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1 Recap: Nisan-Zuckerman PRG

Consider a machine given S space and suppose we want R’ random bits. We will see that we can
stretch R bits to RSY (0 < 7 < 1) bits using space O(S), R > ¢S for a ¢ we will describe later.
To get even greater numbers of random bits, we can compose this construction, producing a chain
stretching the number of random bits § — S1t7 — §1+2v — |

Take an (Z,€)-extractor with large entropy Ext : {0,1}" x {0,1}¢ — {0,1}™, where n = ¢S

is large. Let X ~ U, and Y; ~ Uy for 1 < i <t. We define our PRG as outputting the sequence
of bits Ext(X,Y1),...,Ext(X,Y;). We will use n + dt = R random bits, and we are producing

mt = R’ = RSY random bits. Here, the parameters are:
l.dt=R—n
2. mt = RSY
3. Pick m = Q(S), i.e. a small constant times S, so t = Q (SI—R,W) and d = O(S'77).
We have extractors such that d = O (log (g)) where ¢ = 275"""), Thus, we can take ¢ =

(¢ + 39)t.

2 A Closed But Unpublished Problem

Instead of a final project, we can solve the following problem. Consider a branching program of
width 2 and length n, i.e. one of the following form:

Start —— o —— o o — o Accept
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The question is to design a PRG for (2,1n)-ROBPs with a seed O(logn) in log space. This can
be done using an e-biased space, with € = ﬁ; all that is left is the proof that this construction
works.

3 Seedless (Deterministic) Extraction

Recall that there does not exist an extractor for all (n, k)—sources.



Definition 3.1. Suppose there are two sources X ~ (n,k1),Y ~ (n, k). Ezxt: {0,1}" x {0,1}" —
{0,1}™ is a (n, ki, ka,e) — 2—source extractor if

|Ext(X,Y) —Up| <€
For k1 = ko > logn + 2log(1/s) + 1, such extractors exist.

Theorem 3.2. For all § > 0, there exists an explicit 2—source extractor for ki + ko > (1 + 0)n,
m =1 with e = 2"~ ~*)/2,

Proof. Let x ~ X, y ~ Y be samples from the sources. Then, the explicit extractor Ext : {0, 1}" x
{0,1}™ — {0, 1} is given by Ext(x,y) = (z,y). Let us denote P, = Pr(X = x). It follows that
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Theorem 3.3. There exists an explicit 2—source extractor for ki > (1/2+0)n, ko > clogn, m =1
with e = 27Hk2)|

Proof. Let X,Y ~ T, with p > 2" prime, so k1 > (1/2+0)logp and ko > cloglogp. This extractor
is based on a Paley graph, the Cayley graph for Z/pZ, where p = 1 (mod 4). We connect two
points if 2 +y = 7? (mod p) for some r; equivalently, = + y is a quadratic residue. Then, define the
map x : F, = {—1,1} as follows:

1 if z is a square over F,

x(z) = . :

—1 otherwise

Notice that this map preserves multiplication, and if x(2?) = 1, then x(x) = x(z71).
Then, we define

x(z+y)+1



In what follows, it could be helpful to think about flat sources; consider

S (Bl =1 N (@ +y)|.

z~supp(X) x~supp(X)
y~supp(Y’) y~supp(Y)

In the part of the proof that follows, we will use a big hammer from algebraic geometry, the
Weil bound, which we will not prove.

Theorem 3.4 (Weil bound). Let f be a degree d polynomial over F,, with f # g® for any g. Then,
S er, X (F@)] < (d=1)y/p.
Also recall Holder’s Inequality:
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Observe that
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Let A1 be the number of elements for which all the y; are distinct and are thus certainly not a
square. Let As be the number of remaining elements, which might be a square. The preceding
inequality implies that
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Then, we can see that

A; < (4]supp(Y)| ) < |supp(Y)|* \/p(2¢ — 1) by the Weil bound and

Ay < <| suprE(Y)]> (20) < | supp(Y)|?*.

This implies that
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Thus, we can set ¢ such that p% = |supp(Y)|.
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