
Pseudorandom Generators from the Fourier Spectrum

Jason Gaitonde

Abstract

As we have seen from class, the construction of pseudorandom generators for certain classes
of functions are often based on other “pseudorandom” objects, like ε-biased spaces, expanders,
and extractors. Here, we will first discuss how the Fourier spectrum of Boolean functions
is relevant in this regard, before turning to a new framework that develops pseudorandom
generators for classes with sufficiently nice Fourier tails as introduced by Chattopadhyay, et al
[1]. Their technique first constructs fractional pseudorandom generators, which are less rigid
than standard pseudorandom generators because they need not lie on the vertices of the Boolean
hypercube, and then adds them together to form a walk that quickly approaches {−1,+1}n;
the pseudorandom generator then works by rounding the final coordinates of the walk. This
construction turns out to yield a single PRG with comparable seed-length to the best-known
constructions for several natural classes of functions that satisfy the Fourier tail bounds.

We also discuss how the ideas from the paper have since been applied and advanced in other
recent works. Somewhat surprisingly, this technique of using “small” random steps to analyze
a larger random process was used by Raz and Tal in showing an oracle separation of BQP and
PH [2]. Moreover, this same technique was used by Chattopadhyay, et al [3], to construct new
pseudorandom generators that fool classes of functions whose second Fourier level is sufficiently
bounded, as opposed to the entire tail. Proving such bounds for other natural classes of Boolean
functions is an active area of interest.

1 Introduction

Randomness, and finding ways to reduce it, is of principal concern in complexity theory. A main
goal is often to derandomize a randomized computation without degrading the time complexity of
the algorithm. One natural approach to do so is to construct pseudorandom generators that take
much less randomness and returns bits that “look” random to the perspective of the algorithm.
An ambitious, but very plausible, goal is to show that every randomized computation that runs in
polynomial time can be derandomized into another algorithm that computes the same language in
polynomial time, i.e. P = BPP.

To construct pseudorandom generators, one often focuses on specific models of computation;
for instance, consider Nisan’s celebrated pseudorandom generator for space-bounded computation
[4]. This can lead to specialized generators for specific classes. One main tool in proving that a
certain construction works for some certain model is via Fourier analysis.

Here, we survey recent works that in some sense, go straight to the source to construct pseudo-
random generators for large classes of functions that satisfy a Fourier tail bound. This approach
proceeds by constructing a relaxation of pseudorandom generators, which are relatively easy to con-
struct, and then combining them in a clever way that relates to the Fourier expansion of functions.
We then show how these ideas were used in a very different problem to prove circuit lower bounds
that imply the oracle separation of BQP, the set of languages computed by quantum algorithms
in polynomial time, and PH, the polynomial hierarchy. We first introduce the topic by explaining

1

why the Fourier expansion is a natural tool to use in the construction of pseudorandom generators
before surveying these new works.

2 Notation

2.1 Fourier Analysis

We quickly review some of the relevant basics from the Fourier analysis of Boolean functions [5].
For any function f : {±1}n → {±1}, we may express f in its Fourier expansion

f(x) =
∑
S⊆[n]

f̂(S)χS(x), (1)

where χS(x) =
∏
i∈S xi, and f̂(S) = 〈f, χS〉 = Ex∼{±1}n [f(x)χS(x)] = 2−n

∑
x∈{±1}n f(x)χS(x).

Later on, we will extend Boolean functions f to a function on [−1, 1]n to [−1, 1] using its Fourier
expansion, that is, for all x ∈ [−1, 1],

f(x) :=
∑
S⊆[n]

f̂(S)χS(x); (2)

we briefly observe that the Fourier expansion is the unique multilinear polynomial that agrees with
f on {±1}n as can be easily verified by interpolating the coefficients on all monomials of degree
at most n, and therefore, the extension of any Boolean function on the Boolean hypercube to a
multilinear function is unambiguous. The value of f(x) in the cube [−1, 1]n has a particularly nice
interpretation; if we define independent random variables Xi ∈ {±1} such that E[Xi] = xi, then
we can easily compute

EX [f(X)] = EX
[∑
S⊆[n]

f̂(S)χS(X)

]
=
∑
S⊆[n]

f̂(S)
∏
i∈S

E[Xi] =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi = f(x); (3)

therefore, f(x) is an expectation over the corners of the Boolean hypercube, which shows that f
maps [−1, 1]n → [−1, 1].

2.2 Pseudorandom Generators

Let F be a class of Boolean functions. We say that a pseudorandom generator (PRG) for the class
F with error ε > 0 is a random variable X ∈ {±1}n such that

|EX [f(X)]− EU [f(U)]| ≤ ε, ∀f ∈ F , (4)

where U denotes the uniform distribution over {±1}n. Of course, by the previous discussion, this
is equivalent to

|EX [f(X)]− f(0)| ≤ ε, ∀f ∈ F , (5)

where we consider the multilinear expansion of f . Note that f(0) = EU [f(U)] = f̂(∅), by definition.

