Memory Bandwidth and Low Precision Computation

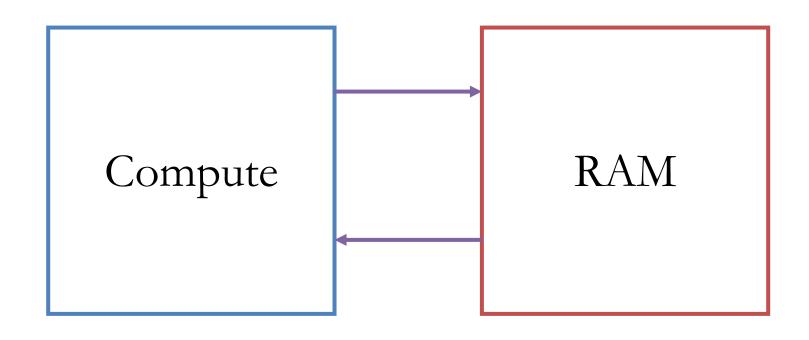
CS6787 Lecture 9 — Fall 2017

Memory as a Bottleneck

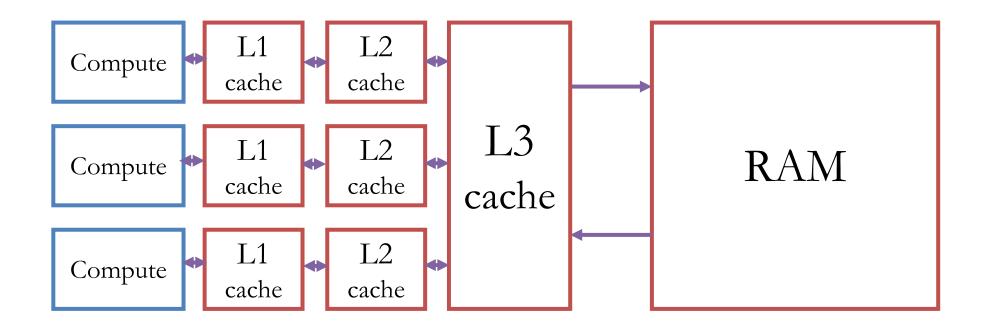
- So far, we've just been talking about compute
 - e.g. techniques to decrease the amount of compute by decreasing iterations
- But machine learning systems need to process huge amounts of data
- Need to store, update, and transmit this data

- As a result: **memory** is of critical importance
 - Many applications are memory-bound

