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Memory as a Bottleneck

• So far, we’ve just been talking about compute
• e.g. techniques to decrease the amount of  compute by decreasing iterations

• But machine learning systems need to process huge amounts of  data

• Need to store, update, and transmit this data

• As a result: memory is of  critical importance
• Many applications are memory-bound



Memory: The Simplified Picture
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Memory: The Multicore Picture
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Memory: The Multisocket Picture
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Memory: The Distributed Picture
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What can we learn from these pictures?

• Many more memory boxes than compute boxes
• And even more as we zoom out

• Memory has a hierarchical structure

• Locality matters
• Some memory is closer and easier to access than others
• Also have standard concerns for CPU cache locality



What limits us?

• Memory capacity
• How much data can we store locally in RAM and/or in cache?

• Memory bandwidth
• How much data can we load from some source in a fixed amount of  time?

• Memory locality
• Roughly, how often is the data that we need stored nearby?

• Power
• How much energy is required to operate all of  this memory?



One way to help:
Low-Precision Computation



Low-Precision Computation

• Traditional ML systems use 32-bit or 64-bit floating point numbers

• But do we actually need this much precision?
• Especially when we have inputs that come from noisy measurements

• Idea: instead use 8-bit or 16-bit numbers to compute
• Can be either floating point or fixed point
• On an FPGA or ASIC can use arbitrary bit-widths



Low Precision and Memory

• Major benefit of  low-precision: uses less memory bandwidth

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Memory Throughput

10 numbers/ns

20 numbers/ns

40 numbers/ns

64-bit float vector
F64 F64 F64 5 numbers/ns

(assuming ~40 GB/sec memory bandwidth)

… …

… …

… …

… …



Low Precision and Memory

• Major benefit of  low-precision: takes up less space

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Cache Capacity

8 M numbers

16 M numbers

32 M numbers

64-bit float vector
F64 F64 F64 4 M numbers

(assuming ~32 MB cache)

… …

… …

… …

… …



Low Precision and Parallelism

• Another benefit of  low-precision: use SIMD instructions to get more 
parallelism on CPU

SIMD Precision

32-bit float vector
F32 F32 F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

SIMD Parallelism

8 multiplies/cycle
(vmulps instruction)

16 multiplies/cycle
(vpmaddwd instruction)

32 multiplies/cycle
(vpmaddubsw instruction)

64-bit float vector
F64 F64 F64 F64

4 multiplies/cycle
(vmulpd instruction)



Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy

float32
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float32
flo
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• Memory energy can also have quadratic dependence on precision

float32
memory

algorithm runtime
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32



Effects of  Low-Precision Computation

• Pros
• Fit more numbers (and therefore more training examples) in memory
• Store more numbers (and therefore larger models) in the cache
• Transmit more numbers per second
• Compute faster by extracting more parallelism
• Use less energy

• Cons
• Limits the numbers we can represent
• Introduces quantization error when we store a full-precision number in a low-

precision representation



Ways to represent low-precision 
numbers



FP16/Half-precision floating point

• 16-bit floating point numbers

• Usually, the represented value is

1-bit  
sign

5-bit 
exponent

10-bit 
significand

x = (�1)sign bit · 2exponent�15 · 1.significand
2



Arithmetic on half-precision floats

• Complicated
• Has to handle adding numbers with different exponents and signs
• To be efficient, needs to be supported in hardware

• Inexact
• Operations can experience overflow/underflow just like with more common 

floating point numbers, but it happens more often

• Can represent a wide range of  numbers
• Because of  the exponential scaling



Half-precision floating point support

• Supported on some modern GPUs
• Including new efficient implementation on NVIDIA Pascal GPUs

• Good empirical results for deep learning



Fixed point numbers

• p + q + 1 –bit fixed point number

• The represented number is

p-bit
integer part

q-bit
fractional part

1-bit  
sign

x = (�1)

sign bit
�
integer part + 2

�q · fractional part
�

= 2

�q · whole thing as signed integer



Example: 8-bit fixed point number

• It’s common to want to represent numbers between -1 and 1
• To do this, we can use a fixed point number with all fractional bits

• If  the number as an integer is k, then the represented number is

7-bit
fractional part

1-bit  
sign

x = 2�7 · k 2
⇢
�1,�127

128
, . . . ,� 1

128
, 0,

1

128
, . . . ,

126

128
,

127

128

�



More generally: scaled fixed point numbers

• Sometimes we don’t want the decimal point to lie between two bits that 
we are actually storing
• We might want more tight control over what our bits mean

• Idea: pick a real-number scale factor s, then let integer k represent

• This is a generalization of  traditional fixed point, where

x = s · k

s = 2�# of fractional bits



Arithmetic on fixed point numbers

• Simple
• Can just use preexisting integer processing units

• Mostly exact
• Underflow impossible
• Overflow can happen, but is easy to understand
• Can always convert to a higher-precision representation to avoid overflow

• Can represent a much narrower range of  numbers than float



Example: Exact Fixed Point Multiply

• When we multiply two integers, if  we want the result to be exact, we 
need to convert to a representation with more bits

• For example, if  we take the product of  two 8-bit numbers, the result 
should be a 16-bit number to be exact.
• Why? 100 x 100 = 10000 which can’t be stored as an 8-bit number

