CS 6810: Theory of Computing Fall 2023

Lecture 20: Oct 31, 2023
Lecturer: Eshan Chattopadhyay Scribe: Yanyi Liu

In this lecture, we will see connections between hard functions (with respect to non-uniform
machines) and pseudorandom generators (PRG) (with respect to non-uniform machines). Finally,
we will show that the existence of a “dream” PRG implies that BPP = P.

For any n € N, let U,, denote the uniform distribution over {0, 1}".

1 Definitions

We start by introducing what it means for a function to be hard. Roughly speaking, if a function
f is (S, e)-hard, then no S-size circuit can compute f with probability > 1/2+¢. We also consider
worst-case hardness where we only require each circuit fails to compute f on some input.

Definition 1.1. Let f : {0,1}" — {0,1} be a function. We say that f is (S,€)-hard if for every
circuit C' of size < S, it holds that

Priz + {0,1}": C(z) = f(x)] < % +e

We simply say that f is S-hard if the above probability is < 1.

We proceed to defining pseudorandom generators (PRG). Roughly speaking, a function g is
a (5,¢)-PRG if no S-size circuit can distinguish between the output of PRG and the uniform
distribution with advantage > e.

Definition 1.2. Let g : {0,1}*(%%) — {0,1}" be a function. We say that g is a (S, €)-pseudorandom
generator ((S,e)-PRG) if for every circuit C' of size < S, it holds that

| Pr[z < {0, 1}5(”’5) :C(g(z)) =1 = Pr[r < {0,1}": C(r)=1]| <

Remark 1.3. In the above definitions, we only consider functions defined over a specific input
length. We can also consider functions f = { fn}nen defined over all input lengths, and we say that
fis a (S(+),e(+))-hard function (resp (S(-),e(:))-PRG) if it is (S(n),e(n))-hard (resp (S(n),e(n))-
pseudorandom) for all sufficiently large n € N.

2 Hardness from Pseudorandomness

We will show that we can get a hard function from any PRG g : {0,1}"~! — {0,1}". We consider
the function f: {0,1}" — {0,1} defined as f(z) = 1 iff Iy € {0, 1} L, = = g(y).

Lemma 2.1. Assume that g : {0,1}"1 — {0,1}" be an (S,1/2—6)-PRG for some § > 0. It holds
that f is S-hard.

Proof. Assume for the sake of contradiction that f is not S-hard; i.e., there exists a circuit C' of
size S that computes the function f. We will show that the circuit C' will distinguish between
the output of g and the uniform distribution with advantage > 1/2, which contradicts to the
(S,1/2 —)-pseudorandomness of g. Observe that Pr[C(g(U,—1)) = 1] = 1 since C' computes f and

Lecture 20: Oct 31, 2023 2

f will output 1 if the input is in the range of g. On the other hand, Pr[C'(U,,) = 1] < 1/2 since the
PRG g can output at most 2"~! strings which can occupy at most a 1/2 fraction of n-bit strings.
Taken together, it follows that

| Pr[C(9(U1)) = 1] - Pr{C(th) = 1] > 1/2

which concludes our proof. O

3 Pseudorandomness from Average-Case Hardness

We move on to show that we can obtain a PRG from average-case hard functions. For any function
f:{0,1}* — {0, 1}, define g : {0,1}" — {0, 1} as
9(x) = (z, f(z))

where g outputs = concatenated with f(z).
We turn to proving that g is indeed a PRG. The proof uses essentially the same idea as in Yao’s
indistinguishibility vs. unpredictability Theorem.