2

3 Warmup: PRGs from Small Spectral Norm

To see why the Fourier spectrum can be useful in the design of pseudorandom generators, we can
use the Triangle Inequality to write

|EX [f(X)]− f(0)| = |EX [
∑
S⊆[n]

f̂(S)χS(X)]− f̂(∅)|

= |
∑
S 6=∅

f̂(S)EX [χS(X)]|

≤
∑
S 6=∅

|f̂(S)||EX [χS(X)]|

Write ‖f̂‖1 :=
∑

S⊆[n] |f(S)| to be the L1-spectral norm of f . If ‖f̂‖1 ≤ poly(n) for all f ∈ F ,
then these functions are particularly easy to fool; recall that an ε-biased space is a random variable
X ∈ {±1}n such that |EX [χS]| ≤ ε for all ∅ 6= S ⊆ [n]. That is, an ε-biased space fools all parity
tests with error at most ε. Such spaces can be constructed using O(log(n/ε)) random bits [6]; here,
constructing a biased space X with bias ε/poly(n), we see that

|EX [f(X)]− f(0)| ≤
∑
S⊆[n]

|f̂(S)||EX [χS(x)]| ≤ ε

poly(n)
‖f̂‖1 ≤ ε; (6)

therefore, X ε-fools F . Such a construction takes O(log(poly(n)/ε)) = O(log(n/ε)) bits, so is
particularly efficient.

3.1 Examples

Intuitively, functions with small L1-spectral norm are necessarily concentrated on a small number
terms in the Fourier basis. Indeed, by Parseval’s theorem, the L2-spectral norm (the sum of squares
of the Fourier coefficients) is identically 1; in particular, by considering a function f : {±1}n → {±1}
as a vector of Fourier coefficients (with length 2n), f necessarily must lie on the L2-unit ball in
R2n . Of course, the L1-unit ball is contained in the L2-unit ball, and because all norms are
equivalent in finite dimensional space, there is a smallest radius L1-ball that contains the L2-unit
ball. A simple application of Cauchy-Schwarz implies that the smallest such L1-ball has L1 radius
2n/2; geometrically, the reason is that points on the L2-ball that are not close to the unit basis
vectors have large L1 norm. In particular, this discussion implies that the L1-spectral norm can
be exponential in n, so clearly this method of using ε-biased spaces as pseudorandom generators
cannot be sufficient for all, or even potentially many, functions. In fact, consider a random function
f , so that f(x) = 1 with probability 1/2 and −1 with probability 1/2, independently across x. Then
we can compute, for any S ⊆ [n],

Ef [|f̂(S)|] =
1

2n
Ef

[∣∣∣∣ ∑
x∈{±1}n

f(x)χS(x))

∣∣∣∣]

=
1

2n
Ef

[∣∣∣∣ ∑
x∈{±1}n

f(x)

∣∣∣∣]

≈

√
2
π

2n/2
,

3

where the second equality uses the fact that the terms f(x)χS(x) are distributed the same as f(x) for
all x, independently, and the last approximation uses the standard fact that the expected deviation

of a random walk after 2n steps is
√

2
π2n/2. By linearity, this implies that

Ef [‖f̂‖1] =
∑
S⊆[n]

Ef [|f̂(S)|] ≈ 2n/2
√

2

π
, (7)

which is close to the tight bound. This implies that most functions have high L1-spectral norm, so
will not be fooled by this analysis.

Still, though this analysis has been fairly elementary, this analysis of the Fourier spectrum holds
for some natural classes of functions. Here, we highlight some natural classes where these spectral
bounds are enough:

Example 1 (Width 2 Oblivious Read-Once Branching Programs). Consider the class Bob2,n of
oblivious, read-once branching programs (OROBP) of width 2 on n variables. An oblivious read-
once branching program of width w on n variables is modeled by a layered directed graph with n+ 1
layers with at most w nodes each, where all nodes in a layer read the same, fixed, input bit, and
accordingly move along the edge corresponding to the bit it read to the next layer. In the final
layer, some nodes will be “accepting” and the rest will be “rejecting.” The intuition for why these
branching programs have small spectral norm is that they are constrained to be only slightly more
complicated than parities.

We will show that if f ∈ Bob2,n, which we will represent as a function f : {±1}n → {0, 1} for

convenience, then ‖f̂‖1 ≤ n. Note that by changing the range, the expectations in the definition
of PRGs become just the probability of f accepting under U and X; it is easy to check that these
definitions are the same up to a factor of 2. The interpretation of f(x) = 1 is that when the
branching program reads in input x one bit at a time, it ends up at an “accept” state.

To see this, we proceed by induction. Suppose f is computed by an oblivious branching program
of width 2 on 1 variable; then it is easy to see that the only possibilities are

f(x) = f(x1) =


1 if both edges go to “accept” state

0 if neither edge goes to “accept” state
1
2 + x1

2 if f(1) = 1 and f(−1) = 0
1
2 −

x1
2 if f(1) = 0 and f(1) = 0.

(8)

In all of these cases, it is clear that ‖f̂‖1 ≤ 1. For the inductive step, suppose that the claim is true
for all f computed by width 2, OROBPs on n variables. Let g be computed by a width 2, OROBP
B on n + 1 variables, which has n + 2 layers. The key is to consider what B does on the first n
variables.

Let v1 be the first node in the n + 1th layer of B, and v2 be the second node. Then let f1 :
{±1}n → {0, 1} be the indicator of whether B reaches v1 after reading the first n variables, and
same with f2 and v2. Note that f2 = 1 − f1 and crucially, f1 is computed by a width 2 OROBP,
and so by induction has ‖f̂1‖1 ≤ n. Let g1 : {±1} → {0, 1} be the action of B when starting on v1

and reading the n+ 1th bit, and same with g2 and v2. It is then clear that

g(x1, . . . , xn+1) = f1(x1, . . . , xn)g1(xn+1) + (1− f1(x1, . . . , xn))g2(xn+1); (9)

the interpretation of this formula is just that conditioned on where we are after reading n variables,
only the action of B on the last variable matter. From this point, it is easy to explicitly upper bound

4

the L1-spectral norm by considering cases. It is easy to check that the claim holds when gi = 0 for
either i, or when g1 = g2, so by exchanging f and 1 − f if necessary, the only cases to check are
when g1 = 1 and g2 is one of the parities on xn+1 or when g1 and g2 compute distinct parities.