• To have exact fixed point multiply, we can do the same thing
• Since fixed-point operations are just integer operations behind the scenes



Support for fixed-point arithmetic

• Anywhere integer arithmetic is supported
• CPUs, GPUs
• Although not all GPUs support 8-bit integer arithmetic
• And AVX2 does not have all the 8-bit arithmetic instructions we’d like

• Particularly effective on FPGAs and ASICs
• Where floating point units are costly

• Sadly, very little support for other precisions
• 4-bit operations would be particularly useful



Custom Quantization Points

• Even more generally, we can just have a list of  2b numbers and say that 
these are the numbers a particular low-precision string represents
• We can think of  the bit string as indexing a number in a dictionary

• Gives us total freedom as to range and scaling
• But computation can be tricky

• Some recent research into using this with hardware support
• “The ZipML Framework for Training Models with End-to-End Low Precision: 

The Cans, the Cannots, and a Little Bit of  Deep Learning” (Zhang et al 2017)



Recap of  low-precision representations

• Half-precision floating-point
• Complicated arithmetic, but good with hardware support
• Difficult to reason about overflow and underflow
• Better range
• No 8-bit support as of  yet

• Fixed-point
• Simple arithmetic, supported wherever integers are
• Easy to reason about overflow, but has worse range
• Supports 8-bit and 16-bit arithmetic, but little to no 4-bit support



Low-Precision SGD



Recall: SGD update rule

• There are a lot of  numbers we can make low-precision here
• We can quantize the input dataset x, y
• We can quantize the model w
• We can try to quantize within the gradient computation itself
• We can try to quantize the communication among the parallel workers

wt+1 = wt � ↵trf(wt;xt, yt)



Four Broad Classes of  Numbers

•Dataset numbers
• used to store the immutable input data

•Model numbers
• used to represent the vector we are updating

•Gradient numbers
• used as intermediates in gradient computations

•Communication numbers
• used to communicate among parallel workers



Quantize classes independently

• Using low-precision for different number classes has different effects 
on throughput.
• Quantizing the dataset numbers improves memory capacity and overall training 

example throughput

• Quantizing the model numbers improves cache capacity and saves on compute

• Quantizing the gradient numbers saves compute

• Quantizing the communication numbers saves on expensive inter-worker 
memory bandwidth



Quantize classes independently

• Using low-precision for different number classes has different effects 
on statistical efficiency and accuracy.
• Quantizing the dataset numbers means you’re solving a different problem

• Quantizing the model numbers adds noise to each gradient step, and often 
means you can’t exactly represent the solution

• Quantizing the gradient numbers can add errors to each gradient step

• Quantizing the communication numbers can add errors which cause workers’ 
local models to diverge, which slows down convergence



Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form of  round-off  error.

• Two approaches to rounding:
• biased rounding – round to nearest number
• unbiased rounding – round randomly: 𝑬 𝑄 𝑥 = 𝑥

• I also proved we can combine low-precision computation with 
asynchronous execution, which we call BUCKWILD!

Using this, we can prove 
guarantees that SGD works 
with a low precision model.

Taming the Wild [NIPS 2015]

2.0 3.02.7

30% 70%



Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

• Here, Q is an unbiased quantization function

• In expectation, this is just gradient descent

wt+1 = Q̃ (wt � ↵trf(wt;xt, yt))

E[wt+1|wt] = E
h
Q̃ (wt � ↵trf(wt;xt, yt))

���wt

i

= E [wt � ↵trf(wt;xt, yt)|wt]

= wt � ↵trf(wt)



Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

• Pseudorandom number generation can be expensive
• E.G. doing C++ rand or using Mersenne twister takes many clock cycles

• Empirically, we can use very cheap pseudorandom number generators
• And still get good statistical results
• For example, we can use XORSHIFT which is just a cyclic permutation



Memory Locality and Scan Order



Memory Locality: Two Kinds

• Memory locality is needed for good cache performance

• Temporal locality
• Frequency of  reuse of  the same data within a short time window

• Spatial locality
• Frequency of  use of  data nearby data that has recently been used

• Where is there locality in stochastic gradient descent?



Problem: no dataset locality across iterations

• The training example at each iteration is chosen randomly
• Called a random scan order
• Impossible for the cache to predict what data will be needed

• Idea: process examples in the order in which they are stored in memory
• Called a systematic scan order or sequential scan order
• Does this improve the memory locality?

wt+1 = wt � ↵trf(wt;xt, yt)



Random scan order vs. sequential scan order

• Much easier to prove theoretical results for random scan

• But sequential scan has better systems performance

• In practice, almost everyone uses sequential scan
• There’s no empirical evidence that it’s statistically worse in most cases
• Even though we can construct cases where using sequential scan does harm the 

convergence rate



Other scan orders

• Shuffle-once, then sequential scan
• Shuffle the data once, then systematically scan for the rest of  execution
• Statistically very similar to random scan at the state

• Random reshuffling
• Randomly shuffle on every pass through the data
• Believed to be always at least as good as both random scan and sequential scan
• But no proof  that it is better



Questions?

• Upcoming things
• Paper Review #8 — due today
• Paper Presentation #9 on Wednesday


