Lecture 16: October 23

Instructor: Eshan Chattopadhyay
Scribe: Wei-Kai Lin (wl572), Jyun-Jie Liao (jl3825)

Optimal Vertex Expander. In this lecture, we first construct an "optimal" vertex expander. Recall that a graph G is a (K, A)-vertex expander iff for all vertex set $|S| \leq K$, it holds that $|\Gamma(S)| \geq A \cdot|S|$.

Let q be a power of prime, \mathbb{F}_{q} be the field of $q, n, m, h \in \mathbb{N}$ be parameters that will be chosen later. We represent $f \in \mathbb{F}_{q}^{n}$ as a polynomial over \mathbb{F}_{q} that has degree at most $n-1$, and we choose an irreducible polynomial E over \mathbb{F}_{q} of degree n. For all $f \in \mathbb{F}_{q}$, let $f_{i}:=f^{h^{i}} \bmod E$.

The construction is a bipartite graph G consisting of $N=q^{n}$ vertices of the left and $M \times D$ vertices on the right, where $M=q^{m}$ and $D=q$, and the vertex degree on the left side is D. The left and right vertex sets are chosen to be \mathbb{F}_{q}^{n} and $[D] \times \mathbb{F}_{q}^{m}$, and we describe the edge set by the mapping $e: \mathbb{F}_{q}^{n} \times[D] \mapsto[D] \times \mathbb{F}_{q}^{m}$ such that for a left vertex $f \in \mathbb{F}_{q}^{n}$, the edge $y \in[D]$ goes to the following right vertex,

$$
e(f, y)=\left(y, f_{0}(y), f_{1}(y), \ldots, f_{m-1}(y)\right)
$$

Claim 1. G is a $\left(h^{m}, q-(n-1)(h-1) m\right)$-vertex expander.

Proof. Let L and R be the set of left and right vertices on G correspondingly. For any $T \subseteq R$, define $\operatorname{LIST}(T):=\{x \in L: \Gamma(x) \subseteq T\}$. To show a graph is a (K, A)-vertex expander, it suffices to show that for all subset T of the right vertex set such that $|T|=A K-1$, it holds that $|\operatorname{LIST}(T)| \leq K-1$.

Given such $T \subseteq[D] \times \mathbb{F}_{q}^{m}$, let

$$
Q\left(Y, Y_{0}, Y_{1}, \ldots, Y_{m-1}\right)
$$

be a polynomial on \mathbb{F}_{q} that vanishes on T. Observe that Q can be decomposed into the following summation of monomials,

$$
\sum_{i=0}^{A-1} \sum_{j=0}^{K-1} \beta_{i, j} Y^{i} M_{j}\left(Y_{0}, \ldots, Y_{m-1}\right)
$$

where $K=h^{m}, A=q-(n-1)(h-1) m$, and $\beta_{i, j} \in \mathbb{F}_{q}$ are coefficients. Rearranging, we get

$$
\sum_{j=0}^{K-1} P_{j}(Y) M_{j}\left(Y_{0}, \ldots, Y_{m-1}\right)
$$

where there exists j s.t. $P_{j}(Y)$ such that is not divisible by $E(Y)$. On the other side, fix any $f \in \operatorname{LIST}(T)$. Let $R_{f}(Y):=Q\left(Y, f_{0}(Y), \ldots, f_{m-1}(Y)\right)$. Then, by Q vanishes on T and $f \in \operatorname{LIST}(T)$, it holds that $R_{f}(y)=0$ for all $y \in \mathbb{F}_{q}$. In addition, the degree of R_{f} is $(A-1)+m(n-1)(h-1)<q$, which implies that $R_{f}(Y)$ is a zero polynomial. Now, define

$$
W(Z):=Q\left(Y, Z, Z^{h}, Z^{h^{2}}, \ldots, Z^{h^{m-1}}\right)
$$

on \mathbb{F}_{q}. Then, $f(Y)$ is a root of $W(Z)$ as $W(f(Y))=R_{f}(Y)=0$. Finally, note that

$$
W(Z)=\sum_{j=0}^{K-1} P_{j}(Y) Z^{j} \quad \bmod E(Y)
$$

It follows that $|\operatorname{LIST}(T)|$ is at most the degree of $W(Z)$, which is at most $K-1$.

Theorem 1. For any $N, K \leq N, \epsilon, \alpha>0$, there exists a (K, A)-vertex bipartite expander such that consists of N left vertices, M right vertices, and left vertex degree D, where $A \geq(1-\epsilon) D, M \leq D^{2} K^{1+\alpha}$, and $D=\left(\frac{\log N \cdot \log K}{\epsilon}\right)^{1+1 / \alpha}$.

Proof. In the graph G of Claim 1, pick $h=\left(\frac{\log N \cdot \log K}{\epsilon}\right)^{1 / \alpha}, q \in\left[h^{1+\alpha}, 2 h^{1+\alpha}\right]$, n such that $q^{n}=N$, and m such that $q^{m+1}=M$.

