
Computational Complexity of Matrix Multiplication

Andy He and Evan Williams

CS 6810 Fall 2023

Abstract

This survey provides an overview of the computational complexity of matrix multiplication, a
pivotal operation in computational disciplines. It begins with an introduction to the fundamental
principles of matrix multiplication and progresses through a series of influential works that have
significantly advanced this field. Key highlights include an examination of Strassen’s algorithm, Bini’s
contributions, Schonhage’s methods, and the innovative laser method by Copperfield and Winograd.
Each of these works is explored in terms of its impact on reducing computational complexity and
improving efficiency. Additionally, the survey addresses the trade-offs inherent in algorithm design,
particularly balancing computational speed with resource usage. It concludes with insights into how
these seminal works continue to influence contemporary algorithm development and the future of
matrix multiplication complexity.

1 Introduction

Algebraic complexity theory is the study of computation using algebraic models - namely, algebraic
circuits. In this model, the inputs are variables x1, ..., xn and computations are performed using the
arithmetic operations ×, +, and can have constants from a field F. The output of an arithmetic circuit
is a polynomial in the input variables. The complexity measures associated with such circuits are size
and depth, which represent the number of operations and the maximal distance between an input and
output, respectively.

The study of algebraic complexity theory is largely concerned with two types of tasks: proving lower
bounds on the computational complexity of algebraic problems and developing techniques to construct
fast algorithms for computational problems with an algebraic structure. In this survey, we focus on the
former with respect to an important computational problem: matrix multiplication. The multiplication
of two n×n matrices, using the default algorithm, takes O(n3) operations. We will show how techniques
developed over the past few decades can be used to construct an algorithm that multiplies two n × n
matrices over a field F in O(n2.38) time.

1.1 The Exponent of Matrix Multiplication

For the task of computing the matrix product of two n×n matrices A and B with entries in the field F,
we assume that the 2n2 entries aij and bij are given as input and we want to compute the value:

cij =

n∑
k=1

aikbkj

corresponding to the entry in the i-th row and j-th column of the product C = AB for all i, j ∈ 1...n.
Consider that the computational complexity of this problem is O(nα).

Definition 1.1 (Exponent of Matrix Multiplication) Let mam(n) be the size of the smallest arith-
metic circuit computing the matrix product of two n× n matrices. Then, the exponent of matrix multi-
plication ω is defined as:

ω = inf{α : mam(n) = O(nα}

From the trivial algorithm, we know that ω ≤ 3. Further, since there must be n2 entries in the output,
there cannot be any fewer operations than this in total matrix multiplication, so we have that 2 ≤ ω ≤ 3.

1

2 Bilinear Complexity Theory

2.1 Strassen’s Algorithm

Strassen’s algorithm improves on the naive matrix multiplication algorithm through a divide-and-conquer
approach. The key insight is that multiplying two n × n matrices can be done using only seven multi-
plications as opposed to the eight required by the trivial algorithm. Consider the multiplication of two
2× 2 matrices:

1. First compute the following seven terms:

m1 = a11 · (b12 − b22)

m2 = (a11 + a12) · b22
m3 = (a21 + a22) · b11
m4 = a22 · (b21 − b11)

m5 = (a11 + a22) · (b11 + b22)

m6 = (a12 − a22) · (b21 + b22)

m7 = (a11 − a21) · (b11 + b12)

2. Then, output:

c11 = −m2 +m4 +m5 +m6

c12 = m1 +m2

c21 = m3 +m4

c22 = m1 −m3 +m5 −m7

Strassen’s algorithm can be applied recursively to compute the product of two 2k × 2k matrices for any
k ≥ 1. If the given matrices are not of size 2k × 2k, we simply zero-pad the input matrices to reach the
next highest power of 2. The algorithm takes advantage of blocking, a common technique in numerical
linear algebra in which we split a given matrix into four equally-sized sub-matrices:

M =

[
A B
C D

]
Analyzing the complexity of recursion we have that:

T (n) ≤ 7T (
n

2
) + cn2

=

log2 n∑
i=1

7i((
1

2
)in)2

=

log2 n∑
i=1

7i(
12i

22i
)n2

= n2
log2 n∑
i=1

(
7

4
)i

= O(n2(
7

4
)log2 n)

= O(n2.80735...)

In other words, Strassen showed that ω ≤ 2.80735.

2.2 Bilinear Algorithms

A bilinear algorithm is an algebraic algorithm that proceeds in two steps. First, we compute t products
of the form:

m1 = (linear combination of aij ’s)× (linear combination of bij ’s)

...

mt = (linear combination of aij ’s)× (linear combination of bij ’s)

2

Then, each entry of the product cij is computed by linear combinations of m1, ...,mt. The integer t is
called the bilinear complexity of this algorithm. Strassen’s algorithm is just a bilinear algorithm that
computes the product of two 2× 2 matrices with bilinear complexity t = 7. In fact, Strassen’s approach
can be generalized to any bilinear algorithm for matrix multiplication. Let Aik be an m × n matrix
and Bkj be a n × p matrix. Then the elementary formula for matrix multiplication C = AB can be
represented by the following np bilinear forms:

cij =

n∑
k=1

aikbkj

one for each entry in the product. This gives us the following proposition:

Proposition 2.1 Let n be a positive integer. Suppose that there exists a bilinear algorithm that computes
the product of two n× n matrices with bilinear complexity t. Then,

ω ≤ logn(t)

To prove this proposition we will need to build up some machinery relating to bilinear maps.