Lemma 3.1. Assume that f is (S,e)-hard. It holds that g is a (S — 1,¢)-PRG.
Proof. Suppose for contradiction that there exists circuit C” of size < S — 1 such that
| Pr[C(g(Un)) = 1] = Pr[C' (Un+1) = 1]| 2 €
It follows that there exists a circuit C' € {C’,C’" & 1} such that
PHC(g(Un)) = 1] = Pr{CWUni1) = 1] > ¢
and we consider the circuit C.
We will show that the circuit C will output 1 with higher probability when the input is sampled
from (z, f(x)), © < Uy, than (z, f(x) & 1), x < U,. Observe that
Prlz < U, : C(z, f(x)) =1] = Prlx < U, : C(z, f(z) D 1) = 1]
= Pr[CUn, f(Un)) = 1] = Pr[C(Un, f(Un) & 1) = 1]
= 2Pr[C(Un, f(Un)) = 1] = (Pr[C(Un, f(Un)) = 1] + Pr[C(Un, f(Un) ® 1) = 1])
— 2Pr[C(g(Un)) = 1] — 2Pr[CUns1) = 1]
> 2¢
Therefore, we can use the circuit C' to compute the function f. Consider the following randomized
algorithm A: On input z, toss a random coin b < {0, 1}, and output b if C(x,b) = 1 (since b is
more “likely” to be f(x)); otherwise output b & 1. In other words, Ay(x) = C(x,b) ® b & 1 where
b+ {0,1}.
We proceed to showing that A computes f with probability % + €. Note that
Pr{z < Up,b < {0,1} : Ap(z) = f(2)]
= Pr[z < Uy, b+ {0,1} : b= f(x)] Pr[z < Uy, b <+ {0,1} : Ap(z) = f(z) | b= f(x)]
+ Prlx < Up, b+ {0,1} : b = f(x) ® 1] Pr[z < Uy, b+ {0,1} : Ap(z) = f(x) | b= f(x) D 1]

- %Pr[x Uy Cla, f(z) = 1] + %Pr[:c Uy : Cla, fz) 1) = 0]

e, 0@ f@) =114 %(1 CPrlr Uy Cla, f@) @ 1) = 1))

> —4¢

NN

Lecture 20: Oct 31, 2023 3

Finally, it remains to show that A can be implemented by a circuit of size S. Since A, computes
f with probability at least % + ¢ over a random choice of b € {0,1}, it follows that there exists
bo € {0, 1} such that A, computes f with probability > 1+¢. Recall that Ay, (z) = C(x, by) Bbo®1,
and notice that the operator @1 can be implemented by adding a NOT gate in the end of the circuit.
It follows that Ay, is just C’ with the last input fixed to by, and with (or without) a NOT gate
in the end (depending on the value of by and which of {C’,C" @ 1} C' is), where the circuit size is
increased by at most 1. O

4 Derandomization from PRGs

Finally, we show that BPP = P if there exists a (O(n),1/6)-PRG ¢ : {0,1}C0ogn) _ o 1}»
computable in time poly(n).

Lemma 4.1. Assume that there exists a (O(n),1/6)-PRG g : {0,1}0087) — 10, 1}" where g (on
input of length O(logn)) is computable in time d(n) € poly(n). Then, BPP = P.

Proof. For any L € BPP, let M be the poly-time probabilistic machine such that M (x,r) decides L
on instance = using random tape 7. Let ¢(n) denote the running time of M on instance x € {0,1}",
and we can without loss of generality assume that |r| = t(|x]).

We will give a deterministic poly-time machine A such that A decides L. Roughly speaking,
A will replace the random tape r of M by the output of g, and the average can now be computed
using brute-force since the seed length to g is only logarithmic in its output length. Our machine
A, on input z € {0,1}", enumerates all possible s € {0, 1}O(logt(”)), and outputs the majority of
M (z, g(s)) for all s (where |g(s)| = t(|z|)). Notice that A runs in time 200084 (d(n) + t(n)) €
poly(n) time.

We turn to arguing that for every n € N, z € {0,1}", A(z) = L(x). Consider the circuit C(r)
defined as C'(r) = M(x,r). Since g is a PRG, it follows that

1
[Prls « {0,100 C(g(s)) = 1] = Prlr = {0,1}'™ : C(r) =1]| < &
Therefore, it follows that A(z) will output 1 if Pr,[M(z,r) = 1] > 2, or output 0 if Pr,[M(z,r) =
0] > % which concludes our proof. O

	Definitions
	Hardness from Pseudorandomness
	Pseudorandomness from Average-Case Hardness
	Derandomization from PRGs

