CS 6815: Lecture 13

Instructor: Eshan Chattopadhyay Scribe: Makis Arsenis and Ayush Sekhari

October 11, 2018

In this lecture, we will see more connections between the combinatorial tools defined so far, specif-
ically, we will see how to construction Extractors from error-correcting codes, extractors from
Expanders, Samplers from Expanders and a-expanding graphs from spectral Expanders.

Useful results from the last lecture:

Lemma 0.1. Let D be a distribution on [m] with collision probability CP(D) < %. Then:
|D = Ul 7y < €

Lemma 0.2 (Expander Mixing Lemma). Let G be an (N, D, a)-spectral expander. Then for every
S, T CV(G):
E(S,T)
ND

— p(S)u(T)| < p(S)u(T)

a
D
where a € [0, D], u(S) = % and E(S,T) ={(u,v) € E(G) |lue SAveT}.

1 Extractors

1.1 Extractors from Codes

General Level Idea: The extractor will be sampling indices from the output of a well-separated
code.

Given: A codeC': [ﬁ, n, (1 — % — (5) ﬁ} on alphabets in {0, 1}9 with the block length n, message

length 7 and the minimum distance d = (1 — % — 5) n.

Construction: Given C, construct an extractor EXT : {0,1}"1°8(@) x {0, 1}°¢(™) {0, 1}18(@)
as follows:

VeeFy, yeln], FEXT(x,y)=C(x)
y

i.e. for input (x,y), encode x using C' and keep the y-th symbol.

Theorem 1.1. EXT is a (log(};), \/52‘7> -strongly seeded extractor.



Proof. Let x ~ X, with min-entropy Hy(X) > log (%) Also, let y be uniformly sampled in [7],
i.e. y ~ Upp). For the sake of notation, let us define K = 2H<(X) thus,

1

Pr[X:x]§E§5 (1)

We will be proving this using the lemma 0.1 by first bounding the collision probability as follows:

CP(Y,EXT(X,Y)) = Pr, y x|y, EXT(z,y)) = (v, EXT(z',¢))]
vy ~Y

Prm,m/rvX [EXT('T7 y) = EXT(:U,a y)}
y~Y

[Pr[z =2'] + Pr[EXT(z,y) = EXT(2,y) |  # &'|Pr[z # 2']]

= D=

(using 1)
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where in the first step we conditioned on the event y = 3’ and later we used the inequality
Pr[EXT(z,y) = EXT(«/,y)|z # 2| = Pr[C(a)], = C(a")]y |z # 2/| <1 - & = ( +9).
Thus, using lemma 0.1, we get:

dq

(EXT(x,9),y) = (U Ui)) | py < )

1.2 Extractors from Expanders

Given a graph G which is a (N, D, a)-spectral expander, we would like to construct an extractor
EXT : [N] x [D] — [N]. In order to do that, let’s first examine a way of representing Extractors
as bipartite graphs. This representation will make the description and analysis of the contruction
easier.

Bipartite representation of extractors Given an extractor EXT : [N] x [D] — [M], consider
the bipartite graph with vertex set V = [N] U [M]. Add edge (z, z) iff there exists a y € [D] such
that EXT(z,y) = z. If multiple y € [D] have this property then add one edge for each such y.
This results in a D-regular bipartite multigraph. Conversly, given a D-regular bipartite graph one
can recover a function EXT : [N] x [D] — [M] in the obvious way by labeling the edges incident to
every node with numbers from the set [D] in an arbitrary way'.

'Notice that the function EXT is not necessarily an extractor for an arbitrary D-regular bipartite graph.



Construction of Extractors from Expanders Let G be an (N, D, a)-spectral expander. Con-
struct two copies G, G? of G and remove all edges from both copies. If (i,j) € E(G) then add
edge (i!, %) between il € V(G') and j2 € V(G?). Call the resulting bipartite graph H and denote
by EXTp the extractor function corresponding to H as described in the previous paragraph.

Lemma 1.2. Let G be an (N, D, a)-spectral expander and let EXTy : [N] x [D] — [N] be the
function constructed as described above. Then EXTy is a (k,e€)-extractor for every k,e > 0 such

. _ 2k
that: o = Dey/ % -

Proof. We need to prove that for every source X on [N]| with H(H) > k and Y ~ Ujpy:

[EXT(X,Y) — U[N]’TV <e

By definition of the total variation distance, this is equivalent to the following condition holding
for every T'C [N]:

[PrEXT(X,Y) € T] - pug| <« (2)
|7

where pur = -
As discussed in previous lectures, we can assume without loss of generality that X is a flat dis-
tribution on a set S C [N] of size |S| > 2F since H,(X) > k.2. So, by construction, proving (2)

reduces to proving that for every S C [N] such that pug = % > QWIC, the following holds:

E(S,T)

< _ <
<e o ‘ ND  Mshr| < eps (3)

E(S,T)
'WD_W

To prove this, we use the Mixing Lemma (0.2) for G which gives us the following inequality:

‘E(S, T)
—p  MTHS

ND

«
< 5\/ HuspT
Setting o = Dey/ % and noticing that pug > % and pp < 1 proves (3) and concludes the proof. [

1.3 Samplers from Extractors

In this section, we will show how to construct Samplers from Extractors. As a recap,

Definition 1.3 ((¢,§)-sampler). A function SAMP : {0,1}" — [M]? is an (e, 8)-sampler if for all
functions f : [M] — [0,1],

Pr,, ..2peSAMPU,) [

where iy = Bty [f(2)].

