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1 AC0 lower bounds

Recall: AC0 is the set of languages decidable by a family of constant-depth circuits with unbounded
fan-in: the allowed gates are ∨,∧,¬.

Theorem 1.1 (Razborov-Smolensky). MAJORITY /∈ AC0.

We’ll use Fn
2 and {0, 1}n interchangeably in this proof. We define the Hamming weight |x| as

the number of 1s in x.
Plan for proof : We will show that there is a weakness in AC0 which is not in MAJORITY.

Specifically, we shall show low degree approximators exist for all languages computed by AC0, but
that there are no low-degree approximators for MAJORITY.

Let Pn,d = {n-variate polynomials over Fn
2 of degree ≤ d}. Note that we have x2 = x for any

x ∈ F2. So we will be working with multi-linear polynomials, i.e. any occurrence of a variable has
degree at most 1. Some examples are x1 + x2 + · · ·+ xn and x1x2 + x3x5. A non-example is x1x

2
2.

Definition 1.2. Let Un denote the uniform distribution on bitstrings of length n.

Definition 1.3. A function f : {0, 1}n → {0, 1} ϵ-approximates g : {0, 1}n → {0, 1} if

Pr
x∼Un

[f(x) = g(x)] ≥ 1− ϵ.

Definition 1.4 (Probabilistic Polynomial). A distribution P on Pn,d is a probabilistic polynomial
of degree ≤ d.

Instead of thinking about a function f that ϵ-approximates g, it is easier to think about the
following notion.

Definition 1.5 (Probabilistic pointwise approximation). A probabilistic polynomial P approxi-
mates g : {0, 1}n → {0, 1} if for all x ∈ {0, 1}n,

Pr
P
[P(x) = g(x)] ≥ 1− ϵ

Claim 1.6. Suppose g has an ϵ probabilistic pointwise approximator P of degree d. Then ∃f ∈ Pn,d

that ϵ-approximates g.

Proof. By definition, we know that

E
p∼P

[1P (x)=g(x)] ≥ 1− ϵ

for all x ∈ {0, 1}n. Thus,

E
x∼Un

E
p∼P

[1P (x)=g(x)] ≥ 1− ϵ

1
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We can switch the expectation,

E
p∼P

E
x∼Un

[1P (x)=g(x)] ≥ 1− ϵ

Then, we know that ∃p ∈ supp(P) such that Prx[p(x) = g(x)] ≥ 1− ϵ.

Fact 1.7. Any function f : {0, 1}n → {0, 1} can be completely approximated by p ∈ Pn,n.

You can prove this, for example, by doing casework on the f0(x
′) = f(x′|0) and f1(x

′) = f(x′|1),
or by using polynomial interpolation.

1.1 Probabilistic Polynomials for AC0

We’ll start with approximating AND and OR gates. Note that the output of a NOT gate can be
trivially approximated by subtracting the polynomial that approximates its argument from 1.

We can näıvely approximate the AND gate by:

∧(x1, . . . , xn) ⇒ P∧,näıve(x1, . . . , xn) =
∏

xi

Although this is a complete approximation, it is quite high degree. So let’s try to find a better
one.

For S ⊆ [n], define P∧,S = 1 −
∑

i∈S(1 − xi). Sample S according to the following: for each
i ∈ [n], place i in S independently and with probability 1

2 . This then gives a distribution P over
polynomials.

We care the most about: x = 1n, we get that P∧,S(x) = 1−
∑

i∈S 0 = 1 = ∧(x). On the other
hand, in the case that x ̸= 1n, then we want to find the probability that

Pr[P∧,S(x) = ∧(x)] = Pr[P∧,S(x) = 0].

Pick an i such that xi = 0. Now, sample S by deciding on the fate of xi last, i.e. S = T ∪X
where T is a fixed subset of [n] \ {i}, and X is either {} or {i}, with probability 1

2 . Since xi = 0,
we know that 1− xi = 1, so

P∧,S(x) = 1−
∑
j∈S

(1− xj)

=

{
1−

∑
j∈T (1− xj)− 1, with probability 1

2

1−
∑

j∈T (1− xj), with probability 1
2

The branches in the last expression are equal to 0 and 1 in some order, so this shows that for
all x ̸= 1n, Prp∼P [p(x) = ∧(x)] = 1

2
However, this polynomial isn’t a satisfactory approxomation because it only detects the no-cases

with probabililty 1
2 . We can “boost” its accuracy by taking k such polynomials and multiplying

them together, à la näıve AND:

P k
∧ =

∏
P∧,Si = P∧,n(Pn,s1 , . . . Pn,sk)

This gives us a better approximator with accuracy 1 when x = 1n and accuracy 1−
(
1
2

)k
when

n ̸= 1n.
Taking k = log(1/ϵ) gives a low-degree ϵ-approximator for AND.
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The approximator for OR with similar properties can be found by composing De Morgan’s Law
with this entire construction.

Let’s try to compose these approximators inductively: suppose that our circuit C is an OR
of ℓ inputs, which can be approximated by the polynomials Pci for i = 1, . . . , ℓ. We apply the
k-approximator for OR to these polynomials to get the approximator PC = P k

∨(Pc1 , . . . , Pcℓ). We
know that degPC = k ·max(degPci).

We’ll use the union bound to evaluate the correctness of the new circuit: the bad events are
any of the ℓ+ 1 polynomials (the inputs and the polynomial that evaluates the OR) being wrong,
and each bad event occurs with probability ϵ′. So the final probability of being wrong is at most
(ℓ+ 1)ϵ′.

Every time that we reduce the depth of this circuit, we know that we reduce the degree of our
polynomial by d. Therefore, the degree of probabilistic polynomial approximating a circuit of t
layers has degree kt. We can use a similar argument on the correctness. In general, we have that
for a circuit of size s and depth t, there exists a probabilistic polynomial of degree is logt

(
1
ϵ

)
and

with error probability s · ϵ.
Coalescing this all,

Theorem 1.8. For any circuit C ∈ AC0, with size s and depth t. There is a logt(s/ϵ) degree
ϵ-probabilistic polynomial approximator.
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