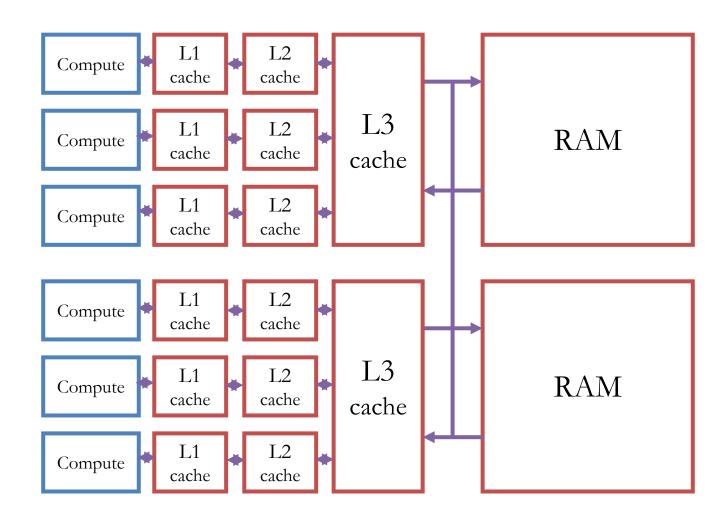
Memory: The Simplified Picture



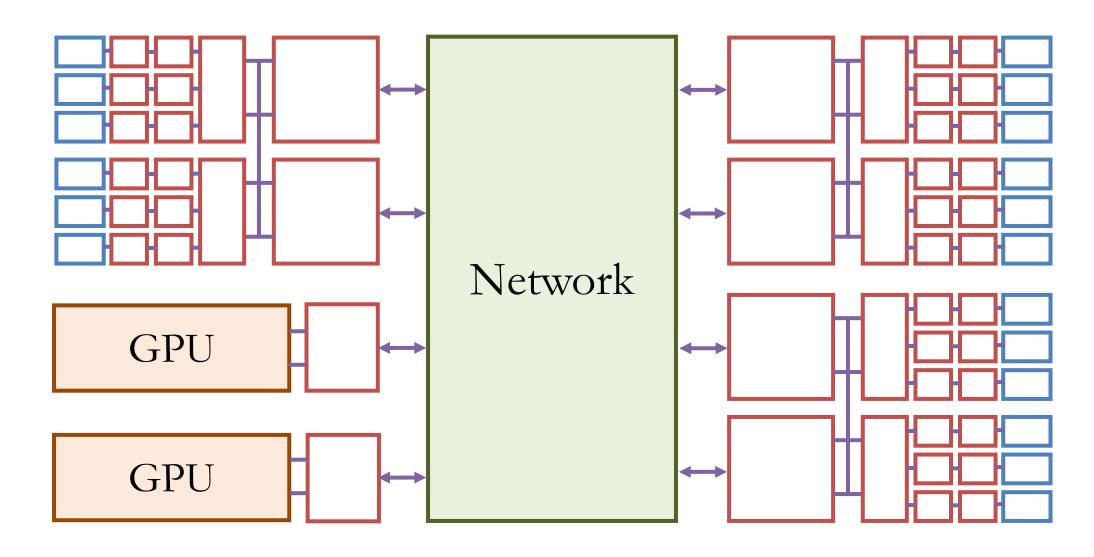
Memory: The Multicore Picture



Memory: The Multisocket Picture



Memory: The Distributed Picture



What can we learn from these pictures?

- Many more memory boxes than compute boxes
 - And even more as we zoom out

• Memory has a hierarchical structure

- Locality matters
 - Some memory is closer and easier to access than others
 - Also have standard concerns for CPU cache locality

What limits us?

Memory capacity

• How much data can we store locally in RAM and/or in cache?

Memory bandwidth

• How much data can we load from some source in a fixed amount of time?

Memory locality

• Roughly, how often is the data that we need stored nearby?

Power

• How much energy is required to operate all of this memory?

One way to help: Low-Precision Computation

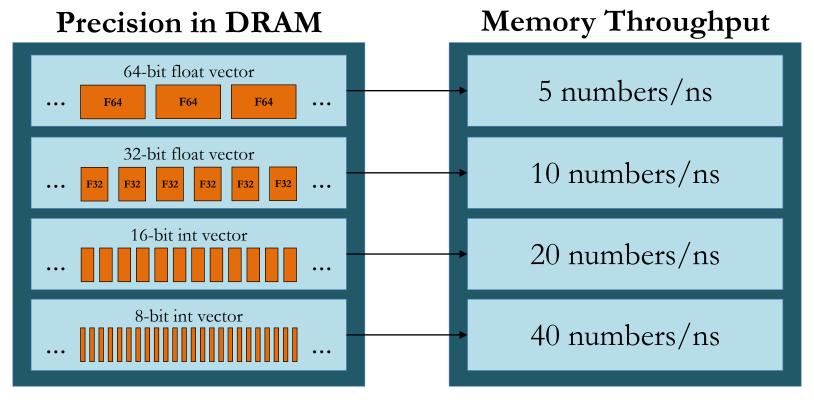
Low-Precision Computation

• Traditional ML systems use 32-bit or 64-bit floating point numbers

- But do we actually need this much precision?
 - Especially when we have inputs that come from noisy measurements
- Idea: instead use 8-bit or 16-bit numbers to compute
 - Can be either floating point or fixed point
 - On an FPGA or ASIC can use arbitrary bit-widths

Low Precision and Memory

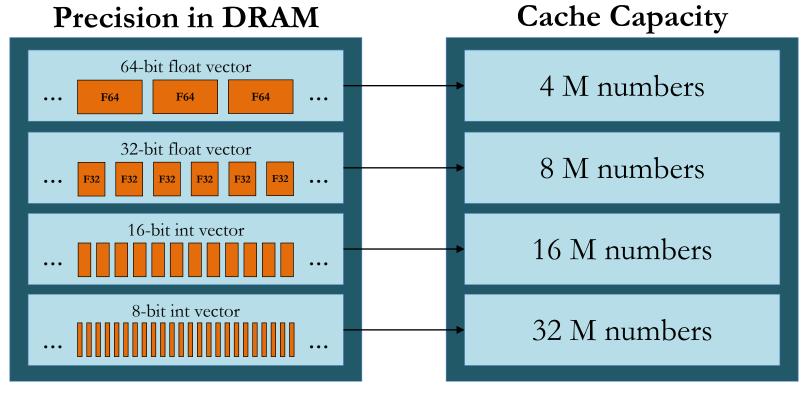
• Major benefit of low-precision: uses less memory bandwidth