2.3 Bilinear Maps

Definition 2.2 Let U , V , W be vector spaces over a field F. A bilinear map is a map: ϕ : U×V →W
satisfying:

ϕ(λ11u1 + λ12u2, λ21v1 + λ22v2) =
∑
i,j≤2

ϕ(ui, vj)

for all λi,j ∈ F, ui ∈ U , vj ∈ V .

Given this definition, it is easy to see that matrix multiplication is really a bilinear map.

Definition 2.3 Let ϕ : U × V → W be a bilinear map over field F. For i ∈ 1...r, let fi ∈ U∗, gi ∈ V ∗,
wi ∈W be such that:

ϕ(u, v) =

r∑
i=1

fi(u)gi(v)wi

for all u ∈ U , v ∈ V . Then, (f1, g1, wi; ...; fr, gr, wr) is called a bilinear algorithm of length r for ϕ.

Definition 2.4 The length of the shortest bilinear algorithm for ϕ is called the rank of ϕ and is denoted
R(ϕ).

Let’s rewrite Strassen’s algorithm as a bilinear algorithm:

• f1 = A11 +A22, g1 = B11 +B22

• f2 = A21 +A22, g2 = B11

• f3 = A11, g3 = B12 −B22

• f4 = A22, g4 = −B11 +B21

• f5 = A11 +A12, g5 = B22

• f6 = −A11 +A21, g6 = B11 +B12

• f7 = A12 −A22, g7 = B21 +B22

w1 =

(
1 0
0 1

)
, w2 =

(
0 0
0 −1

)
, w3 =

(
1 1
0 0

)
, w4 =

(
0 0
1 1

)
,

w5 =

(
−1 0
−1 0

)
, w6 =

(
0 0
0 1

)
, w7 =

(
1 0
0 0

)
.

3

Thus, the rank of the bilinear algorithm computing 2 × 2 matrix multiplication is at most 7. For the
trivial algorithm, we have that the rank is at most 8. We denote the problem of multiplying an m × n
matrix by a n× p matrix as ⟨m,n, p⟩. So we have that:

R(⟨2, 2, 2⟩) ≤ 2

Next, we’ll show that the rank of a concise bilinear map is greater than max(dim(U), dim(V), dim(W)).

Definition 2.5 A bilinear map is concise if and only if the left kernel {u ∈ U |ϕ(u, v) = 0∀v ∈ V } = 0
and the right kernel {v ∈ V |ϕ(u, v) = 0∀u ∈W} = 0 and if the span of ϕ(U, V) =W .

Lemma 2.6 The rank of a concise bilinear map is greater than max(dim(U), dim(V), dim(W)).

Proof. If the rank of a concise bilinear map is less than the dimension of U then the fi do not form a
basis for U∗. So one can always find a non-zero u ∈ U such that fi(u) = 0 for all fi, and thus ϕ will
have a non-zero kernel, contradicting the fact that the bilinear map is concise. An analogous argument
holds true for V . If the rank of a bilinear map is less than the dimension of W , then the dimension of
the image of ϕ(U, V) will be less than the dimension space of W , also contradicting conciseness. ■

We will continue to work with rank thorughout the survey, as it is better behaved than the number
of operations. We define ω in terms of rank:

Proposition 2.7 For every field F, we have:

ω(F) = inf{α ∈ R|R(⟨h, h, h⟩) = O(hα)}

Proof. Using a bilinear algorithm, it can be shown that mam(mi+1) is:

r ·mam(mi) + cm2i

for some c that depends on m and r. Solving the recurrence gives us:

mam(mi) ≤ αri + βm2i

where α = mam(1) +m2c/(r−m2) and β = −m2c/(r−m2), which yields mam(mi) = O(ri). Manipu-
lating logs and plugging in the definition of ω gives us the desired result. ■

Lemma 2.8 The rank is invariant when permuting the sizes of matrices. i.e.,

R(⟨e, h, l⟩) = R(⟨h, l, e⟩) = R(⟨l, e, h⟩)

The proof of this lemma will require us to introduce new notation.

2.4 Tensors

Fact 2.9 If U , V , W are vector spaces over a field F, there exists a unique isomorphism U∗⊗V ∗⊗W →
Bil(U, V ;W) which sends f ⊗ g ⊗ w to the bilinear map (u, v) → f(u)g(v)w.

We’ll omit this proof to focus on more interesting results, but this allows us to construct a tensor in
U∗ ⊗ V ∗ ⊗W instead of an explicit map.