In the first case, when g2 = 1
2 + xn+1

2 ,

g(x1, . . . , xn+1) = f1(x1, . . . , xn) + (1− f1(x1, . . . , xn))(
1

2
+
xn+1

2
)

=
1

2
+
x1

2
+
f1(x1, . . . , xn)

2
+
f1(x1, . . . , xn)xn+1

2

To conclude, we use the following lemma:

Lemma 2. Let f, g : {±1}n → R. Then

‖f̂ + g‖1 ≤ ‖f̂‖1 + ‖ĝ‖1 (10)

‖f̂g‖1 ≤ ‖f̂‖1‖ĝ‖1. (11)

Proof. The first equation is trivial, just using the fact that the Fourier Transform is linear and
applying the normal Triangle Inequality to each Fourier coefficient. For the second condition, we
can compute

fg =

(∑
S⊆[n]

f̂(S)χS

)(∑
S⊆[n]

ĝ(S)χS

)

=
∑
U⊆[n]

(∑
S∆T=U

f̂(S)ĝ(T)

)
χU ,

and therefore,

‖f̂g‖1 ≤
∑
U⊆[n]

∣∣∣∣ ∑
S∆T=U

f̂(S)ĝ(T)

∣∣∣∣
≤
∑
U⊆[n]

∑
S∆T=U

|f̂(S)||ĝ(T)|

=
∑
S⊆[n]

∑
T⊆[n]

|f̂(S)||ĝ(T)|

=

(∑
S⊆[n]

|f̂(S)|
)(∑

S⊆[n]

|ĝ(S)|
)

= ‖f̂‖1‖ĝ‖1,

as desired. �

This lemma immediately implies ‖ĝ‖1 ≤ 1 + ‖f̂1‖1 ≤ n + 1, by the inductive hypothesis. The
same occurs when g2(xn+1) = 1

2 −
x1
2 . The other case is g1(xn+1) = 1

2 + x1
2 and g2(xn+1) = 1

2 −
x1
2 ,

in which case we can compute

g(x1, . . . , xn+1) = f(x1, . . . , xn)(
1

2
+
xn+1

2
) + (1− f(x1, . . . , xn))(

1

2
− xn+1

2
)

=
1

2
− xn+1

2
+ f(x1, . . . , xn)xn+1,

5

in which case the lemma gives us the same bound, completing the induction. Therefore, all f ∈ Bob2,n

satisfy ‖f̂‖1 ≤ n, and so this class can be ε-fooled by an ε/n-biased space.

Example 3 (Small Decision Trees). A special case of branching programs, a decision tree is a rooted
binary tree representing a function {±1}n → R where each internal node is labeled by a variable
xi, each outgoing edge is labeled {−1,+1} and the leaves have function values. The decision tree T
works by computation paths: on input x, if T is at an internal node with label xi, T queries x at
the ith location, then moves according to the edge with label xi, until it reaches a leaf that gives the
value of the function on this input. We stipulate that no path contains the same label more than
once. We say the size of a decision tree is the number of leaves it has.

It is an easy exercise to show that ‖f̂‖1 ≤ ‖f‖∞ · s, where s is the size of a decision tree
computing f [5]. In particular, if f is a Boolean function, then ‖f̂‖1 ≤ s; as such for the set of
all decision trees of polynomial size, for some fixed polynomial, can be fooled by a sufficiently good
ε-biased space with seed length O(log(n/ε)).

Example 4 (Concentrated Functions). We say a function f is ε-concentrated on S ⊆ 2[n] if the sum
of squares of the Fourier coefficients on 2[n] \S is at most ε. It is easy to extend the above examples
to show that the class of functions that is ε-concentrated on a class of subsets of polynomial size,
for some fixed polynomial, can be fooled in an analogous way (for example, functions that have low
degree in their Fourier expansion). We note here that this sort of spectral simplicity has implications
in the polynomial-time learnability of functions [7].

4 PRGs from Polarizing Random Walks

4.1 Intuition and Definitions

As these examples show, exploiting the Fourier spectrum can be quite fruitful and indeed, many
analyses of candidate pseudorandom generators for a specific model of computation rely on del-
icate Fourier analysis. However, this discussion also suggests that one might be able to directly
construct pseudorandom generators based on some Fourier property, not tethered to some form of
computation.

In this section, we describe a recent approach from [1] that does exactly this. Let F be a class
of Boolean functions on n variables that is closed under random restrictions (i.e for all f ∈ F and
any fixing of any subset of variables in any input, the resulting function is in F), and that satisfies
the following L1-Fourier tail bound: there exists constants a, b ≥ 1 such that∑

S⊆[n]:|S|=k

|f̂(S)| ≤ abk, ∀k ≥ 1. (12)

To fool such classes, one first defines a relaxation of pseudorandom generators:

Definition 4.1. Let f : [−1, 1]n → [−1, 1] be a multilinear function. Then a random variable
X ∈ [−1, 1]n is a fractional pseudorandom generator (FPRG) with error ε if

|EX [f(X)]− f(0)| ≤ ε. (13)

X is a fractional pseudorandom generator for a class F with error ε if this holds for all f ∈ F . If
X = G(Ur), where Ur is the uniform distribution on r bits, then we say X has seed length r.

