
CS 6815: Lecture 17

Instructor: Eshan Chattopadhyay Scribe: Drishti Wali

25th October 2018

1 Introduction

In this lecture we begin the topic on Derandomizing Space Bounded Computation. We start
by defining the Turing Model we would be following, and then looking at the different space and
time bounded complexity classes of our interest.

2 Turing Machine Model

Definition 2.1 (Turing Machine). A Turing Machine or TM is specified by 3 tapes - a Read
only input tape, a Read-Write work tape and a Read-Write Output tape with a head on each tape
indicating the cell being read/written on by the machine on that step. It is also consisting of a
constant number of states which provide instructions regarding the next state to go to as well as the
movement of the heads of the three tapes. There is always a start state where the machine starts
from and an accept state and a reject state where the machine stops. The machine also always
starts with blank Read-Write tapes and all heads at the start of the tapes

Definition 2.2 (Deterministic Turing Machine). A DTM is a TM where each step is deter-
ministic, or in other words each configuration consisting of the input tape, work tape and output
tapes with their heads on a specific position and the machine on a specific state has only one other
configuration to move to.

Definition 2.3 (Non-Deterministic Turing Machine). An NTM is a TM where any step can
be non-deterministic, or in other words each configuration can possibly have multiple configuration
to move to.

Definition 2.4 (Randomized Turing Machine). An RTM is a TM where there is another
tape with random bits which is a Read-only tape and the head on the tape can only move in one
direction.

Definition 2.5 (Space Complexity). The space used by a TM is defined as the number of non-
blank cells of it’s Read-Write tapes. In other words a Turing Machine M with space complexity
s(n) is a machine where the space used by M on any input of size n bits is atmost s(n).

Definition 2.6 (Time Complexity). The time used by a TM is defined as the maximum number
of steps taken by the machine before it stops. A machine has time complexity t(n) if the time
taken by the machine on any input of n bits is bounded by t(n)

Definition 2.7 (Configuration Graph). Given a TM, M with input x ∈ {0, 1}∗, we define
the configuration graph GM,x as one with nodes as all possible configurations of the machine.

1

Each node thus is a specific configuration consisting of the input tape, work tape and output tapes
with their heads on a specific position and the machine on a specific state. The node v for one
configuration has an edge to another w if and only if the machine would go from v to w.

Remark 2.8. A TM M accepts the input x if and only if there exists a path in GM,x from the
configuration with start state to the configuration nodes with accept state.

Remark 2.9. The configuration graph of a turning machine with space complexity S(n) must have
vertex set size bounded by 2O(S(n))

3 Complexity Classes and Hierarchy

Definition 3.1 (DSPACE). A language L ⊆ {0, 1}∗ belongs to DSPACE(f(n)) if L is accepted
by a DTM with space complexity O(f(n))

Definition 3.2 (NSPACE). A language L ⊆ {0, 1}∗ belongs to NSPACE(f(n)) if L is accepted
by an NTM with space complexity O(f(n))

Definition 3.3 (RSPACE). A language L ⊆ {0, 1}∗ belongs to RSPACE(f(n)) if there exists
an RTM with space complexity O(f(n)) such that any x ∈ L is accepted with probability 1 and any
x /∈ L is accepted with probability atmost 1/3

Definition 3.4 (BPSPACE). A language L ⊆ {0, 1}∗ belongs to BPSPACE(f(n)) if there exists
an RTM with space complexity O(f(n)) such that any x ∈ L is accepted with probability atleast 2/3
and any x /∈ L is accepted with probability atmost 1/3

Definition 3.5 (DTIME). A language L ⊆ {0, 1}∗ belongs to DTIME(f(n)) if L is accepted by
a DTM with time complexity O(f(n))

Lemma 3.6. DSPACE(s(n)) ⊆ DTIME(2O(s(n)))

Proof. This is simply because we cannot have any turing machine running for more steps than all
possible configurations of the space.

Theorem 1 (Savitch’s Theorem).
NSPACE(s(n)) ⊆ DSPACE(s(n)2)
RSPACE(s(n)) ⊆ DSPACE(s(n)2)

Proof. The proof relies on finding a path from the start node to accept node on the configuration
graph for a Turing Machine which accepts a language in NSPACE(s(n)) in space s(n)2. The key
idea is to use recursion to save space while iterating over all possible distances of their path length.
[Kli14]

Theorem 2 ([BCP83]). BPSPACE(s(n)) ⊆ DSPACE(s(n)2)

Thus the critical questions in the area of Space Bounded Computation are beliefs about the
equality of the classes BPSPACEand DSPACE

Open problem 3.7.

RSPACE(s(n))
?
= DSPACE(s(n))

BPSPACE(s(n))
?
= DSPACE(s(n))

2

By a padding argument, it is enough to show the above only for s(n) = O(logn). Let
RL:=RSPACE(log(n)) and L:=DSPACE(log(n))

Lemma 3.8. RL=L =⇒ RSPACE(s(n)) = DSPACE(s(n))

Proof. Let L ∈RSPACE(s(n)) and define L′ := {x(λ)2
c.s(|x|)−|x|

: x ∈ L} where λ is a new symbol
not used before. Then L′ ∈ RL =⇒ L′ ∈ L =⇒ L ∈ DSPACE(s(n))

Theorem 3 ([SZ99]).

