
CS 6815: Lecture 13

Instructor: Eshan Chattopadhyay Scribe: Makis Arsenis and Ayush Sekhari

October 11, 2018

In this lecture, we will see more connections between the combinatorial tools defined so far, specif-
ically, we will see how to construction Extractors from error-correcting codes, extractors from
Expanders, Samplers from Expanders and a-expanding graphs from spectral Expanders.

Useful results from the last lecture:

Lemma 0.1. Let D be a distribution on [m] with collision probability CP(D) ≤ 1+4ε2

m . Then:∣∣D − U[m]

∣∣
TV
≤ ε

Lemma 0.2 (Expander Mixing Lemma). Let G be an (N,D,α)-spectral expander. Then for every
S, T ⊆ V (G): ∣∣∣∣E(S, T )

ND
− µ(S)µ(T )

∣∣∣∣ ≤ α

D

√
µ(S)µ(T )

where α ∈ [0, D], µ(S) = |S|
N and E(S, T ) = {(u, v) ∈ E(G) | u ∈ S ∧ v ∈ T}.

1 Extractors

1.1 Extractors from Codes

General Level Idea: The extractor will be sampling indices from the output of a well-separated
code.

Given: A code C :
[
ñ, n,

(
1− 1

q − δ
)
ñ
]

on alphabets in {0, 1}q with the block length n, message

length ñ and the minimum distance d =
(

1− 1
q − δ

)
ñ.

Construction: Given C, construct an extractor EXT : {0, 1}n log(q) × {0, 1}log(ñ) 7→ {0, 1}log(q)
as follows:

∀x ∈ Fnq , y ∈ [ñ], EXT (x, y) = C(x)
∣∣∣
y

i.e. for input (x, y), encode x using C and keep the y-th symbol.

Theorem 1.1. EXT is a

(
log
(
1
δ

)
,
√

δq
2

)
-strongly seeded extractor.
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Proof. Let x ∼ X, with min-entropy H∞(X) ≥ log
(
1
δ

)
. Also, let y be uniformly sampled in [ñ],

i.e. y ∼ U[ñ]. For the sake of notation, let us define K = 2H∞(X), thus,

Pr[X = x] ≤ 1

K
≤ δ (1)

We will be proving this using the lemma 0.1 by first bounding the collision probability as follows:

CP(Y,EXT (X,Y )) = Prx,x′∼X
y,y′∼Y

[
(y,EXT (x, y)) =

(
y′, EXT (x′, y′)

)]
=

1

ñ
Prx,x′∼X

y∼Y

[
EXT (x, y) = EXT (x′, y)

]
≤ 1

ñ

[
Pr
[
x = x′

]
+ Pr

[
EXT (x, y) = EXT (x′, y) | x 6= x′

]
Pr
[
x 6= x′

]]
(using 1)

≤ 1

ñ

[
1

K
+ Pr

[
EXT (x, y) = EXT (x′, y) | x 6= x′

]]
≤ 1

ñ

[
1

K
+

(
1

q
+ δ

)]
=

1

ñq

[
1 +

(
δ +

1

K

)
q

]
≤ 1 + 2δq

ñq
(using 1)

where in the first step we conditioned on the event y = y′ and later we used the inequality
Pr[EXT(x, y) = EXT(x′, y)|x 6= x′] = Pr[C(x)|y = C(x′)|y | x 6= x′] ≤ 1− d

ñ = (1q + δ).
Thus, using lemma 0.1, we get:

∣∣(EXT (x, y), y)−
(
U[q], U[ñ]

)∣∣
TV
≤
√
δq

2

1.2 Extractors from Expanders

Given a graph G which is a (N,D,α)-spectral expander, we would like to construct an extractor
EXT : [N ] × [D] 7→ [N ]. In order to do that, let’s first examine a way of representing Extractors
as bipartite graphs. This representation will make the description and analysis of the contruction
easier.

Bipartite representation of extractors Given an extractor EXT : [N ]× [D] 7→ [M ], consider
the bipartite graph with vertex set V = [N ] ∪ [M ]. Add edge (x, z) iff there exists a y ∈ [D] such
that EXT(x, y) = z. If multiple y ∈ [D] have this property then add one edge for each such y.
This results in a D-regular bipartite multigraph. Conversly, given a D-regular bipartite graph one
can recover a function EXT : [N ]× [D] 7→ [M ] in the obvious way by labeling the edges incident to
every node with numbers from the set [D] in an arbitrary way1.