6

In particular, when F is a class of n-variate Boolean functions, we consider the unique multi-
linear extension, just the Fourier expansion as explained above. Because fractional pseudorandom
generators are not constrained to lie on corners of the Boolean hypercube, they are much easier to
construct: in fact, just take X ≡ 0! In general, any X that is concentrated tightly around 0 will
be a good fractional pseudorandom generator, just by continuity. If the end goal is to somehow
use fractional generators to construct a bona fide pseudorandom generator, then we will need to
somehow require that this does not happen using a variance condition:

Definition 4.2. A random variable X = (X1, . . . , Xn) is p-noticeable if Ei[X2
i] ≥ p for all i ∈ [n].

A good example of such a random variable is to take G : {±1}r → {±1}n, and then define
X = pG(Ur). Then X has seed length r and is p2-noticeable, as X ∈ {±p}n.

4.2 Overview

To get from fractional pseudorandom generators to actual pseudorandom generators, [1] uses the
following approach:

1. Start with a p-noticeable FPRG X for F . By definition, |EX [f(X)]−f(0)| ≤ ε for any f ∈ F .

2. Add together independent copies of X to form steps in a random walk in [−1, 1]n to get a
1− q-noticeable random variable, with the property that that these steps are small enough to
not add much additional error, yet are large enough to require few steps to make the resulting
random variable 1− q-noticeable.

3. Round to the nearest point {±1}n and show that this does not add much error either when
1− q-noticeable.

4.3 The FPRG

To construct the FPRG, recall the intuition from above; by staying close to 0, one is able to fool
F , but we also want the FPRG to have variance so that it can serve as effective walk steps. This
tension is where the Fourier tail bounds can be used: we will need the following construction.

Definition 4.3. A random variable X ∈ {±1}n is ε-almost d-wise independent if any restric-
tion of X to d coordinates has marginal distribution ε-close in statistical distance to the uniform
distribution on d bits. In particular, |EX [

∏
i∈S Xi]| ≤ ε for each S ⊆ [n] with |S| ≤ d.

We note that Naor and Naor give a construction that requires seed length O(log log n+ log d+
log(1/ε)) [6]. We start with an ε-almost d-wise independent distribution, and then scale down by a
factor which will be chosen according the b in the tail bounds. The original distribution will kill the
small order terms in the Fourier expansion by independence, and the scaling will be multiplicative
on higher order terms to kill those terms.

For convenience, we define the Fourier mass at level k:

Definition 4.4. The Fourier mass of f at level k is

Wk =
∑

S⊆[n]:|S|=k

|f̂(S)|. (14)

7

Theorem 5 (Lemma 4.4 of [1]). Fix a, b ≥ 1. There exists a p-noticeable FPRG X ∈ [−1, 1]n that
fools any function with ∑

S⊆[n]:|S|=k

|f̂(S)| ≤ abk, ∀k ≥ 1, (15)

with error ε, p = 1
4b2

, and X has seed length O(log log n+ log(a/ε)).

Proof. As mentioned above, we take an δ-almost d-wise independent distribution Z, where d =
dlog(2a/ε)e, δ = ε/2a, and β = 1/2b. We then construct X = βZ. The Naor and Naor construction
gives the claimed seed length and by construction it is 1/(4p2)-noticeable. What remains to be
checked is that it is a FPRG for these functions.

Using the calculation from Section 2, we have

|EX [f(X)]− f(0)| ≤
∑

∅6=S⊆[n]

|f̂(S)||EX [χS(X)]|

=
∑

∅6=S⊆[n]

β|S||f̂(S)||EZ [χS(Z)]|

By definition, when 0 < |S| ≤ d, |EZ [χS(Z)]| ≤ δ, and otherwise we can bound above by 1, so

|EX [f(X)]− f(0)| ≤
∑

∅6=S⊆[n]:|S|≤d

β|S||f̂(S)||EZ [χS(Z)]|+
∑

S⊆[n]:|S|>d

β|S||f̂(S)||EZ [χS(Z)]|

≤ δ
∑

∅6=S⊆[n]:|S|≤d

β|S||f̂(S)|+
∑

S⊆[n]:|S|>d

β|S||f̂(S)||EZ [χS(Z)]|

≤ δ
d∑

k=1

Wkβ
k +

n∑
k=d+1

Wkβ
k

≤ aδ
d∑

k=1

(bβ)k + a

n∑
k=d+1

(bβ)k

≤ ε

2
+ a2−d

≤ ε,

where we upper bound using formulas for infinite sums. �

4.4 The Random Walk

To get a random walk that will quickly converge to the corners of the Boolean hypercube, the
authors use the following construction:

Definition 4.5 (Random Walk Gadget). For a1, . . . , at ∈ [−1, 1], define g1(a1) = a1, and then
inductively define gt for t > 1 by

gt(a1, . . . , at) = gt−1(a1, . . . , at−1) + (1− |gt−1(a1, . . . , at−1)|)at. (16)

Extend this to definition to vectors by doing the construction componentwise: that is, define
gnt : ([−1, 1]n)t → [−1, 1]n by

gnt (x1, . . . , xt) = (gt(x1,1, . . . , xt,1), . . . , gt(x1,n, . . . , xt,n)). (17)

8

In easier notation, if we generate independent FPRGs X1, . . . , Xt ∈ [−1, 1]n and use them as
steps in our walk, then we get the corresponding random variables Y1, . . . , Yt defined by

Y1 = X1 (18)

Yt = Yt−1 + δYt−1 ◦Xt, (19)

where δy = (1− |y1|, . . . , 1− |yn|) and x ◦ y is defined by x ◦ y = (x1y1, . . . , xn, yn). Geometrically,
the quantity 1 − |(Yt−1)i| gives the distance from (Yt−1)i to the closer of ±1; in that sense, what
this walk is doing physically is adding together the Xi, but scaling according to the distance from
Yi−1 to the corners, which has the benefit of constricting the random walk to [−1, 1]n.

