
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2018

Lecture 2: August 28

Lecturer: Eshan Chattopadhyay Scribe: Jiazhen Tan

2.1 Pseudorandom Generators

To define a pseudorandom generator (PRG), we first fix a class of distinguishers or a class of tests,
which we typically denote as F . Informally, the PRG takes a short uniform string of length r bits
to n bits, where r < n. For making the definition useful, we would require the PRG function should
be “efficiently computable”, where we make the notion of efficiency clear in later lectures.

Definition 2.1.1. A family of tests F =
⋃

n>0Fn, where Fn contains Boolean functions f :
{0, 1}n → {0, 1} that maps an n-bit string to a single bit.

Notation: Let Um be a uniform distribution on {0, 1}n.
We are now ready to formally define a PRG.

• The function r : N→ N maps n to the seed length needed to generate a string of length n.

• The function ε : N→ [0, 1) is the error function.

• Gn : {0, 1}r(n) → {0, 1}n is a function that maps r(n) bit strings to n bit strings.

• G = (Gn)n>0 is a collection of Gn.

Definition 2.1.2. Given an error function ε, we define G to be a PRG for F if ∀n ∈ N,∀f ∈ Fn,∣∣∣Ex←Un [f(x)]−Ey←Ur(n)
[f(G(y))]

∣∣∣ < ε(n)

An important application of PRGs is to derandomization, i.e, reducing the amount of randomness
used in algorithms. In particular, a good enough PRG could altogether eliminate the need for using
random bits.

Example 2.1.3. Consider the class of polynomial time algorithms A : {0, 1}n × {0, 1}n → {0, 1}
that takes an input string of length n and n bits of randomness to outputs a single bit.

We assume that for all z ∈ {0, 1}n, when the answer is supposed to be yes,

Pr
x←Un

[A(z, x) = 1] ≥ 2

3

and when the answer is supposed to be no,

Pr
x←Un

[A(z, x) = 0] ≥ 2

3

Take G : {0, 1}r(n) → {0, 1}n such that∣∣∣Ex←Un [A(z, x)]−Ey←Ur(n)
[A(z,G(y))]

∣∣∣ < 1

10
= ε(n)

Thus, if we iterate through all possible seeds y and take the majority vote, this algorithm will
deterministically give us the right answer. When r(n) = log n (resp. O(log n)), The number
of possible seeds is 2r(n) = n (resp. polynomial in n). This gives an efficient way to eliminate
randomness assuming that G is computable in polytime.

2-1

Lecture 2: August 28 2-2

2.1.1 Pairwise Independent Generator

A simple but particularly useful pseudorandom distribution is a pairwise independent string defined
as follows.

Definition 2.1.4. Let Σ be an alphabet. (For now, Σ = {0, 1} or the field Fq)
X = (X1, X2, · · ·Xn) ∈ Σn where each Xi is a random variable on Σ, and for all pairs i, j ∈ [n],

such that i 6= j, Xi and Xj are independent. Then we call X a Pairwise Independent Distribution
on Σn.

Example 2.1.5. A simple example: Let Σ = {0, 1}. X = (X1, X2, X3) is a distribution on {0, 1}3
where X3 = X1 ⊕X2, the XOR of X1 and X2 is a pairwise independent distribution on 3 bits. In
each column, each of the four combinations of the ftwo bits occurs with equal probability.

X = (X1 X2 X3)
0 0 0
0 1 1
1 0 1
1 1 0

We generalize the above example to give an efficient construction of a pairwise independent
generator with seed length O(log n).

Construction 2.1.6 (Pairwise independent generator). Let r = dlog(n+ 1)e and let Y1, Y2, . . . , Yr
be r uniform independent bits. For all nonempty subset S of [n], we define

XS =
⊕
i∈S

Yi

Claim 2.1.7. The random variable X = (XS)S⊆[n],S 6=∅ is pairwise independent.

Proof of Claim. Consider two nonempty subsets A,B ⊆ [n].

• If A and B are disjoint,

Pr[XA = 1|XB = 1] = Pr[XA = 1] = Pr[XA = 1|XB = 0]

The calculations for other cases are similar.

• If one is a subset of the other, with loss of generality A ⊆ B, then XB, XB\A are both uniform
bits and XB = 1|XA = 1 is equivalent to XB\A = 0

Pr[XB = 1|XA = 1] = Pr[XB\A = 0] =
1

2
= Pr[XB = 1]

• If neither above is true about A and B, then taking set intersection and set difference won’t
give us nonempty sets.

XA = XA∩B ⊕XA\B, XB = XA∩B ⊕XB\A

where A\B, B\A, A∩B are disjoint. the first case says XA\B, XB\A, XA∩B are independent.

Pr[XA = 1|XB = 1] = Pr[XA\B 6= XA∩B|XB\A 6= XA∩B = Pr[XA\B 6= XA∩B] =
1

2

So XA and XB are independent.

Lecture 2: August 28 2-3

The following is an alternate construction of a pairwise independent distribution.

Construction 2.1.8. Let Fq be a finite field of q elements. We sample a, b randomly from Fq, and
let Xi = ai+ b for all i ∈ Fq.

Claim 2.1.9. Let X = (X1, X2, . . . , Xq) where all Xi are defined as in 2.1.8. The Xi’s are pairwise
independent.

Proof. For all pairs i 6= j, we can write

(
xi
xj

)
= M

(
a
b

)
where M =

(
1 i
1 j

)
is invertible. Then,

for arbitrary m,n ∈ Fq,

Pr [xi = m,xj = n] = Pr

[(
a
b

)
= M−1

(
m
n

)]
=

1

|Fq|2
= Pr [xi = m] Pr [xj = n]

2.1.2 Application: Error reduction in algorithms

Lemma 2.1.10. (Chebyshev’s Inequality) Let X be a random variable with mean µ, and variance
σ. Then,

Pr [|X − µ| > ε] ≤ σ

ε2
.

Proof. If we apply Markov’s Inequality to (X − µ)2, we get

Pr
[
|X − µ| > ε

]
= Pr

[
(X − µ)2 > ε2

]
≤ E[(X − µ)2]

ε2
=
σ

ε2
.

Claim 2.1.11. Let X be the average of t pairwise independent on the interval [0, 1]. Then,

Pr [|X − µ| > ε] ≤ 1

tε2

Proof. Given Chebyshev’s Inequality, we only need to show Var[X] ≤ 1/t. Pairwise independence
says that for i 6= j,

E [(Xi − µ)(Xj − µ)] = E[Xi − µ]E[Xj − µ] = 0

Var[X] = E
[
(X − µ)2

]
= E

(∑t
i=1Xi

t
− µ

)2

=
1

t2
E

(t∑
i=1

(Xi − µ)

)2

=
1

t2
E

∑
i,j∈[t]

(Xi − µ)(Xj − µ)

 =
1

t2

∑
i,j∈[t]

E [(Xi − µ)(Xj − µ)]

=
1

t2

∑
i∈[t]

E
[
(Xi − µ)2

]
(pairwise independence)

≤ 1

t2
t =

1

t

Lecture 2: August 28 2-4

The application to error reduction is now straightforward from the above lemma in the following
way: Say A is a randomized algorithm that takes a random symbol from Σ. We repeat the
randomized algorithm t times, using a pairwise independent distribution on Σt. The error analysis
now follows by letting the random variable Xi indicate the probability of success of the i’th iteration
of the algorithm.

	Pseudorandom Generators
	Pairwise Independent Generator
	Application: Error reduction in algorithms