Definition 2.10 Consider three finite-dimensional vector spaces U , V and W over the field F. Take
a basis {x1, . . . , xdim(U)} of U , a basis {y1, . . . , ydim(V)} of V , and a basis {z1, . . . , zdim(W)} of W . A
tensor over (U, V,W) is an element of U ⊗ V ⊗W or, equivalently, a formal sum

T =

dimU∑
u=1

dimV∑
v=1

dimW∑
w=1

duvw xu ⊗ yv ⊗ zw

with coefficient duvw ∈ F for each (u, v, w) ∈ {1, . . . ,dim(U)} × {1, . . . ,dim(V)} × {1, . . . ,dim(W)}.

It is now possible to correspond matrix multiplication and tensors.

4

Definition 2.11 The tensor corresponding to the multiplication of an m× n matrix by an n× p matrix
is

m∑
i=1

p∑
j=1

n∑
k=1

aik ⊗ bkj ⊗ cij .

This tensor is denoted ⟨m,n, p⟩.

Let T be a 3-dimensional tensor (ti,j,k) where i, j, k vary over a finite-index cube. A series of bilinear
algorithms can be aggregated as a 3-dimensional tensor where each ”slice” of the tensor represents a
computation for cij in matrix multiplication. The tensor T can thus be decomposed into a sum of r
simpler tensors. We denote this decomposition as:

T =

r∑
s=1

ui ⊗ vi ⊗ wi

where ui, vi, and wi are vectors and ⊗ denotes their tensor product. Thus, r is the rank of the ten-
sor decomposition. Decompositions of rank r correspond to matrix multiplication algorithms with r
multiplications. We use R(⟨m,n, p⟩) to denote the rank of the minimal tensor decomposition. We now
have a proof for Lemma 2.8. It is easy to see that the rank of T is invariant under permutation of the
coordinates, hence the rank of ϕ is also invariant under permutation. ■

We can see now that Strassen’s algorithm can also be formulated as a tensor decomposition:

⟨2, 2, 2⟩ = a11 ⊗ (b12 − b22)⊗ (c12 + c22)

+ (a11 + a12)⊗ b22 ⊗ (−c11 + c12)

+ (a21 + a22)⊗ b11 ⊗ (c21 − c22)

+ a22 ⊗ (b21 − b11)⊗ (c11 + c21)

+ (a11 + a22)⊗ (b11 + b22)⊗ (c11 + c22)

+ (a12 − a22)⊗ (b21 + b22)⊗ c11

+ (a11 − a21)⊗ (b11 + b12)⊗ (−c22)

We’ll now examine an important theorem:

Theorem 2.12 Let m, n, p, and t be four positive integers. If R(⟨m,n, p⟩) ≤ t, then:

(mnp)ω/3 ≤ t

Proof. Recall that rank is multiplicative and that matrix-multiplication tensors are symmetric in m, n,
and p. Thus, R(⟨mnp,mnp,mnp⟩) = R(⟨m,n, p⟩)3. The proof then follows directly from Proposition
2.1. ■

2.5 Trilinear Aggregation

Until Pan discovered this method, nobody was able to improve upon Strassen’s algorithm. We have the
following crucial observation:

Lemma 2.13 Matrix multiplication is equivalent to finding the trace of the product of three matrices A,
B, and C of size m× n, n× p, and p×m, respectively.

Proof. Let A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×m. The trace of ABC is given by:

Tr(ABC) =

m∑
i=1

n∑
j=1

p∑
k=1

AijBjkCki

Set Cki to 1 and the other entries of C to 0. Then, we find
∑n

i=1AijBjk, or ABik. Thus, we have that
the problem of matrix multiplication is embedded in the problem of finding the trace of three matrices.

5

In the reverse direction, if the rank of matrix multiplication of two matrices A and B is r, then the
product ABC can be written as: ’

r∑
i=1

fi(A)gi(B)wiC

for some fi ∈ Fm×n∗
, gi ∈ Fm×p∗

, wi ∈ Fp×m. To find the trace of this product, we have that:

Tr

r∑
i=1

fi(A)gi(B)wiC =

r∑
i=1

fi(A)gi(B)Tr(wiC)

where we have that the function Tr(wiC) is in the dual of Fp×m, so the overall problem of finding the
trace of the product of three matrices is a trilinear map of the form:

r∑
i=1

fi(A)gi(B)hi(C)

where hi is found by taking the trace of each product of wiC. So the rank of the two problems is equal. ■

The equation for the trace of a matrix given above is a trilinear map ϕ : U × V × W → K. The
rank r is the minimal number for which fi ∈ U∗, gi ∈ V ∗, hi ∈W ∗:

ϕ(u, v, w) =

r∑
i=1

fi(A)gi(B)hi(C)

Recall the trivial algorithm for finding the trace of the product of three matrices:∑
i,j,k

aijbjkcki

Each term in this sum is called desirable. Consider the product:

(aij + ak1ii)(bjk + biij1)(cki + cj1k1
)

which is equal to:

aijbjkcki + ak1ibi1jcj1k1 + ak1ibi1jcjk + aijbi1jcj1k1 + aijbjkcj1k1 + ak1ibjkcj1k1 + aijbjkcj1k1.