1Notice that the function EXT is not necessarily an extractor for an arbitrary D-regular bipartite graph.
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Construction of Extractors from Expanders Let G be an (N,D,α)-spectral expander. Con-
struct two copies G1, G2 of G and remove all edges from both copies. If (i, j) ∈ E(G) then add
edge (i1, j2) between i1 ∈ V (G1) and j2 ∈ V (G2). Call the resulting bipartite graph H and denote
by EXTH the extractor function corresponding to H as described in the previous paragraph.

Lemma 1.2. Let G be an (N,D,α)-spectral expander and let EXTH : [N ] × [D] 7→ [N ] be the
function constructed as described above. Then EXTH is a (k, ε)-extractor for every k, ε > 0 such

that: α = Dε
√

2k

N .

Proof. We need to prove that for every source X on [N ] with H∞(H) ≥ k and Y ∼ U[D]:

|EXT(X,Y )− U[N ]|TV ≤ ε
By definition of the total variation distance, this is equivalent to the following condition holding
for every T ⊆ [N ]:

|Pr[EXT(X,Y ) ∈ T ]− µT | ≤ ε (2)

where µT = |T |
N .

As discussed in previous lectures, we can assume without loss of generality that X is a flat dis-
tribution on a set S ⊆ [N ] of size |S| ≥ 2k since H∞(X) ≥ k.2. So, by construction, proving (2)

reduces to proving that for every S ⊆ [N ] such that µS = |S|
N ≥

2k

N , the following holds:

∣∣∣∣E(S, T )

|S|D
− µT

∣∣∣∣ ≤ ε ⇔ ∣∣∣∣E(S, T )

ND
− µSµT

∣∣∣∣ ≤ εµS (3)

To prove this, we use the Mixing Lemma (0.2) for G which gives us the following inequality:∣∣∣∣E(S, T )

ND
− µTµS

∣∣∣∣ ≤ α

D

√
µSµT

Setting α = Dε
√

2k

N and noticing that µS ≥ 2k

N and µT ≤ 1 proves (3) and concludes the proof.

1.3 Samplers from Extractors

In this section, we will show how to construct Samplers from Extractors. As a recap,

Definition 1.3 ((ε, δ)-sampler). A function SAMP : {0, 1}n 7→ [M ]D is an (ε, δ)-sampler if for all
functions f : [M ] 7→ [0, 1],

Prz1,...zD←SAMP(Un)

[ ∣∣∣∣∣ 1

D

D∑
i=1

f(zi)− µf

∣∣∣∣∣ > ε

]
≤ δ

where µf := Ex∼U[M ]
[f(x)].

We will now see how to construct a sampler from an extractor EXT : [N ]× [D] 7→ [M ].

Lemma 1.4. Consider a (k, ε′)-extractor EXT. Also, define the function SAMP : [N ] 7→ [M ]D as:

SAMP (x) = (EXT (x, 1), EXT (x, 2) . . . , EXT (x,D))

for all x ∈ [N ]. Then, SAMP is an
(
ε = 2ε′, δ = K

N

)
-sampler, where K = 2k.

2Every distribution with H∞(X) ≥ k is a convex combination of flat sources on sets of size K = 2k.
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Proof. We will prove this by restricting the size of x ∈ [N ] for which SAMP behaves in an unex-
pected way. Let us define the set BAD as follows:

BAD =

{
x ∈ [N ] |

[∣∣∣∣∣ 1

D

D∑
i=1

f(zi)− µf

∣∣∣∣∣ > ε for (z1, . . . , zd)← SAMP(x)

]}
(4)

First note that:

Prz1,...zD←SAMP(U[N ])

[ ∣∣∣∣∣ 1

D

D∑
i=1

f(zi)− µf

∣∣∣∣∣ > ε

]
= Prz1,...zD←SAMP(x)

x∼Un

[ ∣∣∣∣∣ 1

D

D∑
i=1

f(zi)− µf

∣∣∣∣∣ > ε

]
= Prx∼Un [x ∈ BAD]

≤ |BAD|
N

(5)

We will now complete the proof by upper bounding the size of BAD by K. For assume that
|BAD| ≥ K.
Let us define a set X ⊆ BAD such that |X| = K = 2k. Also, define the distribution UX := uniform
distribution on the set X.

