
Memory Bandwidth and
Low Precision Computation

CS6787 Lecture 9 — Fall 2017

Memory as a Bottleneck

• So far, we’ve just been talking about compute
• e.g. techniques to decrease the amount of compute by decreasing iterations

• But machine learning systems need to process huge amounts of data

• Need to store, update, and transmit this data

• As a result: memory is of critical importance
• Many applications are memory-bound

Memory: The Simplified Picture

Compute RAM

Memory: The Multicore Picture

Compute

RAML3
cache

L2
cache

L2
cache

L2
cache

L1
cache

L1
cache

L1
cache

Compute

Compute

Memory: The Multisocket Picture

Compute

RAML3
cache

L2
cache

L2
cache

L2
cache

L1
cache

L1
cache

L1
cache

Compute

Compute

Compute

RAML3
cache

L2
cache

L2
cache

L2
cache

L1
cache

L1
cache

L1
cache

Compute

Compute

Memory: The Distributed Picture

Network
GPU

GPU

What can we learn from these pictures?

• Many more memory boxes than compute boxes
• And even more as we zoom out

• Memory has a hierarchical structure

• Locality matters
• Some memory is closer and easier to access than others
• Also have standard concerns for CPU cache locality

What limits us?

• Memory capacity
• How much data can we store locally in RAM and/or in cache?

• Memory bandwidth
• How much data can we load from some source in a fixed amount of time?

• Memory locality
• Roughly, how often is the data that we need stored nearby?

• Power
• How much energy is required to operate all of this memory?

One way to help:
Low-Precision Computation

Low-Precision Computation

• Traditional ML systems use 32-bit or 64-bit floating point numbers

• But do we actually need this much precision?
• Especially when we have inputs that come from noisy measurements

• Idea: instead use 8-bit or 16-bit numbers to compute
• Can be either floating point or fixed point
• On an FPGA or ASIC can use arbitrary bit-widths

Low Precision and Memory

• Major benefit of low-precision: uses less memory bandwidth

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Memory Throughput

10 numbers/ns

20 numbers/ns

40 numbers/ns

64-bit float vector
F64 F64 F64 5 numbers/ns

(assuming ~40 GB/sec memory bandwidth)

… …

… …

… …

… …

Low Precision and Memory

• Major benefit of low-precision: takes up less space

Precision in DRAM

32-bit float vector
F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

Cache Capacity

8 M numbers

16 M numbers

32 M numbers

64-bit float vector
F64 F64 F64 4 M numbers

(assuming ~32 MB cache)

… …

… …

… …

… …

Low Precision and Parallelism

• Another benefit of low-precision: use SIMD instructions to get more
parallelism on CPU

SIMD Precision

32-bit float vector
F32 F32 F32 F32 F32 F32 F32 F32

16-bit int vector

8-bit int vector

SIMD Parallelism

8 multiplies/cycle
(vmulps instruction)

16 multiplies/cycle
(vpmaddwd instruction)

32 multiplies/cycle
(vpmaddubsw instruction)

64-bit float vector
F64 F64 F64 F64

4 multiplies/cycle
(vmulpd instruction)

Low Precision and Power

• Low-precision computation can even have a super-linear effect on energy

float32
multiplier

float32
flo

at
32 int16

mul

int16

in
t1

6

• Memory energy can also have quadratic dependence on precision

float32
memory

algorithm runtime

flo
at

32

Effects of Low-Precision Computation

• Pros
• Fit more numbers (and therefore more training examples) in memory
• Store more numbers (and therefore larger models) in the cache
• Transmit more numbers per second
• Compute faster by extracting more parallelism
• Use less energy

• Cons
• Limits the numbers we can represent
• Introduces quantization error when we store a full-precision number in a low-

precision representation

Ways to represent low-precision
numbers

FP16/Half-precision floating point

• 16-bit floating point numbers

• Usually, the represented value is

1-bit
sign

5-bit
exponent

10-bit
significand

x = (�1)sign bit · 2exponent�15 · 1.significand
2

Arithmetic on half-precision floats

• Complicated
• Has to handle adding numbers with different exponents and signs
• To be efficient, needs to be supported in hardware

• Inexact
• Operations can experience overflow/underflow just like with more common

floating point numbers, but it happens more often

• Can represent a wide range of numbers
• Because of the exponential scaling

Half-precision floating point support

• Supported on some modern GPUs
• Including new efficient implementation on NVIDIA Pascal GPUs

• Good empirical results for deep learning

Fixed point numbers

• p + q + 1 –bit fixed point number

• The represented number is

p-bit
integer part

q-bit
fractional part

1-bit
sign

x = (�1)

sign bit
�
integer part + 2

�q · fractional part
�

= 2

�q · whole thing as signed integer

Example: 8-bit fixed point number

• It’s common to want to represent numbers between -1 and 1
• To do this, we can use a fixed point number with all fractional bits

• If the number as an integer is k, then the represented number is

7-bit
fractional part

1-bit
sign

x = 2�7 · k 2
⇢
�1,�127

128
, . . . ,� 1

128
, 0,

1

128
, . . . ,

126

128
,

127

128

�

More generally: scaled fixed point numbers

• Sometimes we don’t want the decimal point to lie between two bits that
we are actually storing
• We might want more tight control over what our bits mean

• Idea: pick a real-number scale factor s, then let integer k represent

• This is a generalization of traditional fixed point, where

x = s · k

s = 2�# of fractional bits

Arithmetic on fixed point numbers

• Simple
• Can just use preexisting integer processing units

• Mostly exact
• Underflow impossible
• Overflow can happen, but is easy to understand
• Can always convert to a higher-precision representation to avoid overflow