Lossless Condenser from Vertex Expander. Note that the vertex expansion A of the (K, A)-vertex expander is ϵ close to the degree D, and that is why we called it "optimal". Next, we recall the theorem from Lecture 14 that states a $(K,(1-\epsilon))$-vertex expander implies (and also the converse) a strong lossless condenser, we claim the following corollary.

Corollary 1. For all n, k, d, any constant $\epsilon, \alpha>0$, there exists a lossless condenser Con : $\{0,1\}^{n} \times$ $\{0,1\}^{d} \mapsto\{0,1\}^{m}$ such that takes an (n, k)-source and outputs an $(m, k+d)$-source with error ϵ, where $d=(1+1 / \alpha)\left(\log n+\log k+\log \frac{1}{\epsilon}\right)+O(1), k \leq m \leq 2 d+(1+\alpha) k$.

Extractor for Arbitrary Entropy. Now we have a condenser. Combining a condenser with an extractor for high-entropy source, we can get an extractor for arbitrary entropy.

Theorem 2. Suppose Con : $\{0,1\}^{n} \times\{0,1\}^{d_{1}} \rightarrow\{0,1\}^{k^{\prime}}$ is $a(n, k) \rightarrow_{\epsilon_{1}}\left(k^{\prime},(1-\delta) k^{\prime}\right)$ condenser, and Ext ${ }^{\delta}:\{0,1\}^{k^{\prime}} \times\{0,1\}^{d_{2}} \rightarrow\{0,1\}^{m}$ is a $\left((1-\delta) k^{\prime}, \epsilon_{2}\right)$ extractor, Then Ext $:\{0,1\}^{n} \times\{0,1\}^{d_{1}+d_{2}} \rightarrow\{0,1\}^{m}$, defined by

$$
\operatorname{Ext}\left(x,\left(y_{1}, y_{2}\right)\right)=\operatorname{Ext}^{\delta}\left(\operatorname{Con}\left(x, y_{1}\right), y_{2}\right)
$$

is a $\left(k, \epsilon_{1}+\epsilon_{2}\right)$ extractor.

We give a construction of $E x t^{\delta}$ with seed length $O(\log n)$ for $\delta=O\left(\epsilon^{2}\right)$ below.
Theorem 3. Suppose G is a $\left(\left[2^{m}\right], 2^{c}, \lambda\right)$ expander for some constant c, λ, and $\epsilon>0$ is an error parameter. Define a function Ext ${ }^{\delta}:\{0,1\}^{n} \times[L] \rightarrow\{0,1\}^{m}$, where $L=\frac{n-m}{c}$ and Ext ${ }^{\delta}(x, y)$ is generated as follow:

1. Take the first m bits of x to be $z_{0} \in\left[2^{m}\right]$, and parse the remaining $(n-m)$ bits as $e_{1}, e_{2}, \ldots, e_{\underline{n-m}}$, where each e_{i} is a c-bit integer.
2. Start a y-step walk from u on G, following the sequence of edge labels $\left(e_{1}, \ldots, e_{y}\right)$. Output the destination $v \in\left[2^{m}\right]$.

Then Ext ${ }^{\delta}$ is a $((1-\delta) n, \epsilon)$ extractor, where $\delta=O\left(\epsilon^{2}\right)$ and $m=O(n)$.

Proof. Consider any statistical test for the output Ext $t^{0.99}$, interpreted as a set $S \subseteq\{0,1\}^{m}$. Consider a uniformly random source $X \in\{0,1\}^{n}$ and a uniformly random seed Y. Let Z_{i} denote the indicator for the event $\operatorname{Ext}(X, i) \in S$. Then $\operatorname{Pr}[E x t(X, Y) \in S]=\frac{1}{L} \sum_{i \in[L]} Z_{i}$. By the Chernoff bound on expander graph,

$$
\operatorname{Pr}\left[\left|\frac{1}{L} \sum_{i \in[L]} Z_{i}-\frac{|S|}{2^{m}}\right|>\epsilon / 2\right] \leq 2 \exp \left(\frac{-(1-\lambda) \epsilon^{2} L}{16}\right)
$$

Now consider any $(1-\delta) n$-source X^{\prime}, and define Z_{i}^{\prime} similarly as above. Then

$$
\operatorname{Pr}\left[\left|\frac{1}{L} \sum_{i \in[L]} Z_{i}^{\prime}-\frac{|S|}{2^{m}}\right|>\epsilon\right] \leq 2 \exp \left(\frac{-(1-\lambda) \epsilon^{2} L}{16}\right) \cdot 2^{\delta n} \leq \epsilon / 2
$$

for proper choice of δ and m. Therefore S cannot distinguish $\operatorname{Ext}\left(X^{\prime}, Y\right)$ from uniform with advantage more than ϵ.

