Scaling to Very Very Large Corpora for Natural Language Disambiguation

Michele Banko and Eric Brill
Microsoft Research

Background of Issue

- Compare algorithms
 - Conclusions need common test corpora
 - Fixes the size of training/test sets
- Meanwhile available data growing
- Large cost of annotating data hinders development of new corpora

Confusion Set Disambiguation

- Example sets:
 - {principle, principal}
 - {to, two, too}
 - {weather, whether}
- Key Property #1: disambiguate from a small set of potential values
- Key Property #2: labeled data is available and free

Better Results at Low Cost?

- How to get better performance?
 - Get a Ph.D. and invent a new algorithm
 - Tune parameters and optimize old ways
 - it's easy to fix a bad implementation
 - Why not just train on more data, esp. if it's available?

Details of the Paper

- Learning Methods
 - Perceptron
 - Winnow
 - naïve Bayes
 - Memory (remembers previous and next words)
- Corpus Size
 - 1 Million → 1 Billions words

Learning Curves

Figure 1. Learning Curves for Confusion Set Disambiguation

Cost of Larger Corpus

Figure 2. Representation Size vs. Training Corpus Size

Optimizations for Less Data Voting

- What is Voting?
 - Train a set of classifiers on the same corpus,
 then for a test classification use democracy
- Complementarity (how often they agree)
 - Direct relationship with training corpus size

Efficacy of Voting

Not So Fast...

- Although this supports a conclusion to use more data, how realistic would that be?
- Remember the "Key Properties" from earlier?
- It is only for a few problems that access to large amounts of labeled data exists.
- Manual annotation is seemingly impractical
- Let's try to take advantage of it anyway...

Active Learning

- "involves intelligently selecting a portion of samples for annotation from a pool of as-yet unannotated training samples."
- Essentially, maximizing the utility of any fixed amount of manual effort

Active Learning Examples

- Run a seed learner over the test data, and use confidence ratings as indicators of usefulness
- Alternatively, run a set of seed learners and use their agreement as an indicator

Bagging

- Generates many classifiers
- To measure uncertainty of a classification
- Select, with replacement, random sentences from the original corpus
- Generate N training sets this way, all of size equal to the original corpus

Active Learning

Figure 4. Active Learning with Large Corpora

Co-training and Bootstrapping

- Start with a training set of high confidence examples (perhaps manually annotated)
- Iterate:
 - Train and run your classifier over the test set
 - Add those samples of highest confidence from the test set into the training set

Weakly Supervised Learning

Classifiers	Test	
In Agreement	Accuracy	
10	0.8734	
9	0.6892	
8	0.6286	
7	0.6027	
6	0.5497	
5	0.5000	

Table 2. Committee Agreement vs. Accuracy

	{then, than}		{among, between}	
	Test	% Total	Test	% Total
	Accuracy	Training Data	Accuracy	Training Data
106-wd labeled seed corpus	0.9624	0.1	0.8183	0.1
seed+5x10 ⁶ wds, unsupervised	0.9588	0.6	0.8313	0.5
seed+10 ⁷ wds, unsupervised	0.9620	1.2	0.8335	1.0
seed+10 ⁸ wds, unsupervised	0.9715	12.2	0.8270	9.2
seed+5x108 wds, unsupervised	0.9588	61.1	0.8248	42.9
109 wds, supervised	0.9878	100	0.9021	100

Table 3. Committee-Based Unsupervised Learning

Weakly Supervised Learning

	Unsupervised:	Unsupervised:	
	All Labels	Most Certain Labels	
	{then, than}		
10 ⁷ words	0.9524	0.9620	
10 ⁸ words	0.9588	0.9715	
5x10 ⁸ words	0.7604	0.9588	
	{among, between}		
10 ⁷ words	0.8259	0.8335	
10 ⁸ words	0.8259	0.8270	
5x10 ⁸ words	0.5321	0.8248	
10 ⁸ words 5x10 ⁸ words		\ /	

Table 4. Comparison of Unsupervised Learning Methods

Summary

- Often more data is available than researchers are using for experimentation
- This data helps to varying degrees
 - If it's labeled, can make a big difference without requiring extra work (ex. confusion sets)
 - If it's available and some annotation can occur, active learning can help
 - If it's available but no extra work is possible, benefit can still be found (ex. bootstrapping)
- Authors suggest moving "towards increasing the size of annotated training collections"