Observe that i1, j1, and ki are functions of i, j, and k, respectively. In other words, we can select i1, j1,
k1 and i, j, k such that all possible combinations of i, j, and k in the desired range are obtained. We
call terms (aij + ak1ii), (bjk + biij1), and (cki + cj1k1

) aggregates and the process of collecting together
undesirable terms uniting.

Pan used this result to create an asymptotically faster algorithm than Strassen’s. Assume that we
intend to multiiply two n× n matrices, where n = 2s is even. Summing over the set:

S1 = {(i, j, k) | 0 ≤ j < k ≤ s− 1} ∪ {(i, j, k) | 0 ≤ k < j ≤ i ≤ s− 1}

we can obtain the trace of the product of three matrices in n3−4n
3 + 6n2 operations. Letting n = 70, we

have that ω ≤ log70 143640 = 2.79512, which is lower than Strassen’s.

3 Approximate Bilinear Algorithms

3.1 Border Rank and Degeneration

In 1979, Bini introduced arbitrary precision approximation (APA) methods for matrix multiplication.
More explicitly, he discovered that one could obtain algorithms with fewer scalar multiplications to com-
pute at the cost of being only close approximations of the ”correct” result. Let λ be an indeterminate
and F[λ] be the ring of polynomials in λ with coefficients in the field F.

6

Definition 3.1 (Border Rank) Let T be a tensor over (U, V,W). The border rank of T , denoted R(T),
is the minimal integer t for which there exists an integer c ≥ 0 and a tensor T ′′ such that T can be written
as:

λcT =

t∑
s=1

dim(U)∑
u=1

αsuxu

⊗

dim(V)∑
v=1

βsvyv

⊗

dim(W)∑
w=1

γswzw

+ λc+1T ′′

for some constants αsu, βsv, γsw in F[λ]

In order to motivate the notion of border rank, consider F = R. Then it can happen that the limit of a
converging sequence of tensors has a higher rank than all of its approximants. This would normally be
described by means of a variable λ representing ”small numbers”. In this setting λ is an extra indeter-
minate over F.

We call the representation:

r∑
i=1

fi(λ) + gi(λ) + hi(λ) = λht+O(λh+1)

an approximate decomposition of order h ≥ 0 of length r of a tensor T or its trilinear form ψ. This
is also called an approximate algorithm for ψ. The minimal r of this kind is the approximate rank
of order h. The minimum over all possible values of h is the border rank. Using this method, Bini
found an approximation for the multiplication of two 3× 3 matrices that takes only 21 multiplications,
as opposed to the 23 required by the exact rank:

F1(λ) = (a11 + λa12)(λb11 + b21)c11

+ (a21 + λa22)(λb12 + b22)c22

+ (a31 + λa32)(λb13 + b23)c33

− a11(b21 + b31)(c11 + c12 + c13)

− a21(b22 + b32)(c21 + c22 + c23)

− a31(b23 + b33)(c31 + c32 + c33)

+ (a11 + λa22)(b21 − λb12)c12

+ (a21 + λa12)(b22 − λb11)c21

+ (a11 + λa32)(b21 − λb13)c13

+ (a31 + λa12)(b23 − λb11)c31

+ (a21 + λa32)(b22 − λb13)c23

+ (a31 + λa22)(b23 − λb12)c32

+ (a31 + λa22)(b23 − λb12)c32

+ (a11 + λa23)(b31 + λb12)(c12 + λc21)

+ (a21 + λa13)(b32 + λb11)(c21 + λc12)

+ (a11 + λa33)(b31 + λb13)(c13 + λc31)

+ (a31 + λa13)(b33 + λb12)(c31 + λc13)

+ (a21 + λa33)(b32 + λb13)(c23 + λc32)

+ (a31 + λa23)(b33 + λb12)(c32 + λc23)

+ (a11 + λa13)b31(c11 − λc31 − λc21)

+ (a21 + λa23)b32(c22 − λc32 − λc12)

+ (a31 + λa33)b33(c33 − λc13 − λc23)

= λ2(Trace(ABC) + λG(λ)).