We will now see how to construct a sampler from an extractor EXT : [N] x [D] — [M].

Lemma 1.4. Consider a (k,&')-extractor EXT. Also, define the function SAMP : [N] — [M]P as:
SAMP(z) = (EXT(z,1),EXT(2,2)...,EXT(z,D))

for all z € [N]. Then, SAMP is an (e =2¢',6 = %)—sampler, where K = 2.

2Every distribution with Ho(X) > k is a convex combination of flat sources on sets of size K = 2".




Proof. We will prove this by restricting the size of € [N] for which SAMP behaves in an unex-
pected way. Let us define the set BAD as follows:
} (4)

1 D
sao= oo [0
=1

First note that:

> ¢ for (21,...,24) < SAMP(z)

D D
Prz1, .zp+SAMP (U [ Z = Pr217...ZD<—SAMP(.Z‘ [ Z > 5]
=1 z~Up i=1
= Pryp, [z € BAD]
IBAD|
< — 5}
< B2 )

We will now complete the proof by upper bounding the size of BAD by K. For assume that
|IBAD| > K.

Let us define a set X C BAD such that | X| = K = 2*. Also, define the distribution Uy := uniform
distribution on the set X.

Thus, Hs(Ux) = k and correspondingly by the definition of EXT as an extractor, we have:

|EXT(Ux, Ug) — < (6)

M]}TV

Lemma 1.5. Suppose D1, Dy are distributions on [M] with |Dy — Ds|py < e. Then:
|E[f(D1)] — E[f(D2)]| < 2e
Proof.

> f(@)(Pr[Dy = 2] — Pr[Dy = )| < Zf )|Pr[D; = z] — Pr[Dy = x|

< |D1 — Dafx
= 2’D1 — DQ‘T\/ = 2¢

O

Thus (6) is implies:

|E(x,y)~(UX,Ud)[f(EXT($7 y))} - ”f‘ < 2’ =¢
1D
or, E:EEDX [D Z;f(SAMP(x7Z>)] —Hf <€
which clearly contradicts the definition of BAD (see (4)), and thus,
IBAD| < K (7)

Using 7 with 5, we get that SAMP is an (6, %)—sampler.

]



Note: We proved the above for  ~ U,, but the proof can go through even when y is an (n, k’)-source
instead by relaxing the guarantee we get. More specifically, in that case we get:
IBAD| _ 28 -

2k/ S 2]{:/

Pr[z € BAD| <

implying that extractors are (e, 2k_k/)—weak samplers.

1.4 a-Expanding Graphs

Definition 1.6. Consider an undirected D-reqular graph G on N wvertices. G is said to be a-
expanding, if

VS, T C [N] with |S|=1|T| >a, E(S,T)>0
i.e., all vertex subsets S, T of size greater than or equal to a have an edge between them 3.

A basic question we want to answer is how to construct a-expanding graphs, and more specifically,
how large does D need to be ?

It is not hard to see that every a-expanding graph must have D > %, and consequently the proba-
bilistic method suggests that random % log(N) regular graphs are a-expanding. In this lecture. we
will show how to construct a-expanding graphs using spectral expanders, but under the assumption
that D > 47,

Lemma 1.7. A (N, D,2v/D — 1) spectral expander* G is also a-expanding for D > 4%2 .

Proof. G is a (N, D, «)-spectral expander, thus, by the Ezpander Mizing Lemma,

v, TN | Ep - w(Si)| < 5 VaI ®)
implying that VS, T C [N], |S|=|T| = a,
PO 2 w()n(r) — 55 V/iSul)
(12 a a
= E(S,T)ZND(Nz—DN) (as |S| = |T'| = a)

a? 2 a

2ND<N2D D1N>
a? 2 a

> 30 (- 57)

2
when D > 48°
a

3An edge e = (vi,v;) € E(S,T) ifvi € Sandv; € Tand e € E
1Existence  of such  expanders  was shown by the  Alon-Boppana  Lower Bound -
https://lucatrevisan.wordpress.com/2014/09/01/the-alon-boppana-theorem-2/


https://lucatrevisan.wordpress.com/2014/09/01/the-alon-boppana-theorem-2/
https://lucatrevisan.wordpress.com/2014/09/01/the-alon-boppana-theorem-2/

The above expression thus implies that for D > 4%2, a (N,D,2y/D — 1) spectral expander is a-
expanding.

In the next lecture, we will see more explicit constructions of a-expanding graphs.

continued in the next lecture . ..
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