Algorithms other than SGD

CS6787 Lecture 10 — Fall 2017

Machine learning is not just SGD

- Once a model is trained, we need to use it to classify new examples
 - This inference task is not computed with SGD
- There are other algorithms for optimizing objectives besides SGD
 - Stochastic coordinate descent
 - Derivative-free optimization
- There are other common tasks, such as sampling from a distribution
 - Gibbs sampling and other Markov chain Monte Carlo methods
 - And we sometimes use this together with SGD \rightarrow called **contrastive divergence**

Why understand these algorithms?

- They represent a significant fraction of machine learning computations
 - Inference in particular is huge
- You may want to use them **instead of SGD**
 - But you don't want to suddenly pay a computational penalty for doing so because you don't know how to make them fast
- Intuition from SGD can be used to make these algorithms faster too
 - And vice-versa

Inference

Inference

• Suppose that our training loss function looks like

$$f(w) = \frac{1}{N} \sum_{i=1}^{n} l(\hat{y}(w; x_i), y_i)$$

• Inference is the problem of computing the prediction

$$\hat{y}(w;x_i)$$

How important is inference?

- Train once, infer many times
 - Many production machine learning systems just do inference
- Image recognition, voice recognition, translation
 - All are just applications of inference once they're trained
- Need to get responses to users quickly
 - On the web, users won't wait more than a second

Inference on linear models

- Computational cost: relatively low
 - Just a matrix-vector multiply
- But still can be more costly in some settings
 - For example, if we need to compute a random kernel feature map
 - What is the cost of this?
- Which methods can we use to speed up inference in this setting?

Inference on neural networks

- Computational cost: relatively high
 - Several matrix-vector multiplies and non-linear elements
- Which methods can we use to speed up inference in this setting?

- Compression
 - Find an easier-to-compute network with similar accuracy by fine-tuning
 - The subject of this week's paper

Other techniques for speeding up inference

- Train a fast model, and run it most of the time
 - If it's uncertain, then run a more accurate, slower model
- For video and time-series data, **re-use some of the computation** from previous frames
 - For example, only update some of the activations in the network at each frame
 - Or have a more-heavyweight network run less frequently
 - Rests on the notion that the **objects in the scene do not change frequently** in most video streams

Other Techniques for Training, Besides SGD

Coordinate Descent

• Start with objective

minimize:
$$f(x_1, x_2, \ldots, x_n)$$

• Choose a random index i, and update

$$x_i = \arg\min_{\hat{x}_i} f(x_1, x_2, \dots, x_i, \dots, x_n)$$

• And repeat in a loop

Variants

• Coordinate descent with derivative and step size

• Stochastic coordinate descent

• How do these compare to SGD?

Derivative Free Optimization (DFO)

- Optimization methods that don't require differentiation
- Basic coordinate descent is actually an example of this

• Another example: for normally distributed ε

$$x_{t+1} = x_t - \alpha \frac{f(x_t + \sigma \epsilon) - f(x_t - \sigma \epsilon)}{2\sigma} \epsilon$$

Applications?

Another Task: Sampling

Focus problem for this setting: Statistical Inference

- Major class of machine learning applications
 - Goal: draw conclusions from data using a statistical model
 - Formally: find marginal distribution of unobserved variables given observations
- Example: decide whether a coin is biased from a series of flips
- Applications: LDA, recommender systems, text extraction, etc.
- De facto algorithm used for inference at scale: Gibbs sampling

Graphical models

• A graphical way to describe a probability distribution

- Common in machine learning applications
 - Especially for applications that deal with uncertainty

What types of inference exist here?

- Maximum-a-posteriori (MAP) inference
 - Find the state with the highest probability
 - Often reduces to an optimization problem
 - What is the most likely state of the world?
- Marginal inference
 - Compute the marginal distributions of some variables
 - What does our model of the world tell us about this object or event?

What is Gibbs Sampling?

Learning graphical models

- Contrastive divergence
 - SGD on top of Gibbs sampling
- The de facto way of training
 - Restricted boltzmann machines (RBM)
 - Deep belief networks (DBN)
 - Knowledge-base construction (KBC) applications

What do all these algorithms look like? Stochastic Iterative Algorithms

Given an immutable input dataset and a model we want to output.

Questions?

- Upcoming things
 - Paper Review #9 due today
 - Paper Presentation #10 on Wednesday
 - Project proposals due the following Monday