Clearly, R(T) ≤ R(T) for any tensor T . Further, border rank is also invariant to cyclic permutation and
we also have that:

R(T ⊗ T ′) = R(T)×R(T ′)

7

Consider the example Bini produced:

TBini =
∑

1≤i,j,k≤2
(i,j,k)̸=(2,2)

aik ⊗ bkj ⊗ cij

= a11 ⊗ b11 ⊗ c11 + a12 ⊗ b21 ⊗ c11 + a11 ⊗ b12 ⊗ c12 + a12 ⊗ b22 ⊗ c12

+ a21 ⊗ b11 ⊗ c21 + a21 ⊗ b12 ⊗ c22

This corresponds exactly to a matrix product of two 2× 2 matrices where one entry in the first matrix
is zero. It can be shown that R(TBini) = 6. Bini showed that R(TBini) ≤ 5 by exhibiting the identity:

λTBini = T ′ + λ2T ′′

where we have that:

T ′ = (a12 + λa11)⊗ (b12 + λb22)⊗ c12

+ (a21 + λa11)⊗ b11 ⊗ (c11 + λc21)

− a12 ⊗ b12 ⊗ (c11 + c12 + λc22)

− a21 ⊗ (b11 + b12 + λb21)⊗ c11

+ (a12 + a21)⊗ (b12 + λb21)⊗ (c11 + λc22)

and:

T ′′ = a11 ⊗ b22 ⊗ c12 + a11 ⊗ b11 ⊗ c21 + (a12 + a21)⊗ b21 ⊗ c22

Proposition 3.2 There exists a constant α such that R(T) ≤ αR(T) for any tensor T .

Combining two copies of TBini, we have that:

R(⟨3, 3, 2⟩) ≤ 10

Recall that we have the following two properties for border rank:

• R(T ⊗ T ′) ≤ R(T)×R(T ′)

• R(⟨m,n, p⟩) = R(⟨m, p, n⟩) = R(⟨n,m, p⟩) = R(⟨n, p,m⟩) = R(⟨p,m, n⟩) = R(⟨p, n,m⟩)

So we have that:

R(⟨12, 12, 12⟩) ≤ 1000

and thus:

R(⟨12, 12, 12⟩) ≤ α× 1000

by Proposition 3.2. Unfortunately this does not yield an interesting bound on ω. Instead, consider the
tensor:

⟨12, 12, 12⟩⊗N ≈ ⟨12N , 12N , 12N ⟩

for a large N . This gives us:

R(⟨12N , 12N , 12N ⟩) ≤ α×R(⟨⟩12N , 12N , 12N) ≤ α× 1000N

Using Theorem 2.12, we have:

ω ≤ log12(α
1
N × 1000)

≤ log12(1000)

< 2.78

where we take the limit as N → ∞. This is precisely the bound Bini obtained.

This analysis suggests that when deriving an upper bound on ω, it suffices to consider border rank
instead of rank. Indeed, we have the following theorem.

8

Theorem 3.3 Let m, n, p, and t be four positive integers. If R(⟨m,n, p⟩) ≤ t, then (mnp)ω/3 ≤ t

Proof. Since we may symmetrize, we show this for e = h = l = n. By definition, we have that:

R(⟨n, n, n⟩) ≤ t

And from above:

R(⟨nN , nN , nN ⟩) ≤ tN

And again using Theorem 2.12 we attain:

nωN ≤ (N + 1)2tN

where letting N grow and taking the N -th roots achieves the desired result. ■

A lower bound on the border rank may be obtained by considering the dimensions of the spaces U ,
V , and W .

Theorem 3.4 Let the matrix product ϕ : U × V → W be a degeneration of order q of ϕ′ with border
rank R. Then,

R ≥ max{dim(U), dim(V), dim(W)}

Proof. We have that ϕ ≤ ϕ′ and that the border rank of ϕ is R. Raising ϕ to the N -th power, we find
that the border rank of ϕN is RN . Using the same result as before, we have that the exact rank of ϕN is
at most (N + 1)2RN . Since the rank of a bilinear map is greater than the maximum of the sizes of the
dimensions, it must be the case that:

max{dim(U), dim(V), dim(W)} ≤ (N + 1)2RN

Letting N tend to infinity and taking the N -th roots gives the desired result. ■

3.2 Additivity Conjecture for the Exact Rank

Fact 3.5 Border rank is non-additive:

R(ϕ1 + ϕ2) ̸= R(ϕ1) +R(ϕ2)

Schönhage used the Addivity Conjecture for the Exact Rank to derive a better bound for ω. The conjecture
states:

R(

N⊕
i=1

⟨mi, ni, pi⟩) =
N∑
i=1

R(⟨mi, ni, pi⟩)

The conjecture is unproven, but it is useful for deriving a bound on ω. It will later be shown how to
derive the same bound without relying on the unproven conjecture.

Theorem 3.6 The exponent of matrix multiplication ω ≤ 2.548 if the additivity conjecture holds

Proof. We begin by observing that exponentiating (e, 1, l)⊗ (1, h, 1) by N results in

N⊗
s=0

(
N

s

)
⊗ (es, hN−s, ls),

where the symbol ⊗ signifies that we are considering all distinct instances of the tensor product that
coincide in the value of s. By harnessing the border rank properties as introduced, it follows that

R

(
N⊗
s=0

(
N

s

)
⊗ (es, hN−s, ls)

)
> (1 + 2N)2(el + 1)N .

9

At this juncture, we utilize the additivity conjecture for the exact rank to deduce that

N∑
s=0

(
N

s

)
R
(
(es, hN−s, ls)

)
≤ (1 + 2N)2(el + 1)N .