This construction is particularly natural in the following sense; we know that taking the first step
Y1 = X1 does not lead to much error, because by definition of FPRGs, we have |EY1 [f(Y1)]−f(0)| ≤
ε. But what about the next step Y2? By the Triangle Inequality, it will suffice to prove that
|EX1 [f(X1)] − EX1,X2 [gn2 (X1, X2))]| ≤ ε as well. The way to do this will be to show that in the
same way X1 fools f near 0, the random step centered at any y will fool f near y.

Lemma 6 (Claim 3.3 of [1]). Suppose X ∈ [−1, 1]n is an FPRG for F with error ε. Then for any
f ∈ F and y ∈ [−1, 1]n,

|f(y)− E[f(y + δy ◦X)]| ≤ ε. (20)

Proof. Note that the case when y = 0 is exactly the condition of being a FPRG. The intuition
is the following: we have already seen that f(y) has a natural interpretation as the expectation of
f on certain random inputs. To get a similar bound when translating from 0 to y, we will want
write f(y) instead as F (0) for an random restriction F of f ; because F is closed under random
restrictions, the fact that X is a PRG for F will imply the bound if this is done carefully.

The most natural way to enforce this is define a random function F whose value at x is the
value of f on random inputs. Explicitly, define the random input R(x) by sampling R1, . . . Rn
independently by Pr[Ri = sgn(yi)] = |yi| and Pr[Ri = xi] = 1−|yi|. We then define F (x) = f(R(x)).
From this definition, we get

ERi [Ri] = sgn(yi)|yi|+ (1− |yi|)xi = yi + δyi ◦ xi; (21)

by multilinearity, we thus have EF [F (x)] = ER[f(R(x))] = f(ER[R(x)]) = f(y + δy ◦ x). In
particular, we have E[F (0)] = f(y), exactly as we wanted. As a result, we have

|f(y)− E[f(y + δy ◦X)]| = |EF [F (0)]− EF,X [F (X)]| ≤ EF [|F (0)− EX [F (X)]|]. (22)

As we stated, though, as F is a random restriction, it is in F almost surely, and therefore, this
term is bounded by ε by the fact that X is a FPRG for F , as desired. �

From the proof, we thus see that the steps in the random walk are naturally constructed when
trying to construct random inputs whose expectation at 0 will be y. From this claim, we easily get
the actual expected error analysis of the walk:

Lemma 7 (Claim 3.4 of [1]). Suppose X1, . . . , Xt ∈ [−1, 1]n are independent FPRGs for F with
error ε. Then for any f ∈ F ,

|EX1,...,Xt [f(gnt (X1, . . . , Xt))]− f(0)| ≤ tε. (23)

9

Proof. By writing this as a telescoping series and using the triangle inequality, we have

|EX1,...,Xt [f(gnt (X1, . . . , Xt))]−f(0)| ≤
t∑
i=1

|EX1,...,Xi [f(gni (X1, . . . , Xi))]−EX1,...,Xi−1 [f(gni−1(X1, . . . , Xi−1))]|,

(24)
where we make the convention that g0 = 0 as a function. We claim that each term is bounded
above by ε, which implies the lemma.

This can be done by induction. The case that i = 1 is just the fact that X1 is a FPRG. For
i > 1, notice that

|EX1,...,Xi [f(gni (X1, . . . , Xi))]−EX1,...,Xi−1 [f(gni−1(X1, . . . , Xi−1))]| ≤
EX1,...,Xi−1 [|f(gni−1(X1, . . . , Xi−1))]− EXi [f(gni (X1, . . . , Xi))]|].

By monotonicity, it thus suffices to show that for any x1, . . . , xi−1 ∈ [−1, 1]n, we have

|f(gni−1(x1, . . . , xi−1))]− EXi [f(gni (x1, . . . , xi−1, Xi))]|, (25)

but this follows from Lemma 6.
�

In particular, this random walk only gives additive error on each step; if one can bound how many
steps are needed before rounding, and then quantify how much error the rounding gets, one would
get an error estimate for the resulting PRG. For the former, the analysis has nothing to do with
FPRGs, but rather just martingale concentration:

Lemma 8 (Claim 3.5 of [1]). Let A1, . . . , At ∈ [−1, 1] be symmetric, independent, p-noticeable
random variables, and define Bi = Bi−1 + (1− |Bi−1|)Ai. Then Bt is 1− 3 exp(−tp/16)-noticeable.