• Can represent a much narrower range of numbers than float

Example: Exact Fixed Point Multiply

• When we multiply two integers, if we want the result to be exact, we
need to convert to a representation with more bits

• For example, if we take the product of two 8-bit numbers, the result
should be a 16-bit number to be exact.
• Why? 100 x 100 = 10000 which can’t be stored as an 8-bit number

• To have exact fixed point multiply, we can do the same thing
• Since fixed-point operations are just integer operations behind the scenes

Support for fixed-point arithmetic

• Anywhere integer arithmetic is supported
• CPUs, GPUs
• Although not all GPUs support 8-bit integer arithmetic
• And AVX2 does not have all the 8-bit arithmetic instructions we’d like

• Particularly effective on FPGAs and ASICs
• Where floating point units are costly

• Sadly, very little support for other precisions
• 4-bit operations would be particularly useful

Custom Quantization Points

• Even more generally, we can just have a list of 2b numbers and say that
these are the numbers a particular low-precision string represents
• We can think of the bit string as indexing a number in a dictionary

• Gives us total freedom as to range and scaling
• But computation can be tricky

• Some recent research into using this with hardware support
• “The ZipML Framework for Training Models with End-to-End Low Precision:

The Cans, the Cannots, and a Little Bit of Deep Learning” (Zhang et al 2017)

Recap of low-precision representations

• Half-precision floating-point
• Complicated arithmetic, but good with hardware support
• Difficult to reason about overflow and underflow
• Better range
• No 8-bit support as of yet

• Fixed-point
• Simple arithmetic, supported wherever integers are
• Easy to reason about overflow, but has worse range
• Supports 8-bit and 16-bit arithmetic, but little to no 4-bit support

Low-Precision SGD

Recall: SGD update rule

• There are a lot of numbers we can make low-precision here
• We can quantize the input dataset x, y
• We can quantize the model w
• We can try to quantize within the gradient computation itself
• We can try to quantize the communication among the parallel workers

wt+1 = wt � ↵trf(wt;xt, yt)

Four Broad Classes of Numbers

•Dataset numbers
• used to store the immutable input data

•Model numbers
• used to represent the vector we are updating

•Gradient numbers
• used as intermediates in gradient computations

•Communication numbers
• used to communicate among parallel workers

Quantize classes independently

• Using low-precision for different number classes has different effects
on throughput.
• Quantizing the dataset numbers improves memory capacity and overall training

example throughput

• Quantizing the model numbers improves cache capacity and saves on compute

• Quantizing the gradient numbers saves compute

• Quantizing the communication numbers saves on expensive inter-worker
memory bandwidth

Quantize classes independently

• Using low-precision for different number classes has different effects
on statistical efficiency and accuracy.
• Quantizing the dataset numbers means you’re solving a different problem

• Quantizing the model numbers adds noise to each gradient step, and often
means you can’t exactly represent the solution

• Quantizing the gradient numbers can add errors to each gradient step

• Quantizing the communication numbers can add errors which cause workers’
local models to diverge, which slows down convergence

Theoretical Guarantees for Low Precision

• Reducing precision adds noise in the form of round-off error.

• Two approaches to rounding:
• biased rounding – round to nearest number
• unbiased rounding – round randomly: 𝑬 𝑄 𝑥 = 𝑥

• I also proved we can combine low-precision computation with
asynchronous execution, which we call BUCKWILD!

Using this, we can prove
guarantees that SGD works
with a low precision model.

Taming the Wild [NIPS 2015]

2.0 3.02.7

30% 70%

Why unbiased rounding?

• Imagine running SGD with a low-precision model with update rule

• Here, Q is an unbiased quantization function

• In expectation, this is just gradient descent

wt+1 = Q̃ (wt � ↵trf(wt;xt, yt))

E[wt+1|wt] = E
h
Q̃ (wt � ↵trf(wt;xt, yt))

���wt

i

= E [wt � ↵trf(wt;xt, yt)|wt]

= wt � ↵trf(wt)

Doing unbiased rounding efficiently

• We still need an efficient way to do unbiased rounding

• Pseudorandom number generation can be expensive
• E.G. doing C++ rand or using Mersenne twister takes many clock cycles

• Empirically, we can use very cheap pseudorandom number generators
• And still get good statistical results
• For example, we can use XORSHIFT which is just a cyclic permutation

Memory Locality and Scan Order

Memory Locality: Two Kinds

• Memory locality is needed for good cache performance

• Temporal locality
• Frequency of reuse of the same data within a short time window

• Spatial locality
• Frequency of use of data nearby data that has recently been used

• Where is there locality in stochastic gradient descent?

Problem: no dataset locality across iterations

• The training example at each iteration is chosen randomly
• Called a random scan order
• Impossible for the cache to predict what data will be needed

• Idea: process examples in the order in which they are stored in memory
• Called a systematic scan order or sequential scan order
• Does this improve the memory locality?

wt+1 = wt � ↵trf(wt;xt, yt)

Random scan order vs. sequential scan order

• Much easier to prove theoretical results for random scan

• But sequential scan has better systems performance

• In practice, almost everyone uses sequential scan
• There’s no empirical evidence that it’s statistically worse in most cases
• Even though we can construct cases where using sequential scan does harm the

convergence rate

Other scan orders

• Shuffle-once, then sequential scan
• Shuffle the data once, then systematically scan for the rest of execution
• Statistically very similar to random scan at the state

• Random reshuffling
• Randomly shuffle on every pass through the data
• Believed to be always at least as good as both random scan and sequential scan
• But no proof that it is better

Questions?

• Upcoming things
• Paper Review #8 — due today
• Paper Presentation #9 on Wednesday