(assuming ~40 GB/sec memory bandwidth)

Low Precision and Memory

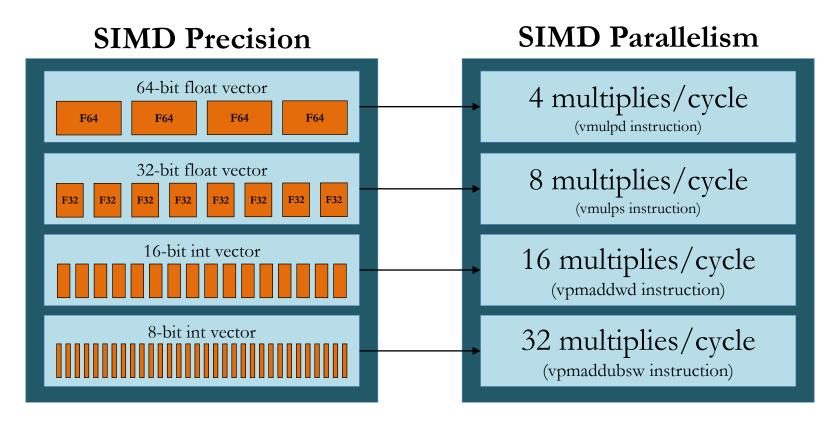
• Major benefit of low-precision: takes up less space



(assuming ~32 MB cache)

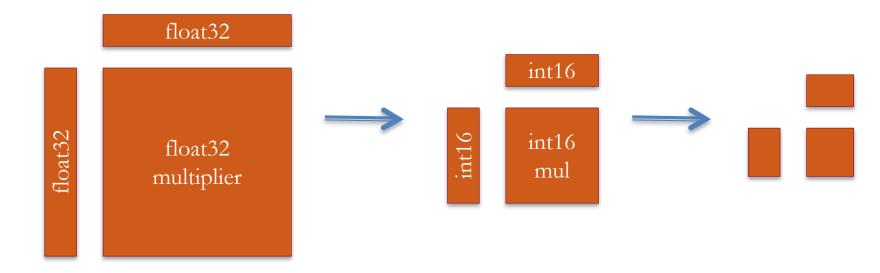
Low Precision and Parallelism

• Another benefit of low-precision: use **SIMD** instructions to get more parallelism on CPU

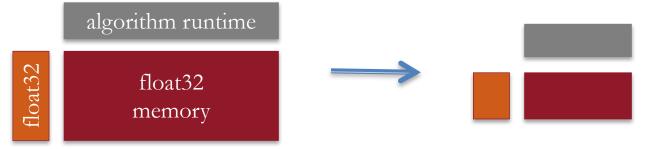


Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy



• Memory energy can also have quadratic dependence on precision



Effects of Low-Precision Computation

• Pros

- Fit more numbers (and therefore more training examples) in memory
- Store more numbers (and therefore larger models) in the cache
- Transmit more numbers per second
- Compute faster by extracting more parallelism
- Use less energy

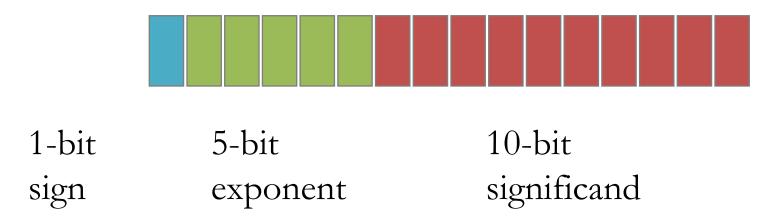
Cons

- Limits the numbers we can represent
- Introduces quantization error when we store a full-precision number in a low-precision representation

Ways to represent low-precision numbers

FP16/Half-precision floating point

• 16-bit floating point numbers



• Usually, the represented value is

$$x = (-1)^{\text{sign bit}} \cdot 2^{\text{exponent}-15} \cdot 1.\text{significand}_2$$

Arithmetic on half-precision floats

Complicated

- Has to handle adding numbers with different exponents and signs
- To be efficient, needs to be supported in hardware

Inexact

- Operations can experience overflow/underflow just like with more common floating point numbers, but it happens more often
- Can represent a wide range of numbers
 - Because of the exponential scaling