Proof. The proof proceeds by considering the sequence of distances from {±1}, that is Ci := 1−
|Bi|. One can show that Ci ≤ Ci−1Ai, so by induction,

√
Ct ≤

∏t
i=1

√
1−Ai. Taking expectations

and using independence,

E[
√
Ct] ≤

t∏
i=1

E[
√

1−Ai]. (26)

Because the Ai are identical, it suffices to bound a single term on the right. The Taylor expansion
of
√

1− x is 1− x
2 −

x2

8 −O(x3), where each coefficient but the first is negative. Taking expectations
and using symmetry of Ai to kill the odd moments, we deduce that

E[
√

1−Ai] ≤ 1− E[A2
i]

2
≤ 1− p

8
≤ exp(−p/8), (27)

using the bound 1− x ≤ e−x. Therefore,

E[
√
Ct] ≤ exp(−pt/8). (28)

Markov’s inequality implies that

Pr[Ct ≥ exp(−tp/8)] = Pr[
√
Ct ≥ exp(−tp/16)] ≤ exp(−pt/8)

exp(−tp/16)
= exp(−pt/16). (29)

When Ct ≤ exp(−tp/8) ≤ exp(−tp/16), using the inequality 1 − x2 ≤ 2 − 2|x| on the interval
[−1, 1], we thus have 1 − B2

t ≤ 2 − 2|Bt| = 2Ct ≤ 2 exp(−pt/16), and otherwise, we can trivially
bound 1−B2

t by 1. Therefore,

E[1−B2
t] ≤ E[1−B2

t |Ct ≤ exp(−tp/8)] + (1) Pr[Ct ≥ exp(−tp/8)] ≤ 3 exp(−tp/16), (30)

and rearranging gives the claim. �

10

4.5 Error from Rounding

The final step is to show that rounding a 1− q-noticeable random variable according to the sign of
each coordinate does not add too much error. To do this, suppose thatX is a 1−q-noticeable random
variable in [−1, 1]n. The proof proceeds by considering how much error comes from rounding any
point x ∈ [−1, 1] in terms of x, and then averaging.

Let W = (W1, . . . ,Wn) be a random variable in {±1} such that EW [W] = x, as described
before. Then as f is bounded in [−1, 1] on the cube, we have by multilinearity

|f(x)− f(sgn(x))| = |EW [f(W)]− f(sgn(x))| ≤ 2 Pr[W 6= sgn(x)], (31)

as conditioned on W = sgn(x), the deviation is zero, and otherwise we can trivially upper bound
by 2. By a union bound, this probability is bounded above by the sum over the probability for
each coordinate, which is just 1−|xi|

2 . As such, we have

|f(x)− f(sgn(x))| ≤ 2 Pr[W 6= sgn(x)]

≤ 2
n∑
i=1

Pr[Wi 6= sgn(xi)]

≤
n∑
i=1

1− |xi|.

By averaging over x = X, we get |EX [f(X)] − EX [f(sgn(X))]| ≤
∑n

i=1 EX [1 − |Xi|]. Note that
1− |x| ≤ 1− x2 on [−1, 1], and so we get

|EX [f(X)]− EX [f(sgn(X))]| ≤
n∑
i=1

EX [1−X2
i] ≤ qn, (32)

by 1 − q-noticeability. Therefore, if X is an FPRG with error ε, and if Z = sgn(X), Z is a PRG
with error

|f(0)− EZ [f(Z)]| ≤ |f(0)− EX [f(X)]|+ |EX [f(X)]− EX [f(sgn(X))]| ≤ ε+ qn. (33)

4.6 Completing the Construction

We can finally put this together to construct a PRG for L1-Fourier tail bounds:

Theorem 9 (Theorem 4.5 of [1]). Let F be a family of n-variate Boolean functions closed under
restriction satisfying ∑

S⊆[n]:|S|=k

|f̂(S)| ≤ abk, ∀k ≥ 1, ∀f ∈ F . (34)

Then for any error ε > 0, there exists an explicit PRG X ∈ {±1} that ε-fools F with seed length
O(log(n/ε)(log log n+ log(ab/ε))).

Proof. By Theorem 5, we will start with an explicit 1/(4b2)-noticeable FPRG for F (and determine
seed length after checking parameters later). By Lemma 8, after taking O(log(n/ε)b2) copies of
this FPRG (multiplying by a single uniform bit to guarantee symmetry), we have amplified this to
a 1− q-noticeable FPRG, where q = 2ε/n; rounding this induces ε/2 error as we saw above. There-
fore, in the construction of the FPRG, we require it have error ε/(2O(log(n/ε)b2)) by Lemma 7, and
therefore the Naor and Naor construction requires seed of size O(log log n+ log(ab2 log(n/ε)/ε)) =
O(log log n+log(ab/ε)), so in total the seed length O(b2 log(n/ε)(log log n+log(ab/ε))) as claimed. �

11

Pseudorandom Generators for Model Classes

Function Class F b Tail Bound PRG Seed Length

Functions with sensitivity ≤ s O(s) [8] O(s2 log(n/ε)(log log(n) + log(s) + log(1/ε)))
OROBPs of width w logw n [9] O(log2w n log(n/ε)(w log log(n) + log(1/ε)))

AC0 size ≤ s and depth ≤ d 2O(d) logd−1 s [10] O((log2d−2 s)(log(n/ε))(log log(n) + d log log s+
log(1/ε)))

Figure 1: PRG constructions using known Fourier tail bounds.

Remark 10. Note that when b = logO(1) n, then the log b term can be safely dropped.

