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1 a-Expanding Graphs

We will repeat the results from the end of last class for future reference:

Definition 1.1. Graph G is (n, d, a)-expanding if G is undirected, d-regular, |V (G)| = n, and for
every S, T ⊆ V , if |S| = |T | = a, then there is an edge between some s ∈ S and t ∈ T .

We also had the following bounds on the degree of such expanders:

1. In general, there is a lower bound d ≥ n
a .

2. A random graph with d = O
(
n
a log n

)
is an a-expander with high probability.

3. By the expander mixing lemma, any spectral expander satisfies d ≥ 1
2

(
n
a

)2
.

So spectral expanders are insufficient for reaching the probabilistic bound of O
(
n
a log n

)
(in partic-

ular, the best we can do is quadratic in n). Instead, we will use extractors to achieve this bound.
To this end, let Ext : {0, 1}r × {0, 1}d → {0, 1}m be a

(
δr, 1

4

)
-seeded extractor.

Proposition 1.2. Ext can be used to build an a-expanding graph.

Recall that Ext can interpreted as a function labelling the endpoints of the edges of a left-D-
regular bipartite graph with vertex sets [R] and [M ] (we use the convention that uppercase letters
take value exponential in their lowercase versions, e.g. X = 2x). Let S ⊆ [R], |S| = Rδ, and let
Γ(S) denote the set of neighbors of S, i.e.,

Γ(S) = {z ∈ [M ] : ∃x ∈ S,∃y ∈ [D], Ext(x, y) = z} (1)

Claim 1.3. |Γ(S)| ≥ 3M
4

Suppose otherwise; let S be such that |Γ(S)| < 3M
4 . Let X be the distribution flat on S

(recall that a distribution X is flat on S if Pr[X = x] = 1
|S| if x ∈ S and 0 otherwise). Then

Pr
z∼Um

[z ∈ Γ(S)] = |Γ(S)|
M < 3

4 . Observe that Pr
x∼Ur,y∼Ud

[Ext(x, y) ∈ Γ(S)] = 1 by construction. But

we have:

H∞(X) = − log

(
1

|S|

)
= δr (2)

Since Ext is a
(
δr, 1

4

)
-seeded extractor, it must be the case that |Ext(X,Ud)−Um| ≤ 1

4 if H∞(X) ≥
δr. But this is a contradiction, since:∣∣∣∣ Pr

x∼Ur,y∼Ud

[Ext(x, y) ∈ Γ(S)]− Pr
z∼Um

[z ∈ Γ(S)]

∣∣∣∣ > 1− 3

4
=

1

4
(3)
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Claim 1.4. If |S|, |T | ≥ Rδ, then |Γ(S) ∩ Γ(T )| ≥ M
2 .

This follows immediately from applying Claim 1.3 to both S and T , then using inclusion-
exclusion on Γ(S) and Γ(T ) (the size of their union is at most M).

Construction 1.5. Construct an expanding graph G′ from an extractor (represented by graph G)
by taking V (G′) = [R] and adding edges between any i, j sharing a common neighbor in G.

However, this straightforward attempt at constructing an expanding graph does not guarantee
d-regularity for sufficiently small d. As a worst-case example, it could be possible that every vertex
in [R] has an edge to the same vertex in [M ]. Then G would be complete, with d = n − 1. To
prevent this and similar problems, we will delete vertices in [M ] with high degree, i.e. degree at
least 2RDM , before performing the construction. Observe that RD

M is the average degree of vertices
in [M ], as there are RD edges in G. We claim that applying Construction 1.5 after removing such
vertices still generates an expanding graph, but with lower degree. To be precise, let M ′ be the
number of vertices remaining after this removal.

Claim 1.6. M ′ ≥ 3M
4

Suppose towards contradiction that M ′ < 3M
4 , that is, a set of vertices BAD of size |BAD| > M

4
was removed, with every element of BAD having degree at least 2RDM . Then:

Pr
x∼Ur,y∼Ud

[Ext(x, y) ∈ BAD] ≥ 2
|BAD|
M

(4)

Note that the LHS indicates the probability that the right endpoint of a randomly chosen edge is
in BAD. Since each vertex in BAD has degree at least 2RDM , and there are a total of RD edges,
summing over the vertices gives the RHS.

Now, since |BAD| > M
4 , we can write:∣∣∣∣ Pr

x∼Ur,y∼Ud

[Ext(x, y) ∈ BAD]− Pr
z∼Um

[z ∈ BAD]

∣∣∣∣ = 2
|BAD|
M

− |BAD|
M

>
1

4
(5)

By assumption, Ext was a
(
δr, 1

4

)
-seeded extractor. However, H∞(Ur) = r ≥ δr, giving a contra-

diction. Hence, at most M
4 vertices are removed.

Proposition 1.7. G′, as constructed from G via Construction 1.5, is a
(
R,D · 2RD

M , Rδ
)
-expanding

graph.