Thus, H∞(UX) = k and correspondingly by the definition of EXT as an extractor, we have:∣∣EXT(UX , Ud)− U[M ]

∣∣
TV
≤ ε′ (6)

Lemma 1.5. Suppose D1, D2 are distributions on [M ] with |D1 −D2|TV ≤ ε. Then:

|E[f(D1)]− E[f(D2)]| ≤ 2ε

Proof. ∣∣∣∣∣∑
x

f(x)(Pr[D1 = x]− Pr[D2 = x])

∣∣∣∣∣ ≤∑
x

f(x)|Pr[D1 = x]− Pr[D2 = x]|

≤ |D1 −D2|1
= 2|D1 −D2|TV = 2ε

Thus (6) is implies:

∣∣E(x,y)∼(UX ,Ud)[f(EXT(x, y))]− µf
∣∣ ≤ 2ε′ = ε

or,

∣∣∣∣∣Ex∈DX

[
1

D

D∑
i=1

f(SAMP(x, i))

]
− µf

∣∣∣∣∣ < ε

which clearly contradicts the definition of BAD (see (4)), and thus,

|BAD| < K (7)

Using 7 with 5, we get that SAMP is an
(
ε, KN

)
-sampler.
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Note: We proved the above for x ∼ Un but the proof can go through even when y is an (n, k′)-source
instead by relaxing the guarantee we get. More specifically, in that case we get:

Pr[x ∈ BAD] ≤ |BAD|
2k′

≤ 2k

2k′
= 2k−k

′

implying that extractors are (ε, 2k−k
′
)-weak samplers.

1.4 a-Expanding Graphs

Definition 1.6. Consider an undirected D-regular graph G on N vertices. G is said to be a-
expanding, if

∀S, T ⊆ [N ] with |S| = |T | ≥ a, E(S, T ) > 0

i.e., all vertex subsets S, T of size greater than or equal to a have an edge between them 3.

A basic question we want to answer is how to construct a-expanding graphs, and more specifically,
how large does D need to be ?
It is not hard to see that every a-expanding graph must have D ≥ N

a , and consequently the proba-
bilistic method suggests that random N

a log(N) regular graphs are a-expanding. In this lecture. we
will show how to construct a-expanding graphs using spectral expanders, but under the assumption
that D ≥ 4N2

a2
.

Lemma 1.7. A (N,D, 2
√
D − 1) spectral expander4 G is also a-expanding for D ≥ 4N2

a2
.

Proof. G is a (N,D,α)-spectral expander, thus, by the Expander Mixing Lemma,

∀S, T ⊆ [N ],

∣∣∣∣E(S, T )

ND
− µ(S)µ(T )

∣∣∣∣ ≤ α

D

√
µ(S)µ(T ) (8)

implying that ∀S, T ⊆ [N ], |S| = |T | = a,

E(S, T )

ND
≥ µ(S)µ(T )− α

D

√
µ(S)µ(T )

=⇒ E(S, T ) ≥ ND
(
a2

N2
− α

D

a

N

)
(as |S| = |T | = a)

≥ ND
(
a2

N2
− 2

D

√
D − 1

a

N

)
≥ ND

(
a2

N2
− 2√

D

a

N

)
when D ≥ 4N2

a2

≥ 0

3An edge e = (vi, vj) ∈ E(S, T ) if vi ∈ S and vj ∈ T and e ∈ E
4Existence of such expanders was shown by the Alon-Boppana Lower Bound -

https://lucatrevisan.wordpress.com/2014/09/01/the-alon-boppana-theorem-2/
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The above expression thus implies that for D ≥ 4N2

a2
, a (N,D, 2

√
D − 1) spectral expander is a-

expanding.

In the next lecture, we will see more explicit constructions of a-expanding graphs.

continued in the next lecture . . .
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