Many known classes of functions satisfy these Fourier tail bounds and are closed under restric-
tion, so by plugging in the tail bounds, we can immediately plug in values for Theorem 9, which
yields comparable generators to the state-of-the-art. See Figure 1. Crucially, this same construc-
tion holds across function classes; the construction is catered to the Fourier tail bounds, not to any
particular model class.

5 Extensions

We now discuss some recent applications of these Fourier-analytic techniques, in particular in the
recent oracle separation of BQP, the class of languages computed by bounded-error, polynomial-
time quantum Turing machines, and PH, the polynomial hierarchy, by Raz and Tal [2].

5.1 Oracle Separation of BQP and PH

Through known reductions, the heart of the proof of the result is the construction of a distribution
D such that a quantum algorithm can efficiently distinguish between D and the uniform distribution
with noticeable advantage, whereas no Boolean circuit of small enough size and depth can gain an
appreciable advantage. Formally, they prove that

Theorem 11 (Theorem 1.1 of [2]). There exists an explicit distribution D on {±1}2N such that

1. No Boolean circuit of quasipoly(N) size and constant depth can distinguish between D and U
with advantage better than polylog(N)/

√
N .

2. There exists a quantum algorithm making one query to the input that runs in O(logN) time
which distinguishes between D and U with advantage Ω(1/ logN).

We sketch the proof of the first part of this theorem, as only the former relies on these Fourier
techniques, and the latter follows from other known results beyond the scope of this paper. In this
section, we define the distribution and sketch the key technical contribution of Raz and Tal, the
circuit lower bound, using the techniques of the previous section.

5.1.1 The Distribution D

Let n ∈ N and N := 2n. The distribution D is constructed in the following manner by going
through intermediate distributions and then rounding:

1. Sample x1, . . . , xN i.i.d. from a standard normal distribution N(0, 1). Let x = (x1, . . . , xN).

12

2. Define y = HNx, where HN is the Hadamard matrix defined by (HN)i,j = (−1)〈bi−1c,bj−1c〉,
where bmc denotes the binary representation of m and we take inner products. It is well-
known that HN is a symmetric, orthonormal matrix.

3. Define z = (x, y) and note then that z is a zero-mean multivariate normal distribution with
covariance matrix (

I HN

HN I

)
. (35)

Denote this intermediate distribution G.

4. Set ε = 1/(24 lnN). Sample z ∼ G and output
√
εz. Denote this distribution G′, and note

this is just a scaled version of G with covariance matrix scaled by (
√
ε)2 = ε.

5. Define trnc(a) = proj[−1,1](a) = min(1,max(−1, a)) to be the projection of any number to the
closest point in [−1, 1]. To get D, sample z ∼ G′, take trnc(z) (considered componentwise),
and then sample as follows: independently for each i ∈ [2N], draw z′i = 1 with probability
1+trnc(zi)

2 and z′i = −1 with probability 1−trnc(zi)
2 . Finally we output z′ and denote this

distribution by D, noting that this takes values in {±1}.

To gain some intuition behind these distributions, note that if f is any multilinear function, then
by the same analysis as before, because D is an appropriately, independently rounded version of
G′,

Ez∼G′ [f(trnc(z))] = Ez∼D[f(z)]. (36)

Moreover, because ε is quite small, the probability that trnc(z) 6= z is quite small, so we will also
have

Ez∼G′ [f(trnc(z))] ≈ Ez∼G′ [f(z)]. (37)

In particular, this means that it essentially suffices to show that G′ fools bounded size circuits to
show that D does so. The technique to do this will be entirely analogous to the analysis from
before: one writes G′ as a sum of many small parts of scaled down copies of G′, by the fact the
sum of Gaussians is still Gaussian. On each small “step,” a very similar analysis to the above can
be used to show that the higher Fourier coefficients and Gaussian moments will be killed by the
scaling, while the Gaussians themselves dispense with the lower order terms. After adding these
small parts together, the total error will remain quite small. Namely, Raz and Tal consider the
distribution G′ by setting t = N , p = 1/

√
t, and then define the intermediate steps z≤i = p

∑i
j=1 z

j .

Then z≤t ∼ G′, and each individual z≤i is just an intermediate step towards z≤t, in a completely
analogous way as before.

To be more formal, using a careful analysis, they take the following steps. First, they show that
adding small, scaled versions of z ∼ G′ do not change the expectation of a multilinear function near
certain points z0 near the origin whether or not we take the truncation, as mentioned before:

Lemma 12 (Claim 5.3 of [2]). Suppose 0 ≤ p, p0 have p + p0 ≤ 1 and suppose f : R2N → R is
multilinear mapping {±1} → [−1, 1]. Then if z0 ∈ [−p0, p0]2N ,

Ez∼G′ [|f(trnc(z0 + p · z))− f(z0 + p · z)|] ≤ 8N−1/2. (38)

From this point, their construction uses the following known Fourier tail bounds by Tal for
bounded Boolean circuits:

13

Lemma 13 (Theorem 37 of [10]). There exists c > 0 such that if A : {±1}2N → {±1} is computable
by a Boolean circuit with at most s gates and depth at most d, then for all k ≥ 0,∑

S⊆[2N]:|S|=k

|Â(S)| ≤ (c log s)(d−1)k. (39)

Note that these are precisely the tail bounds discussed before, with a = 1 and b = (c log s)d−1.