Employing equation 1.5, we deduce

N∑
s=0

(
N

s

)
(el)s/3h(N−s)/3 ≤ (1 + 2N)2(el + 1)N ,

which, by extracting the s-th roots and considering the limit as s approaches infinity, simplifies to

elw/3 + hw/3 ≤ kn+ 1.

Setting e = l = 4 (and consequently h = 9), we acquire the sought-after result. ■

3.3 Schönhage’s Asymptotic Sum Inequality

As stated above, however, Schönhage found it possible to prove the same bound without relying on the
additivity conjecture for the exact rank. We state and prove the theorem:

Theorem 3.7 (Schönhage’s Asymptotic Sum Inequality) Let k, t be two positive integers, and let
m1, . . . ,mk, n1, . . . , nk, p1, . . . , pk be 3k positive integers. If

R

(
k⊕

i=1

(mi, ni, pi)

)
≤ t

then
k∑

i=1

(mi · ni · pi)ω/3 ≤ t.

Proof. Note that for some q ∈ N,
k⊕

i=1

(mi, ni, pi) ≤q (t),

this when raised to the Nth power, yields(
k⊕

i=1

(mi, ni, pi)

)N

≤(q−1)N+1 (tN),

and we deduce

R

(
k⊕

i=1

(mi, ni, pi)
N

)
≤ ((q − 1)N + 1)2tN .

Considering a vector µ = (µ1, . . . , µk) that satisfies
∑

i µi = N ,

R

(⊗
µ

k⊗
i=1

(mi, ni, pi)
µi

)
≤ ((q − 1)N + 1)2tN .

For every ε > 0, there is a constant cε ∈ N such that for all n,

R((n, n, n)) ≤ cεn
2+ε.

We choose P =
((

N
µ

)) 1
2+ε

so that

R((P, P, P)) ≤ cε

((
N

µ

))
.

10

This leads to the conclusion that the multiplication

k⊗
i=1

(Pmiµi , Pniµi , P piµi)

can be performed with fewer than cε((q− 1)N +1)2tN operations in k. For the ”U” matrix, we view the

elements as being products of
⊗k

i=1m
niµi

i matrices, and similarly for the ”V” and ”W” matrices, the

total number of
⊗k

i=1(mi, ni, pi)
µi matrix products is

≤ cε((q − 1)N + 1)2tN .

we see that

(P 3
k⊗

i=1

(minipi)
µi)1/3 ≤ cε((q − 1)N + 1)2tN .

After multiplying through by
((

N
µ

))− ε
2+ε

and utilizing the facts that
((

N
µ

))
≤ kN and that a/2 ≤ ⌈a⌉

to obtain ((
N

µ

) k⊗
i=1

(minipi)
µi

)1/3

≤ 2ωkω+εcε((q − 1)N + 1)2tN .

Summing over all feasible distributions of µ, we conclude(
k∑

i=1

(minipi)
µi

)1/3

N ≤
(
N + k − 1

k − 1

)ω

kω+εcε((q − 1)N + 1)2tN .

Taking the Nth roots and allowing N to approach infinity, we derive the result that

k∑
i=1

(minipi)
ω/3 ≤ sεt,

and as ε approaches 0, we obtain the desired result. ■

We now show how Schönhage proved the bound on ω. Consider the following tensor:

TScön =

3∑
i,j=1

ai ⊗ bi ⊗ ci +

4∑
i,j=1

vk ⊗ vk ⊗ w

Note that the first part is isomorphic to ⟨3, 1, 3⟩ and the second part is isomorphic to ⟨1, 4, 1⟩. The first
and second part do not share variables, so the sum is direct:

TSchön ≈ ⟨3, 1, 3⟩+ ⟨1, 4, 1⟩

Since R(⟨3, 1, 3⟩) = 9 and R(⟨1, 4, 1⟩) = 4, we immediately obtain that: R(TSchön) ≤ 13. Schönhage
attained R(TSchön) ≤ 10 by exhibiting the following decomposition:

ϵ2TSchon = T ′ + ϵ3T ′′

for:

T ′ = (α1 + ϵu1)⊗ (β1 + ϵv1)⊗ (w + ϵ2c11)

+ (α1 + ϵu2)⊗ (β2 + ϵv2)⊗ (w + ϵ2c12)

+ (α2 + ϵu3)⊗ (β1 + ϵv3)⊗ (w + ϵ2c21)

+ (α2 + ϵu4)⊗ (β2 + ϵv4)⊗ (w + ϵ2c22)

+ (α3 − ϵu1 − ϵu3)⊗ β1 ⊗ (w + ϵ2c31)

+ (α3 − ϵu2 − ϵu4)⊗ β2 ⊗ (w + ϵ2c32)

+ α1 ⊗ (β3 − ϵv1 − ϵv2)⊗ (w + ϵ2c13)

+ α2 ⊗ (β3 − ϵv3 − ϵv4)⊗ (w + ϵ2c23)

+ α3 ⊗ β3 ⊗ (w + ϵ2c33)

− (α1 + α2 + α3)⊗ (β1 + β2 + β3)⊗ w

11

and some tensor T ′′. Applying the asymptotic sum inequality to the TSchön gives:

9ω/3 + 4ω/3 ≤ 10

which implies ω ≤ 2.60. ■

4 Laser Method

We will now show how the techniques developed so far, together with a new approach called the laser
method can be used to obtain an upper bound of ω ≤ 2.38. This upper bound was obtained by Copper-
smith and Winograd.

