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1 Randomness Extractors

Definition 1.1 (Min-entropy). The min-entropy of a random variable X is defined as

H∞(X) = min
x∈sup(X)

{
log

(
1

Pr[X = x]

)}
.

Definition 1.2 ((n, k)-sources). A random variable X is a (n, k)-source if X is distributed on
{0, 1}n and H∞(X) ≥ k.

2 Convex Combinations of Distributions

Let X be a family of distributions, each on {0, 1}n.

Definition 2.1 (Mixture distributions). Let D be a distribution on {0, 1}n. Then, D can be
expressed as a convex combination of distributions in X if there exists an integer t > 0, λ1, · · · , λt ∈
R≥0, and X1, · · · , Xt ∈ X satisfying

∑t
i=1 λi = 1 and D =

∑t
i=1 λiXi. In turns, this means that

for all y ∈ {0, 1}n, Pr[D = y] =
∑t

i=1 λi · Pr[Xi = y].

Definition 2.2 (Flat distributions). D is a flat distribution if there exists S ⊆ {0, 1}n such that
D is uniform on S.

Fact 2.3. Any (n, k)-source X is a convex combination of flat sources, each with support size 2k.
That is, each with min-entropy k, since each probability is upper bounded by 2−k.

Note that in the case of (n, k)-sources, the flat sources form a convex polytope with
(

2n

2k

)
vertices.

3 Seeded Extractors

The intuition is as follows. We take a (n, k)-source, which by definition is a distribution on {0, 1}n
with min-entropy k, together a uniformly distributed seed in {0, 1}d, to obtain a uniform distribu-
tion on {0, 1}m. We want m to be as close to d + k as possible. In other words, an extractor Ext
gets x ∈ X, which is a (n, k)-source, and y ∈ Ud, which is an uniformly distributed seed, to produce
Ext(x, y) = z ∈ {0, 1}m.

Fact 3.1. Let D1, D2 be distributions on {0, 1}n. Then,

|D1 −D2| =
1

2
‖D1 −D2‖ = max

S⊆{0,1}n
|Pr[D1 ∈ S]− Pr[D2 ∈ S]| .
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Definition 3.2 (Seeded Extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a seeded
extractor if for all (n, k)-sources X, we have

|Ext(X,Ud)− Um| ≤ ε.

Definition 3.3 (Short Seeded Extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a short
seeded extractor if for all (n, k)-sources X, wre have

|(Ext(X,Ud), Ud)− (Um, Ud)| ≤ ε.

Lemma 3.4 (Proposition 6.14, Vadhan S., Pseudorandomness). Seeded extractors exist.

Proof. This proof uses the Probabilistic Method on a randomly chosen extractor. Recall Ext :
{0, 1}n × {0, 1}d → {0, 1}m. We will use the notation N = 2n, D = 2d, M = 2m, and K = 2k. Let
X be a flat (n, k)-source, that is, with support size K = 2k. Let T ⊆ {0, 1}m be arbitrary. We
want to show that for all T we have∣∣∣∣Pr[Ext(X,Ud) ∈ T ]− |T |

M

∣∣∣∣ 6> ε,

where |T |M = Pr[Um ∈ T ]. Note that there are K ·D random strings in {0, 1}m. Let

1x,y =

{
1, if Ext(x, y) ∈ T
0, o.w.

For each of the K points x ∈ sup(X) and each of the D strings y ∈ {0, 1}d, we have Pr[Ext(x, y) ∈
T ] = |T |

M , and these events are independent. Then, for a fixed T and a fixed flat source X,

Pr[Ext(X,Ud) ∈ T ] =
1

K ·D
∑

x∈sup(X)

y∈{0,1}d

1x,y

≤ exp

(
−−ε

2

4
K ·D

)
,

where the inequality follows from Chernoff’s Bound. Now, note that there are
(
N
K

)
possible flat

sources, and that there are 2M possible tests. Then, the probability that the condition is violated
for at least one T for at least one flat source is

≤ 2M
(
N

K

)
exp

(
−−ε

2

4
K ·D

)
.

One can verify that this bound on the probability of the extractor failing is less than one for
m = k + d− 2 log(1/ε)−O(1) and d ≥ log(n− k) + 2 log(1/ε) +O(1).

4 Extractors for Hash Functions

Lemma 4.1 (Leftover Hash Lemma). Let H be a cardinality N family of hash functions h :
{0, 1}n → {0, 1}m satisfying

Pr
h∼H

[h(x1) = h(x2)] ≤ 1

M
.

for all x1 6= x2 ∈ {0, 1}n, M = 2m. Then, for any 0 ≤ l ≤ n/2, Ext(x, h) = h(x) is a strong-seeded
extractor for min-entropy at least n− l with output length m = n− 2l and error 2−l/2.
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Proof. Let X be a (n, k)-source and H be chosen uniformly at random from H. Let Ext(X,H) =
H(X), with seed length n = logN , m = n− 2l, and ε = 2−l/2.

We are interested in |(H,H(X))− (H,Um)| ≤ ε. Note that we can bound the collision proba-
bility, which we denote by CP , by

CP (H,H(X)) =
1

N
Pr
h∼H

x1,x2∼X

[h(x1) = h(x2)]

≤ 1

N

(
1

K
+

1

M

)
=

1 + (M/K)

NM
.

Claim 4.2. Let D be a distribution on a set T . Suppose CP (D) ≤ 1+4ε3

|T | . Then, |D − Ut| ≤ ε.

Sketch. Take [n] = T . Then, CP (D) =
∑

iD
2
i = ‖D‖22. We have

|D − U[n]| =
1

2

∥∥D − U[n]

∥∥
≤ 1

2

√
n
∥∥D − U[n]

∥∥
=

1

2

√
n

(
‖D‖2 −

1

2

)1/2

,

and so on.

Lastly, given the claim above we find

|(H,H(x)− (H,Um)| ≤
√
M

4K

= 2−(k−m)/2.

For all l, take m = n− 2l, k = n− l so long as k > n/2. Ultimately we have ε = 2−l/2.

5 Extractors from Codes

Let C : [n̄, n, (1 − δ)n̄]q, with encoder C : {0, 1}n → {0, 1}n̄. Define Ext(x, y) = C(x)|y, that is

Ext : {0, 1}n×{0, 1}d → {0, 1}m, where d = log(n̄) and m = log q. Denote the collision probability
by CP . We are interested in Y,C(x)|y ≈ Y,Um.

CP
(
Y,C(X)|Y

)
=

1

n̄
Pr
y∼Ud

x1,x2∼X

[
C(x1)|y = C(x2)|y

]

=
1

n̄

1

k
+ Pr

y∼Ud
x1 6=x2∼X

[
C(x1)|y = C(x2)|y

]
≤ 1

n̄

(
1

k
+ δ

)
=

1

n̄q

( q
K

+ δq
)
.

This is to be continued in the next lecture.
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