
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2018

Lecture 16: October 23
Instructor: Eshan Chattopadhyay Scribe: Wei-Kai Lin (wl572), Jyun-Jie Liao (jl3825)

Optimal Vertex Expander. In this lecture, we first construct an “optimal” vertex expander. Recall that
a graph G is a (K,A)-vertex expander iff for all vertex set |S| ≤ K, it holds that |Γ(S)| ≥ A · |S|.

Let q be a power of prime, Fq be the field of q, n,m, h ∈ N be parameters that will be chosen later. We
represent f ∈ Fnq as a polynomial over Fq that has degree at most n − 1, and we choose an irreducible

polynomial E over Fq of degree n. For all f ∈ Fq, let fi := fh
i

mod E.

The construction is a bipartite graph G consisting of N = qn vertices of the left and M ×D vertices on the
right, where M = qm and D = q, and the vertex degree on the left side is D. The left and right vertex sets
are chosen to be Fnq and [D] × Fmq , and we describe the edge set by the mapping e : Fnq × [D] 7→ [D] × Fmq
such that for a left vertex f ∈ Fnq , the edge y ∈ [D] goes to the following right vertex,

e(f, y) = (y, f0(y), f1(y), . . . , fm−1(y)).

Claim 1. G is a (hm, q − (n− 1)(h− 1)m)-vertex expander.

Proof. Let L and R be the set of left and right vertices on G correspondingly. For any T ⊆ R, define
LIST(T ) := {x ∈ L : Γ(x) ⊆ T}. To show a graph is a (K,A)-vertex expander, it suffices to show that for
all subset T of the right vertex set such that |T | = AK − 1, it holds that |LIST(T )| ≤ K − 1.

Given such T ⊆ [D]× Fmq , let
Q(Y, Y0, Y1, . . . , Ym−1)

be a polynomial on Fq that vanishes on T . Observe that Q can be decomposed into the following summation
of monomials,

A−1∑
i=0

K−1∑
j=0

βi,jY
iMj(Y0, . . . , Ym−1),

where K = hm, A = q − (n− 1)(h− 1)m, and βi,j ∈ Fq are coefficients. Rearranging, we get

K−1∑
j=0

Pj(Y )Mj(Y0, . . . , Ym−1),

where there exists j s.t. Pj(Y ) such that is not divisible by E(Y ). On the other side, fix any f ∈ LIST(T ). Let
Rf (Y ) := Q(Y, f0(Y ), . . . , fm−1(Y )). Then, by Q vanishes on T and f ∈ LIST(T ), it holds that Rf (y) = 0
for all y ∈ Fq. In addition, the degree of Rf is (A− 1) +m(n− 1)(h− 1) < q, which implies that Rf (Y ) is
a zero polynomial. Now, define

W (Z) := Q
(
Y,Z, Zh, Zh

2

, . . . , Zh
m−1

)
on Fq. Then, f(Y ) is a root of W (Z) as W (f(Y )) = Rf (Y ) = 0. Finally, note that

W (Z) =

K−1∑
j=0

Pj(Y )Zj mod E(Y ).

It follows that |LIST(T )| is at most the degree of W (Z), which is at most K − 1.
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Theorem 1. For any N , K ≤ N , ε, α > 0, there exists a (K,A)-vertex bipartite expander such that consists
of N left vertices, M right vertices, and left vertex degree D, where A ≥ (1 − ε)D, M ≤ D2K1+α, and

D =
(

logN ·logK
ε

)1+1/α

.

Proof. In the graph G of Claim 1, pick h =
(

logN ·logK
ε

)1/α
, q ∈ [h1+α, 2h1+α], n such that qn = N , and m

such that qm+1 = M .

Lossless Condenser from Vertex Expander. Note that the vertex expansion A of the (K,A)-vertex
expander is ε close to the degree D, and that is why we called it “optimal”. Next, we recall the theorem
from Lecture 14 that states a (K, (1 − ε))-vertex expander implies (and also the converse) a strong lossless
condenser, we claim the following corollary.

Corollary 1. For all n, k, d, any constant ε, α > 0, there exists a lossless condenser Con : {0, 1}n ×
{0, 1}d 7→ {0, 1}m such that takes an (n, k)-source and outputs an (m, k + d)-source with error ε, where
d = (1 + 1/α)(log n+ log k + log 1

ε ) +O(1), k ≤ m ≤ 2d+ (1 + α)k.

Extractor for Arbitrary Entropy. Now we have a condenser. Combining a condenser with an extractor
for high-entropy source, we can get an extractor for arbitrary entropy.

Theorem 2. Suppose Con : {0, 1}n × {0, 1}d1 → {0, 1}k′ is a (n, k) →ε1 (k′, (1 − δ)k′) condenser, and
Extδ : {0, 1}k′ ×{0, 1}d2 → {0, 1}m is a ((1− δ)k′, ε2) extractor, Then Ext : {0, 1}n×{0, 1}d1+d2 → {0, 1}m,
defined by

Ext(x, (y1, y2)) = Extδ(Con(x, y1), y2),

is a (k, ε1 + ε2) extractor.

We give a construction of Extδ with seed length O(log n) for δ = O(ε2) below.

Theorem 3. Suppose G is a ([2m], 2c, λ) expander for some constant c, λ, and ε > 0 is an error parameter.
Define a function Extδ : {0, 1}n × [L]→ {0, 1}m, where L = n−m

c and Extδ(x, y) is generated as follow:

1. Take the first m bits of x to be z0 ∈ [2m], and parse the remaining (n −m) bits as e1, e2, . . . , en−m
c

,

where each ei is a c-bit integer.

2. Start a y-step walk from u on G, following the sequence of edge labels (e1, . . . , ey). Output the destina-
tion v ∈ [2m].

Then Extδ is a ((1− δ)n, ε) extractor, where δ = O(ε2) and m = O(n).

Proof. Consider any statistical test for the output Ext0.99, interpreted as a set S ⊆ {0, 1}m. Consider a
uniformly random source X ∈ {0, 1}n and a uniformly random seed Y . Let Zi denote the indicator for the
event Ext(X, i) ∈ S. Then Pr[Ext(X,Y ) ∈ S] = 1

L

∑
i∈[L] Zi. By the Chernoff bound on expander graph,

Pr

∣∣∣∣∣∣ 1L
∑
i∈[L]

Zi −
|S|
2m

∣∣∣∣∣∣ > ε/2

 ≤ 2 exp

(
−(1− λ)ε2L

16

)
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Now consider any (1− δ)n-source X ′, and define Z ′i similarly as above. Then

Pr

∣∣∣∣∣∣ 1L
∑
i∈[L]

Z ′i −
|S|
2m

∣∣∣∣∣∣ > ε

 ≤ 2 exp

(
−(1− λ)ε2L

16

)
· 2δn ≤ ε/2

for proper choice of δ and m. Therefore S cannot distinguish Ext(X ′, Y ) from uniform with advantage more
than ε.


