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1 ACY lower bounds

Recall: AC? is the set of languages decidable by a family of constant-depth circuits with unbounded
fan-in: the allowed gates are V, A, —.

Theorem 1.1 (Razborov-Smolensky). MAJORITY ¢ AC°.

We'll use F4 and {0,1}" interchangeably in this proof. We define the Hamming weight |z| as
the number of 1s in z.

Plan for proof: We will show that there is a weakness in AC® which is not in MAJORITY.
Specifically, we shall show low degree approximators exist for all languages computed by ACY, but
that there are no low-degree approximators for MAJORITY.

Let P, 4 = {n-variate polynomials over [ of degree < d}. Note that we have 22 = z for any
x € Fa. So we will be working with multi-linear polynomials, i.e. any occurrence of a variable has
degree at most 1. Some examples are x1 + x2 + - -+ + =, and 122 + x3x5. A non-example is xlac%.

Definition 1.2. Let U, denote the uniform distribution on bitstrings of length n.
Definition 1.3. A function f:{0,1}" — {0,1} e-approximates g : {0,1}" — {0,1} if

Pr [f(z) =g(z)] 21—

x~Up

Definition 1.4 (Probabilistic Polynomial). A distribution P on P, 4 is a probabilistic polynomial
of degree < d.

Instead of thinking about a function f that e-approximates g, it is easier to think about the
following notion.

Definition 1.5 (Probabilistic pointwise approximation). A probabilistic polynomial P approxi-
mates g : {0,1}" — {0,1} if for all z € {0,1}",

Pr[P(z) =g(z)] 2 1 e

Claim 1.6. Suppose g has an € probabilistic pointwise approzimator P of degree d. Then 3f € P, 4
that e-approximates g.

Proof. By definition, we know that

pgp[lP(r):g(r)] >1—e¢

for all x € {0,1}". Thus,

mf\%n p@'P[lp(m‘):g(I)] Z 1 — €
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We can switch the expectation,

E B Mr@=gw] 21— ¢

Then, we know that 3p € supp(P) such that Pry[p(z) = g(z)] > 1 —e.

Fact 1.7. Any function f:{0,1}" — {0,1} can be completely approzimated by p € Py, .

You can prove this, for example, by doing casework on the fo(z') = f(2/|0) and f1(z) = f(2'|1),
or by using polynomial interpolation.

1.1 Probabilistic Polynomials for AC®

We'll start with approximating AND and OR gates. Note that the output of a NOT gate can be
trivially approximated by subtracting the polynomial that approximates its argument from 1.
We can naively approximate the AND gate by:

/\(.Tl, ce ,Cﬂn) = P/\,na'l've(xla s "/En) = :l_[xZ

Although this is a complete approximation, it is quite high degree. So let’s try to find a better
one.

For S C [n], define Py g = 1 — ) ,.g(1 —x;). Sample S according to the following: for each
i € [n], place i in S independently and with probability % This then gives a distribution P over
polynomials.

We care the most about: z = 1", we get that Py s(z) =1—3% ..¢0=1= A(x). On the other
hand, in the case that x # 1™, then we want to find the probability that

Pr[Pp s(z) = A(z)] = Pr[P s(x) = 0].

Pick an i such that x; = 0. Now, sample S by deciding on the fate of z; last, i.e. S=TUX
where T is a fixed subset of [n] \ {i}, and X is either {} or {i}, with probability 3. Since x; = 0,
we know that 1 — x; = 1, so

Prg(z)=1-) (1-ux)

jeSs
1= ZjeT(l — ;) — 1, with probability %
1-— ZjeT(l —xj), with probability %

The branches in the last expression are equal to 0 and 1 in some order, so this shows that for
all z # 17, Prpuplp(z) = A(z)] = 5

However, this polynomial isn’t a satisfactory approxomation because it only detects the no-cases
with probabililty % We can “boost” its accuracy by taking k£ such polynomials and multiplying
them together, & la naive AND:

P/]f :HP/\,SZ‘ :P/\vn(Pn,Slﬂ"'Pn,sk)

This gives us a better approximator with accuracy 1 when x = 1™ and accuracy 1 — (%)k when
n#£ 1",
Taking k& = log(1/¢) gives a low-degree e-approximator for AND.
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The approximator for OR with similar properties can be found by composing De Morgan’s Law
with this entire construction.

Let’s try to compose these approximators inductively: suppose that our circuit C' is an OR
of ¢ inputs, which can be approximated by the polynomials P, for « = 1,...,¢/. We apply the
k-approximator for OR to these polynomials to get the approximator Po = Pf(PC17 ooy P,). We
know that deg Pc = k - max(deg F,).

We’ll use the union bound to evaluate the correctness of the new circuit: the bad events are
any of the ¢+ 1 polynomials (the inputs and the polynomial that evaluates the OR) being wrong,
and each bad event occurs with probability €. So the final probability of being wrong is at most
(L+1)€.

Every time that we reduce the depth of this circuit, we know that we reduce the degree of our
polynomial by d. Therefore, the degree of probabilistic polynomial approximating a circuit of ¢
layers has degree k!. We can use a similar argument on the correctness. In general, we have that
for a circuit of size s and depth ¢, there exists a probabilistic polynomial of degree is log (%) and
with error probability s - €.

Coalescing this all,

Theorem 1.8. For any circuit C € AC, with size s and depth t. There is a log'(s/€) degree
e-probabilistic polynomial approximator.
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