(X - \mu)^2 > \epsilon^2\right]$$
$$\leq \frac{\mathbf{E}[(X - \mu)^2]}{\epsilon^2} = \frac{\sigma}{\epsilon^2}.$$

-	-	-
 _	_	_

Claim 2.1.11. Let X be the average of t pairwise independent on the interval [0,1]. Then,

$$\Pr\left[|X - \mu| > \epsilon\right] \le \frac{1}{t\epsilon^2}$$

Proof. Given Chebyshev's Inequality, we only need to show $\operatorname{Var}[X] \leq 1/t$. Pairwise independence says that for $i \neq j$, $\mathbf{F}[(X = u)|(X = u)] = \mathbf{F}[X = u]\mathbf{F}[X = u] = 0$

$$\mathbf{E}\left[(X_{i}-\mu)(X_{j}-\mu)\right] = \mathbf{E}[X_{i}-\mu]\mathbf{E}[X_{j}-\mu] = 0$$

$$\operatorname{Var}[X] = \mathbf{E}\left[(X-\mu)^{2}\right] = \mathbf{E}\left[\left(\sum_{i=1}^{t} X_{i} - \mu\right)^{2}\right]$$

$$= \frac{1}{t^{2}}\mathbf{E}\left[\left(\sum_{i=1}^{t} (X_{i}-\mu)\right)^{2}\right]$$

$$= \frac{1}{t^{2}}\mathbf{E}\left[\sum_{i,j\in[t]} (X_{i}-\mu)(X_{j}-\mu)\right] = \frac{1}{t^{2}}\sum_{i,j\in[t]} \mathbf{E}\left[(X_{i}-\mu)(X_{j}-\mu)\right]$$

$$= \frac{1}{t^{2}}\sum_{i\in[t]} \mathbf{E}\left[(X_{i}-\mu)^{2}\right] \quad \text{(pairwise independence)}$$

$$\leq \frac{1}{t^{2}}t = \frac{1}{t}$$

The application to error reduction is now straightforward from the above lemma in the following way: Say A is a randomized algorithm that takes a random symbol from Σ . We repeat the randomized algorithm t times, using a pairwise independent distribution on Σ^t . The error analysis now follows by letting the random variable X_i indicate the probability of success of the *i*'th iteration of the algorithm.