BPSPACE(s(n)) ⊆ DSPACE(s(n)
3
2)

4 Read-Once Branching Program

A Read Once Branching Program or ROBP is a model to study the space bounded randomized
computation. For a randomized algorithm using s amount of space and T ≤ 2s amount of random
bits, the width of the ROBP is w = 2s and it’s length is T . It has T layers each with w nodes
corresponding to the space configuration on that randomized step. Each layer has exactly two
edges going to the next layer corresponding to the random bit at this layer turning 0 or 1. Every
node of the first layer corresponds to a specific input node and there is assumed to be exactly one
node in the last layer corresponding to the accept node. The randomized algorithm is thus modeled
as a random walk from the start node on the first layer to the last year. The probability of the
random walk landing on the accept node is the probability of the input string being accepted by
the algorithm.

Now we can specify an ROBP using function Bw,T : {0, 1}T → {0, 1} corresponding to the steps of
the random walk on it. Now, if we have a PRG G : {0, 1}r → {0, 1}T which is computable in space
s and steps T such that for any Bw,T ,

|Pr[B(UT) = 1]−Pr[B(G(Ur)) = 1]| ≤ ε

then we can accept any language which Bw,T accepts within probability ε. Moreover, if r = logT
then we can de-randomize the program and since every language in RL would have an ROBP we
can de-randomize RL.
Several such PRGs have been given such as [NW94], [IW98] and [RRV02]. Here, we would be
warming up towards the Nisan PRG of seed length ((s + log(Tε)).log(Tε)) by building a much
weaker PRG with seed length O(s+ log(Tε)).

Theorem 4. There exists a G : {0, 1}
T
2
+s+O(log(T

ε
)) → {0, 1}T such that for any ROBP Bw,T of

width w = 2s and length T

|Pr[B(UT) = 1]−Pr[B(G(Ur)) = 1]| ≤ ε

Proof. We begin by using T/2 uniformly random bits as is to use for the first T/2 steps of the
random walk on the ROBP. There after we use the probability distribution of landing on certain
nodes along with the remaining random bits to extract the rest of T/2 close to uniform random
bits.
Let Ev: Event that after T/2 uniformly random steps from the start of the ROBP we land on node
v. Let X be the probability distribution of the first T/2 steps of the random walk. Thus,

H∞(X|Ev) =
T

2
− log(

1

Pr[Ev]
)

3

Let LOW ⊆ [w] such that LOW = {v ∈ [w] : Pr[Ev] ≤ ε
2w}. Thus,

Pr[∪
v∈LOW

Ev] ≤
ε

2w
.w

Now we take any (T/2−s−1− log(1ε), ε/2) extractor Ext : {0, 1}T/2×{0, 1}O(s+log(T
ε
)) → {0, 1}T/2

and re-use the initial T/2 random bits with the remaining bits as the seed to obtain the random
bits for the second half of the random walk. After the first T/2 uniformly random steps, we land
on a node in LOW with probability ε/2 and the probability of the output of the ROBP differing
from the uniform can be bounded by 1, thus the difference in probability of the outputs of the PRG
and uniform in this case is ε/2 while in the other case the output of the extractor ensures that the
probability is ε/2 close to that of the uniform thereby bounding the total difference by ε

References

[BCP83] Allan Borodin, Stephen A. Cook, and Nicholas Pippenger. “Parallel Computation for
Well-Endowed Rings and Space-Bounded Probabilistic Machines”. In: Information and
Control 58 (1983), pp. 113–136.

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs Randomness”. In: J. Comput. Syst. Sci.
49.2 (Oct. 1994), pp. 149–167. issn: 0022-0000. doi: 10.1016/S0022-0000(05)80043-1.
url: http://dx.doi.org/10.1016/S0022-0000(05)80043-1.

[IW98] R. Impagliazzo and A. Wigderson. “Randomness vs. Time: De-Randomization Under a
Uniform Assumption”. In: Proceedings of the 39th Annual Symposium on Foundations
of Computer Science. FOCS ’98. Washington, DC, USA: IEEE Computer Society, 1998,
pp. 734–. isbn: 0-8186-9172-7. url: http://dl.acm.org/citation.cfm?id=795664.
796431.

[SZ99] Michael Saks and Shiyu Zhou. “BPHSPACE (S) ⊆ DSPACE (S3/2)”. In: 1999.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. “Extracting All the Randomness and Re-
ducing the Error in Trevisan’s Extractors”. In: J. Comput. Syst. Sci. 65.1 (Aug. 2002),
pp. 97–128. issn: 0022-0000. doi: 10.1006/jcss.2002.1824. url: http://dx.doi.
org/10.1006/jcss.2002.1824.

[Kli14] Riley Klinger. Savithc’s Theorem. 2014. url: https://courses.cs.washington.edu/
courses/cse431/14sp/scribes/lec16.pdf.

4

https://doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dl.acm.org/citation.cfm?id=795664.796431
http://dl.acm.org/citation.cfm?id=795664.796431
https://doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1006/jcss.2002.1824
http://dx.doi.org/10.1006/jcss.2002.1824
https://courses.cs.washington.edu/courses/cse431/14sp/scribes/lec16.pdf
https://courses.cs.washington.edu/courses/cse431/14sp/scribes/lec16.pdf

	Introduction
	Turing Machine Model
	Complexity Classes and Hierarchy
	Read-Once Branching Program