Using these tail bounds and bounds on the moments of the Gaussian distribution (using Isserlis’
Theorem and the covariance matrix), they are then able to prove a result that is entirely analogous
to Lemma 7 from above: first, they show that taking a small step of G′ near the origin will fool a
circuit as above (exactly analogous to Theorem 5) by killing higher Fourier and Gaussian moment.
Then they show that using the random restriction argument from Lemma 6 and the fact that the
restriction of Boolean circuits are Boolean circuits of smaller size, we can iterate this argument
using the intermediate distributions z≤i and Lemma 12 from above to deduce the main technical
circuit lower bound:

Theorem 14 (Theorem 1.1, Part 1 of [2]). Let A : {±1}2N → {±1} be a Boolean circuit of size s
and depth d. Then

|Ez′∼D[A(z′)]−A(0)| = |Ez′∼D[A(z′)]− EU []A(U)]| ≤ 32ε(c log s)2(d−1)/
√
N, (40)

where ε = 1/(24 lnN) as before and c is from Lemma 14. In particular, if A is of size exp(logO(1)(N))
and constant depth, then |Ez∼D[A(z)]− EU [A(U)]| ≤ polylog(N)/

√
N .

In that way, the proof idea relies heavily on the Fourier analysis from before: first, use the Fourier
expansion to think of Boolean functions as multilinear functions, then think of functions evaluated
on points inside the cube [−1, 1]n as random restrictions over functions. As we showed, the benefit
of doing this means that using Fourier tails, it is possible to show the error by perturbing any point
with a small step using a good distribution is small, precisely because the small step corresponds
to a scaling that kills off the higher Fourier terms. In [1], the goal was to add these small steps
to get a good distribution that approximates uniform according to these functions with bounded
Fourier tails, while in [2], the end goal is to find rewrite a distribution into smaller copies of itself
to facilitate the analysis of hardness.

5.2 PRGs from Level Two Bounds

These ideas have also cycled back to their original motivation, the construction of pseudorandom
generators. In particular, using a similar distribution as in the Raz and Tal result, the authors of
[3] were able to construct pseudorandom generators that only require bounds on the second Fourier
level, not the entire tail, at the risk of worse dependence on 1/ε. Their construction essentially
derandomizes the Raz and Tal distribution by using code words to reduce the dimension, and so the
seed length, of the Raz and Tal Gaussian construction, and then use a known result by [Kane15]
that constructs approximate Gaussian distributions with small error in expectation. After this
construction, the analysis from before that converts FPRGs to PRGs yields the following theorem
that only relies on level 2 Fourier bounds:

Theorem 15 (Theorem 2.1 of [3]). Let F be a family of Boolean functions on n-variables that is
closed under restrictions. Then if there exists t ≥ 1 such that∑

S⊆[n]:|S|=2

|f̂(S)| ≤ t, ∀f ∈ F , (41)

14

then for all ε > 0, there exists an explicit pseudorandom generator for F with error ε with seed
length O((t/ε)2+o(1)polylog(n)).

6 Conclusion

In this paper, we have discussed at length a new idea from [1] that proposes the analysis of Fourier
tails to construct flexible and robust pseudorandom generators for a wide class of functions. More-
over, this analysis has proven useful in other regards, for as we sketched, these same exact ideas
have recently lead to a circuit lower bound that implies the existence of an oracle O such that
BQPO 6⊂ PHO. As these ideas are quite new, it remains open to understanding how much more
one can extract from them; for instance, are there better ways to put together FPRGs in a walk
to get faster convergence? How much independence is needed? Understanding these questions, as
well as studying better Fourier tail bounds for many natural classes of functions, will be crucial in
determining how optimal this new framework will be.

References

[1] E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett, “Pseudorandom generators from
polarizing random walks,” in 33rd Computational Complexity Conference, CCC 2018, June
22-24, 2018, San Diego, CA, USA, pp. 1:1–1:21, 2018.

[2] R. Raz and A. Tal, “Oracle separation of BQP and PH,” Electronic Colloquium on Computa-
tional Complexity (ECCC), vol. 25, p. 107, 2018.

[3] E. Chattopadhyay, P. Hatami, S. Lovett, and A. Tal, “Pseudorandom generators from the
second fourier level and applications to AC0 with parity gates,” Electronic Colloquium on
Computational Complexity (ECCC), vol. 25, p. 155, 2018.

[4] N. Nisan, “Pseudorandom generators for space-bounded computation,” Combinatorica, vol. 12,
no. 4, pp. 449–461, 1992.

[5] R. O’Donnell, Analysis of Boolean Functions. New York, NY, USA: Cambridge University
Press, 2014.

[6] J. Naor and M. Naor, “Small-bias probability spaces: Efficient constructions and applications,”
SIAM journal on computing, vol. 22, no. 4, pp. 838–856, 1993.

[7] E. Kushilevitz and Y. Mansour, “Learning decision trees using the fourier spectrum,” SIAM
Journal on Computing, vol. 22, no. 6, pp. 1331–1348, 1993.

[8] P. Gopalan, R. A. Servedio, and A. Wigderson, “Degree and sensitivity: Tails of two distribu-
tions,” in 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016,
Tokyo, Japan, pp. 13:1–13:23, 2016.

[9] E. Chattopadhyay, P. Hatami, O. Reingold, and A. Tal, “Improved pseudorandomness for
unordered branching programs through local monotonicity,” Electronic Colloquium on Com-
putational Complexity (ECCC), vol. 24, p. 171, 2017.

[10] A. Tal, “Tight bounds on the fourier spectrum of AC0,” in 32nd Computational Complexity
Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, pp. 15:1–15:31, 2017.

15

