Lecture 15: October 18

Instructor: Eshan Chattopadhyay
Scribe: Wei-Kai Lin (wl572), Jyun-Jie Liao (jl3825)

In this lecture, we will prove that a list-decodable code is also a strong seeded extractor:
Theorem 1. Let $C:[N] \rightarrow[M]^{D}$ be a $\left(1-\frac{1}{M}-\epsilon, L\right)$ list decodable code. Then Ext $:[N] \times[D] \rightarrow[M]$ defined by

$$
E x t(x, y)=\left.C(x)\right|_{y}
$$

is a strong seeded extractor for min-entropy $k=\log L+\log (1 / \epsilon)$ with error $2 M \epsilon$.
We have seen that a (k, ϵ) strong seeded extractor Ext $:[N] \times[D] \rightarrow[M]$ can be represented by a left-D-regular bipartite graph Ext $=([N],[M] \times[D])$ such that $x \in[N]$ in the left vertex set is connected to $(y, \operatorname{Ext}(x, y))$ in the right vertex set for every edge label $y \in[D]$. For a list decodable code $C:[N] \rightarrow[M]^{D}$, we can similarly define a left- D-regular bipartite graph $C=([N],[M] \times[D])$ such that a vertex $x \in[N]$ is connected to $\left(y,\left.C(x)\right|_{y}\right)$ for every $y \in[D]$. We define the following notation for left-regular bipartite graph:
Definition 1. For left- D-regular bipartite graph $G=(L, R), T \subseteq R$ and parameter $\delta \in[0,1]$, define

$$
\operatorname{LIST}_{G}(T, \delta)=\{x \in L| | \Gamma(x) \cap T \mid \geq \delta D\}
$$

By definition of list-decodable code, we have the following lemma:
Lemma 1. Let $C:[N] \rightarrow[M]^{D}$ be a $(1-\delta, L)$ list-decodable code, and $T=\left\{\left(y, z_{y}\right) \mid y \in[D]\right\}$ for any $\left(z_{1}, z_{2}, \ldots, z_{D}\right) \in[M]^{D}$. Then $\left|\operatorname{LIST}_{C}(T, \delta) \leq L\right|$.

Now we are ready to prove the theorem.

Proof of Theorem 1. Consider the bipartite graph $C=([N],[M] \times[D])$. Let X be a subset of $[N]$ of size K. (K will be specified later.) Observe that for the k-source U_{X} uniformly distributed over X, uniformly random $Y \in[D]$ and every $y \in[D], z \in[M]$,

$$
\operatorname{Pr}\left[\left(Y,\left.C\left(U_{X}\right)\right|_{Y}\right)=(y, z)\right]=\frac{|\Gamma((y, z)) \cap X|}{K D}
$$

Then the statistical distance between $\left(Y,\left.C\left(U_{X}\right)\right|_{Y}\right)$ and uniform distribution is

$$
\sum_{y \in[D], z \in[M]} \max \left(\frac{|\Gamma((y, z)) \cap X|}{K D}-\frac{1}{M D}, 0\right)
$$

For every $y \in[D]$, define $z_{y}=\arg \max _{z \in[M]}(|\Gamma((y, z)) \cap X|)$. Note that $\left|\Gamma\left(\left(y, z_{y}\right)\right) \cap X\right| \geq K / M$ by averaging. Let $T=\left\{\left(y, z_{y}\right) \mid y \in[D]\right\}$ and $\delta=1 / M+\epsilon$. Then

$$
\begin{aligned}
\sum_{y \in[D], z \in[M]} \max \left(\frac{|\Gamma((y, z)) \cap X|}{K D}-\frac{1}{M D}, 0\right) & \leq \sum_{y \in[D]}\left(\frac{M \cdot\left|\Gamma\left(\left(y, z_{y}\right)\right) \cap X\right|}{K D}-\frac{1}{D}\right) \\
& \leq \frac{M \cdot\left(\left|\operatorname{LIST}_{C}(T, \delta)\right| \cdot D+K \cdot \delta D\right)}{K D}-1 \\
& =M \epsilon+\frac{M L}{K}
\end{aligned}
$$

Choose $K=L / \epsilon$ we can conclude that C is a $(\log L+\log (1 / \epsilon), 2 M \epsilon)$ extractor.