Half-precision floating point support

- Supported on some modern GPUs
 - Including new efficient implementation on NVIDIA Pascal GPUs

Pascal Hardware Numerical Throughput

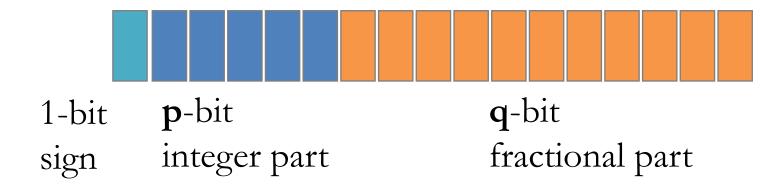
GPU	DFMA (FP64 TFLOP/s)	FFMA (FP32 TFLOP/s)	HFMA2 (FP16 TFLOP/s)	DP4A (INT8 TIOP/s)	DP2A (INT16/8 TIOP/s)
GP100 (Tesla P100 NVLink)	5.3	10.6	21.2	NA	NA
GP102 (Tesla P40)	0.37	11.8	0.19	43.9	23.5
GP104 (Tesla P4)	0.17	8.9	0.09	21.8	10.9

Table 1: Pascal-based Tesla GPU peak arithmetic throughput for half-, single-, and double-precision fused multiply-add instructions, and for 8- and 16-bit vector dot product instructions. (Boost clock rates are used in calculating peak throughputs. TFLOP/s: Tera Floating-point Operations per Second. TIOP/s: Tera Integer Operations per Second. https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/

• Good empirical results for deep learning

Fixed point numbers

• p + q + 1 —bit fixed point number

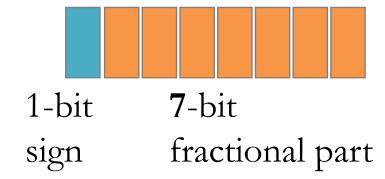


• The represented number is

$$x = (-1)^{\text{sign bit}}$$
 (integer part $+ 2^{-q} \cdot \text{fractional part}$)
= $2^{-q} \cdot \text{whole thing as signed integer}$

Example: 8-bit fixed point number

- It's common to want to represent numbers between -1 and 1
 - To do this, we can use a fixed point number with all fractional bits



• If the number as an integer is k, then the represented number is

$$x = 2^{-7} \cdot k \in \left\{-1, -\frac{127}{128}, \dots, -\frac{1}{128}, 0, \frac{1}{128}, \dots, \frac{126}{128}, \frac{127}{128}\right\}$$

More generally: scaled fixed point numbers

- Sometimes we don't want the decimal point to lie between two bits that we are actually storing
 - We might want more tight control over what our bits mean
- Idea: pick a real-number scale factor s, then let integer k represent

$$x = s \cdot k$$

• This is a generalization of traditional fixed point, where

$$s = 2^{-\# \text{ of fractional bits}}$$

Arithmetic on fixed point numbers

Simple

• Can just use preexisting integer processing units

Mostly exact

- Underflow impossible
- Overflow can happen, but is easy to understand
- Can always convert to a higher-precision representation to avoid overflow
- Can represent a much narrower range of numbers than float

Example: Exact Fixed Point Multiply

- When we multiply two integers, if we want the result to be exact, we need to convert to a representation with more bits
- For example, if we take the product of two 8-bit numbers, the result should be a 16-bit number to be exact.
 - Why? $100 \times 100 = 10000$ which can't be stored as an 8-bit number
- To have exact fixed point multiply, we can do the same thing
 - Since fixed-point operations are just integer operations behind the scenes

Support for fixed-point arithmetic

- Anywhere integer arithmetic is supported
 - CPUs, GPUs
 - Although not all GPUs support 8-bit integer arithmetic
 - And AVX2 does not have all the 8-bit arithmetic instructions we'd like
- Particularly effective on FPGAs and ASICs
 - Where floating point units are costly
- Sadly, very little support for other precisions
 - 4-bit operations would be particularly useful

Custom Quantization Points

- Even more generally, we can just have a list of 2^b numbers and say that these are the numbers a particular low-precision string represents
 - We can think of the bit string as indexing a number in a dictionary
- Gives us total freedom as to range and scaling
 - But computation can be tricky
- Some recent research into using this with hardware support
 - "The ZipML Framework for Training Models with End-to-End Low Precision: The Cans, the Cannots, and a Little Bit of Deep Learning" (Zhang et al 2017)