4.1 A First Construction

Let q be a positive integer and consider three vector spaces U , V , and W of dimension q + 1 over some
field F. Takes a basis {x0, ..., xq} of U , {y0, ..., yq} of V , and z0, ..., zq of W . Consider the following
tensor:

Teasy = T 011
easy + T 101

easy + T 110
easy

where we have that:

T 011
easy =

q∑
i=1

x0 ⊗ yi ⊗ zi ≈ ⟨1, 1, q⟩,

T 101
easy =

q∑
i=1

xi ⊗ y0 ⊗ zi ≈ ⟨q, 1, 1⟩,

T 110
easy =

q∑
i=1

xi ⊗ yi ⊗ z0 ≈ ⟨1, q, 1⟩.

Observe:

λ3Teasy = T ′ + λ4T ′′

where:

T ′ =

q∑
i=1

λ(x0 + λxi)⊗ (y0 + λyi)⊗ (z0 + λzi)

−

(
x0 + λ2

q∑
i=1

xi

)
⊗

(
y0 + λ2

q∑
i=1

yi

)
⊗

(
z0 + λ2

q∑
i=1

zi

)
+ (1− qλ)x0 ⊗ y0 ⊗ z0.

and T ′′ is some tensor. So we have that R(Teasy) ≤ q + 2.

While the tensor Teasy is the sum of three parts, the sum is not direct because the parts share vari-
ables. The key insight made by Coppersmith and Winograd was that we can consider several copies of
Teasy to obtain the following result:

Theorem 4.1 For N large enough, the tensor T⊗N
easy can be converted into a direct sum of:

2(H(1
3 ,

2
3)−o(1))N

terms, each ismorphic to[
T 011
easy ⊗

N

3

]
⊗
[
T 101
easy ⊗

N

3

]
⊗
[
T 110
easy ⊗

N

3

]
≈
〈
q

N
3 , q

N
3 , q

N
3

〉
.

12

This gives us:

2(H(
1
3 ,

2
3)−o(1))N × q

Nω
3 ≤ R

(
T⊗N
easy

)
≤ (q + 2)N

so:

2H(
1
3 ,

2
3) × qω/3 ≤ q + 2

and thus:

ω ≤ 2.41

for q = 8.

4.2 A Second Construction

The second construction from Coppersmith and Winograd’s paper yields ω ≤ 2.387. Let q be a positive
integer and consider three vector spaces U , V , and W of dimension q+2 over some field F. Takes a basis
{x0, ..., xq} of U , {y0, ..., yq} of V , and z0, ..., zq of W . Consider the following tensor:

TCW = T 011
CW + T 101

CW + T 110
CW + T 002

CW + T 020
CW + T 200

CW

where we have:

T 011
CW =

q∑
i=1

x0 ⊗ yi ⊗ zi ≈ {1, 1, q},

T 101
CW =

q∑
i=1

xi ⊗ y0 ⊗ zi ≈ {1, q, 1},

T 110
CW =

q∑
i=1

xi ⊗ yi ⊗ z0 ≈ {q, 1, 1},

T 002
CW = x0 ⊗ y0 ⊗ zq+1 ≈ {1, 1, 1},
T 020
CW = x0 ⊗ yq+1 ⊗ z0 ≈ {1, 1, 1},
T 200
CW = xq+1 ⊗ y0 ⊗ z0 ≈ {1, 1, 1}

Observe that:

λ3TCW = T ′ + λ4T ′′

where we have:

T ′ =

q∑
i=1

λ(x0 + λxi)⊗ (y0 + λyi)⊗ (z0 + λzi)

− (x0 + λ2
q∑

i=1

xi)⊗ (y0 + λ2
q∑

i=1

yi)⊗ (z0 + λ2
q∑

i=1

zi)

+ (1− qλ)(x0 + λ3xq+1)⊗ (y0 + λ3yq+1)⊗ (z0 + λ3zq+1).

and T ′′ is some tensor. So we have R(TCW) ≤ q+2. Just as in the last construction, even though T ′ is a
sum of six parts, the sum is not direct, so we cannot directly use the asymptotic sum inequality. Again,
consider many copies of TCW .