The fact that G′ has R vertices is obvious. To show that a = Rδ, consider 1.4; before removal,
every S, T ⊆ [R] with |S|, |T | = Rδ satisfied |Γ(S) ∩ Γ(T )| ≥ M

2 . Then after the removal, at least
common M

4 vertices must remain, so S and T will still share an edge after applying Construction
1.5. After removal, we can also bound the number of paths of length 2 in G with one endpoint
v ∈ [R]. v has degree D and each such path has a midpoint remaining in [M ]; each remaining
vertex has degree less than 2RD

M . Hence, there are no more than D · 2RD
M such paths, so the degree

of G′ is bounded by D · 2RD
M (every edge on v corresponds to such a path in G).

Proposition 1.8. It is possible to create (n, n1−δ+o(1), nδ)-expanding graphs.

If we take n = R, it turns out that it is possible to construct extractors that will yield 2D2

M ≤
no(1)−δ. Specifically, it is possible to construct extractors with d = O(log r) and M = nδ−O(1),
giving D = poly(r); intuitively, since D is the degree of left vertices in G, it should be substantially
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smaller than R. This gives the desired construction. The only issue is that these graphs are not
quite regular; we can fix this by relaxing the definition of expanding graphs to ignore regularity, or
by letting expanding graphs be multigraphs and add enough self-loops to enforce regularity.

While this works, for large δ, it seems likely that there should be more straightforward ways to
construct expanding graphs, leading to the following open problem:

Open problem 1.9. Is there an easy construction for
(
n, n1/2−δ,

√
n
)
-expanding graphs? [Klein-

berg 18]

2 Condensers, Expanders, and List-Decodable Codes

We begin with a slightly different definition than what we have been dealing with so far:

Definition 2.1. A distribution D is ε-close to min-entropy k if there exists a distribution X with
H∞(X) ≥ k and |D −X| ≤ ε.

The property of being ε-close to min-entropy k is a little bit different than actually having
min-entropy close to k; the difference is that min-entropy is a global statement that bounds the
probability of all x in the support of X. On the other hand, being ε-close to min-entropy k allows
a distribution to have a relatively high mass on a small subset, which would cause the min-entropy
to rise.

Recall that the goal of extractors was to take two weak sources in terms of min-entropy and
get a distribution with better min-entropy. We now consider a different kind of operation, where
we want to take weak sources and output a shorter source without much entropy loss.

Definition 2.2. A function Con : {0, 1}n × {0, 1}d → {0, 1}m is a (n, k) →ε (m, k′) condenser if
for every (n, k)-source X, Con(X,Ud) is ε-close to min-entropy k′. We say a condenser is lossless
if k′ = k. A strong condenser is a (n, k) →ε (m, k′) condenser such that (C(X,Ud), Ud) is ε-close
to a distribution with min-entropy k′ + d on m+ d bits.

Typically, we will want k′

m > k
n ; this means that we are getting more entropy per bit after

condensing. It turns out that lossless expanders are equivalent to vertex expanders. Specifically:

Theorem 2.3. Con is a strong, lossless (n, k) →ε (m + d, k + d) condenser if and only if the
corresponding bipartite graph ([N ], [D]× [M ], E) is a (K, (1− ε)D) vertex expander with left degree
D, where K = 2k, N = 2N , M = 2, and D = 2d, where d is the seed-length.

Proof. In the forward direction, let S ⊆ [N ] such that |S| = K. Let X be uniform on S. Then
|Γ(S)| = |(Con(X,Ud), Ud)|. We want this to be at least KD(1−ε) for this to be the claimed vertex
expander. Suppose for a contradiction that this is false, and let Y be any (m+ d, k + d)-source on
[M ]× [D]. Then

Pr(Y ∈ Γ(S)) ≤ |Γ(S)|
2k+d

<
KD(1− ε)

KD
= 1− ε, (6)

which contradicts the assumption that there exists some (m+d, k+d)-source that (Con(X,Ud), UD)
is ε-close to.

In the reverse direction, it suffices to show (Con(X,UD), UD) is ε-close to a source distribution
with min-entropy k+d for any flat source X. Let S ⊆ N be such that |S| = K and take X = US . By
the fact that the corresponding bipartite graph is a ([N ], [D]× [M ], E) vertex expander, it follows
that |Γ(S)| ≥ (1 − ε)KD. But as the graph is left D-regular, there are exactly KD edges leaving
S; therefore, by redirecting just εKD edges, we could ensure that all edges from S go to distinct
neighbors. This gives a uniform distribution on KD vertices, which is a (m+ d, k+ d)-source, and
therefore (Con(X,Ud), Ud) is ε-close to a (k + d)-source.
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Next class, we will see that there is a connection between list-decodable codes and strong-seeded
extractors. That is, we will show:

Theorem 2.4. Let C : [N ]→ [M ]D be a (1− 1
M −ε, L) list-decodable code. Then Ext : [N ]× [D]→

[M ] defined by
Ext(x, y) = C(x)|y (7)

is a strong-seeded extractor for min-entropy k = log(L) + log(1/ε) with error Mε.
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