Recap of low-precision representations

Half-precision floating-point

- Complicated arithmetic, but good with hardware support
- Difficult to reason about overflow and underflow
- Better range
- No 8-bit support as of yet

Fixed-point

- Simple arithmetic, supported wherever integers are
- Easy to reason about overflow, but has worse range
- Supports 8-bit and 16-bit arithmetic, but little to no 4-bit support

Low-Precision SGD

Recall: SGD update rule

$$w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t, y_t)$$

- There are a lot of numbers we can make low-precision here
 - We can quantize the input dataset x, y
 - We can quantize the model w
 - We can try to quantize within the gradient computation itself
 - We can try to quantize the communication among the parallel workers

Four Broad Classes of Numbers

- Dataset numbers
 - used to store the immutable input data
- Model numbers
 - used to represent the vector we are updating
- Gradient numbers
 - used as intermediates in gradient computations
- Communication numbers
 - used to communicate among parallel workers

Quantize classes independently

- Using low-precision for different number classes has **different effects on throughput**.
 - Quantizing the **dataset numbers** improves memory capacity and overall training example throughput
 - Quantizing the model numbers improves cache capacity and saves on compute
 - Quantizing the **gradient numbers** saves compute
 - Quantizing the **communication numbers** saves on expensive inter-worker memory bandwidth

Quantize classes independently

- Using low-precision for different number classes has different effects on statistical efficiency and accuracy.
 - Quantizing the dataset numbers means you're solving a different problem
 - Quantizing the **model numbers** adds noise to each gradient step, and often means you can't exactly represent the solution
 - Quantizing the gradient numbers can add errors to each gradient step
 - Quantizing the **communication numbers** can add errors which cause workers' local models to diverge, which slows down convergence

Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the for

Using this, we can prove **guarantees** that SGD works with a low precision model.

Taming the Wild [NIPS 2015]

• Two approaches to rounding:

- biased rounding round to nearest number
- unbiased rounding round randomly: $E[Q(x)] \stackrel{\vee}{=} x$

• I also proved we can **combine** www-precision computation with asynchronous execution, which we call BUCKWILD!

Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

$$w_{t+1} = \tilde{Q} \left(w_t - \alpha_t \nabla f(w_t; x_t, y_t) \right)$$

- Here, **Q** is an unbiased quantization function
- In expectation, this is just gradient descent

$$\mathbf{E}[w_{t+1}|w_t] = \mathbf{E}\left[\tilde{Q}\left(w_t - \alpha_t \nabla f(w_t; x_t, y_t)\right) \middle| w_t\right]$$

$$= \mathbf{E}\left[w_t - \alpha_t \nabla f(w_t; x_t, y_t) \middle| w_t\right]$$

$$= w_t - \alpha_t \nabla f(w_t)$$

Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

- Pseudorandom number generation can be expensive
 - E.G. doing C++ rand or using Mersenne twister takes many clock cycles
- Empirically, we can use very cheap pseudorandom number generators
 - And still get good statistical results
 - For example, we can use XORSHIFT which is just a cyclic permutation

Memory Locality and Scan Order

Memory Locality: Two Kinds

• Memory locality is needed for good cache performance

Temporal locality

• Frequency of reuse of the same data within a short time window

Spatial locality

• Frequency of use of data nearby data that has recently been used

• Where is there locality in stochastic gradient descent?

Problem: no dataset locality across iterations

- The training example at each iteration is chosen randomly
 - Called a random scan order
 - Impossible for the cache to predict what data will be needed

$$w_{t+1} = w_t - \alpha_t \nabla f(w_t; x_t, y_t)$$

- Idea: process examples in the order in which they are stored in memory
 - Called a systematic scan order or sequential scan order
 - Does this improve the memory locality?

Random scan order vs. sequential scan order

Much easier to prove theoretical results for random scan

• But sequential scan has better systems performance

- In practice, almost everyone uses sequential scan
 - There's no empirical evidence that it's statistically worse in most cases
 - Even though we can construct cases where using sequential scan does harm the convergence rate

Other scan orders

- Shuffle-once, then sequential scan
 - Shuffle the data once, then systematically scan for the rest of execution
 - Statistically very similar to random scan at the state

Random reshuffling

- Randomly shuffle on every pass through the data
- Believed to be always at least as good as both random scan and sequential scan
- But no proof that it is better

Questions?

- Upcoming things
 - Paper Review #8 due today
 - Paper Presentation #9 on Wednesday