Theorem 4.2 For any 0 ≤ α ≤ 1/3 and for large enough N , the tensor T⊗N
CW can be converted into a

direct sum of:

2(H(2
3−α,2α, 13−α)−o(1))N

terms, each isomorphic to:[
T 011
CW ⊗ αN

]
⊗
[
T 101
CW ⊗ αN

]
⊗
[
T 110
CW ⊗ αN

]
⊗
[
T 002
CW ⊗

(
1

3
− α

)
N
]
⊗
[
T 020
CW ⊗

(
1

3
− α

)
N
]
⊗
[
T 200
CW ⊗

(
1

3
− α

)
N
]

≈ ⟨αN,αN,αN⟩.

13

Theorem 4.2, via the asymptotic sum inequality, gives us:

2

(
H

(
2

3
− α, 2α,

1

3
− α

)
− o(1)

)
N × αNω ≤ R

(
T⊗N
CW

)
≤ (q + 2)N .

which gives us:

2H(
2
3−α,2α, 13−α) × qαω ≤ q + 2,

which yields:

ω ≤ 2.38719

for q = 6 and α = 0.3173.

5 Further Work

Since Coppersmith and Winograd achieved a bound of ω ≤ 2.3755 in 1990, we have not had many
substantial improvements in upper bounds for ω in the last thirty years. Notably, the best known upper
bound is ω ≤ 2.371552. Here is a summary of results from the past few decades: Interestingly, it was

Year Bound on omega Authors
1969 2.8074 Strassen
1978 2.796 Pan
1979 2.780 Bini, Capovani, Romani
1981 2.522 Schönhage
1981 2.517 Romani
1981 2.496 Coppersmith, Winograd
1986 2.479 Strassen
1990 2.3755 Coppersmith, Winograd
2010 2.3737 Stothers
2013 2.3729 Williams
2014 2.3728639 Le Gall
2020 2.3728596 Alman, Williams
2022 2.371866 Duan, Wu, Zhou
2023 2.371552 Williams, Xu, Xu, and Zhou

Table 1: Timeline of matrix multiplication exponent

shown that the laser method could not be used to show ω ≤ 2.3725, but Duan, Wu, and Zhou used a
new approach to the laser method that addressed what is called combination loss. They then showed
that addressing the laser method with combination loss could not show a bound better than ω ≤ 2.3078.

Other researchers put the matrix multiplication problem in a group theoretic context. Cohn, Kleinberg,
Szegedy, and Umans utiilized triples of subsets of finite groups which satisfy a disjointness property called
the triple product property (TPP). They also give conjectures that, if true, would imply that there are
matrix multiplication algorithms with essentially quadratic complexity.

Perhaps even more cutting edge, Google DeepMind developed a method to automatically find new
matrix multiplication algorithms through reinforcement learning. Alpha Tensor, as it has been coined,
is a system able to autonomously search for provably correct multiplication algorithms. The RL-agent
plays TensorGame: Given any tensor T we want to find a decomposition of T as a sum of R outer
products with R, which corresponds to the number of multiplications in the algorithm. This method has
been used to find surprisingly practical algorithms for matrix multiplication that achieve lower constants
than the work we’ve discussed in this survey.

6 Acknowledgements

We wanted to thank Eshan and Mohit for giving us the inspiration for this project, as well as for providing
resources to us in our initial stages of research. More broadly, we want to thank them for a wonderful

14

experience in CS 6810 this semester - we truly enjoyed the course this semester and thoroughly appreciate
your contributions to our learning!

7 References

• Strassen, Volker (1969). ”Gaussian Elimination is not Optimal”. Numer. Math. 13 (4): 354–356.
doi:10.1007/BF02165411. S2CID 121656251.

• Dario Andrea Bini; Milvio Capovani; Francesco Romani; Grazia Lotti (Jun 1979). ”O(n2.7799)
complexity for n × n approximate matrix multiplication”. Information Processing Letters. 8 (5):
234–235. doi:10.1016/0020-0190(79)90113-3.

• A. Schönhage (1981). ”Partial and total matrix multiplication”. SIAM Journal on Computing. 10
(3): 434–455. doi:10.1137/0210032.

• D. Coppersmith; S. Winograd (Mar 1990). ”Matrix multiplication via arithmetic progressions”.
Journal of Symbolic Computation. 9 (3): 251–280. doi:10.1016/S0747-7171(08)80013-2

• Stothers. ”On the Complexity of Matrix Multiplication”. https://www.maths.ed.ac.uk/sites/default/files/atoms/files/stothers.pdf

• Le Gall. ”Algebraic Complexity Theory and Matrix Multiplication”. http://francoislegall.com/LeGallISSAC14-
tutorial-handout.pdf

15

	Introduction
	The Exponent of Matrix Multiplication

	Bilinear Complexity Theory
	Strassen's Algorithm
	Bilinear Algorithms
	Bilinear Maps
	Tensors
	Trilinear Aggregation

	Approximate Bilinear Algorithms
	Border Rank and Degeneration
	Additivity Conjecture for the Exact Rank
	Schönhage's Asymptotic Sum Inequality

	Laser Method
	A First Construction
	A Second Construction

	Further Work
	Acknowledgements
	References

