
Batch Processing
Natacha Crooks - CS 6453

Data (usually) doesn’t fit on a single machine
CoinGraph (900GB)

LiveJournal (1.1GB)

Orkut (1.4GB)

Twitter (between 5 and 20GB)

Netflix Recommendation (2.5BGB)

Sources: Musketer (Eurosys’15), Spark (NSDI’17), Weaver (VLDB’17) , Scalability,
but at what COST (HotOS’16)

Where it all began*: MapReduce (2004)

* Stonebraker et al./database folks would disagree

● Introduced by Google

● Stated goal: allow users to leverage power of parallelism/distribution
while hiding all its complexity (failures, load-balancing, cluster
management, …)

● Very simple programming model:

● Simple fault-tolerance model
○ Simply reexecute...

PageRank in MapReduce (Hadoop)

Input:
adjacency
matrix

H
D
F
S

(c,[a,b])

(b,[a])

(a,[c]) (c,PR(a) / out (a)), (a,[c])

(a,PR(b) / out (b)),
(b,[a])

(a,PR(c) / out (c)), (c,[a,b])
(b,PR(c) / out (c))

Shuffle
Phase

Map
Phase

Reduce
Phase

PR(a) = 1-l/N + l*
sum(PR(y)/out(y))

Write to local
storage

Write to HDFS

Iterate

((a,PR(a)/out(a))

Issues with MapReduce
● Difficult to express certain classes of computation:

○ Iterative computation (ex: PageRank)
○ Recursive computation (ex: Fibonacci sequence)
○ “Reduce” functions with multiple outputs

● Read and write to disk at every stage
○ Leads to inefficiency
○ No opportunity to reuse data

Arrive Dataflow! Dryad (2007)
● Developed (concurrently?) by Microsoft. Similar objective to MapReduce

● Introduce a more flexible dataflow graph. A job is a DAG where:
○ Nodes representing arbitrary sequential code
○ Edges representing communication graph (shared memory, files, TCP)

● Benefits
○ Acyclic -> easy fault tolerance
○ Nodes can have multiple inputs/outputs
○ Easier to implement SQL operations than in the map/reduce framework

Arrive Dataflow! Dryad (2007)

● Language to generate graphs from composition of simpler graphs

● Local job manager locally selects free nodes (job may have constraints) to
run vertices

○ Both MapReduce and Dryad use greedy placement algorithms: simplicity first!

● Support for dynamic refinement of the graph
○ Optimize graph according to network topology

Arrive Recursion/Iteration! CIEL (2011)
● Dryad DAG is : 1) acyclic 2) static => limits expressiveness

● CIEL enables support for iterative/recursive computations by
○ Supporting data-dependent control-flow decisions
○ Spawning new edges (tasks) at runtime
○ Memoization of tasks via unique naming of objects

Lazily evaluate task:
Start from the result future
and attempt to execute tasks
if dependencies are both
concrete references. If
future references,
recursively attempt to
evaluate tasks charged with
generating these objects.

Arrive In-Memory Data Processing! Spark (2012)
● Claim: lack abstraction for leveraging distributed memory

○ No mechanism to process large amounts of in-memory data in parallel
○ Necessary for sub-second interactive queries as well as in-memory analytics

● Need abstraction to re-use in-memory data for iterative computation

● Must support generic programming language

● Propose new abstraction: Resilient distributed datasets
○ Efficient data reuse
○ Efficient fault tolerance
○ Easy programming

The magic ingredient: RDDs
● RDD: interface based on coarse-grained transformations (map, project,

reduce, groupBy) that apply the same operation to many data items

● Lineage: RDDs can be reconstructed “efficiently” by tracking sequence of
operations and reexecuting them (few operations, but applied on large
data)

● RDDs can be
○ actions (computed immediately) / transformations (lazy applied)
○ Persistent / In-memory with or without custom sharding

PageRank - Take 2 : Spark

Spark Architecture
● RDD implementation:

○ Set of partitions (atomic pieces of the dataset)
○ Set of dependencies (function for computing dataset based on parents)

■ Dependencies can be narrow (each partition of the parent RDD is used by at most one
partition of the child RDD)

■ Dependencies can be wide (multiple partitions may be used)
○ Metadata about partitioning + data placement

Spark Architecture
● When user executes action on RDD, scheduler examines RDD’s lineage to

build a DAG of stages to execute
○ Stage consists of as many pipelined transformations with narrow dependencies as possible.
○ Stage boundary defined by shuffle (for wide dependencies)
○ Task to where RDD resides in memory (or preferred location)

Evaluation - Iterative Workloads

Benefits of keeping data in-memory
(K-Means is more compute intensive)

Benefits of memory re-use

Would have been nice to include comparison to Hadoop when memory is scarce

Are RDD really the magic ingredient?
● The ability to “name” transformations (entire datasets) rather than

individual objects is pretty cool.

● But is it the “key” to Spark’s performance?
○ What if you just ran CIEL in memory?
○ Also has memoization techniques for data re-use

● I don’t fully understand what they bring for fault-tolerance
○ Doesn’t the CIEL re-execution model from the output node do exactly the same?
○ In CIEL also you only reexecute “part” of the output that has been lost (as that’s the

granularity of objects.

Where RDDs fall short
● Act as a caching mechanism where intermediate state can be saved, and

where can pipeline data from one transformation to the next efficiently

● What about reusing computation and enabling support for fine-grain
access?

○ Ex: what if the page rank doesn’t change in one round. In Spark, still have to compute on
the whole data (or filter it). Top-K doesn’t require recomputing everything when new data
arrives

● RDDs by nature do not support incremental computation
○ Maintain a view updated by deltas. Run computation periodically with small changes in

the input

Arrive Naiad (2013)
● Bulk computation is so 2012. Now is the time for timely data flow

● Need for a universal system that can do
○ Iterative processing on real-time data stream
○ Interactive queries on a consistent view of results

● Argue that currently
○ Streaming systems cannot deal with iteration
○ Batch systems iterate synchronously, so have high latency. Cannot send data increments

The black magic: Timely Dataflow
● Timely dataflow properties

○ Structured loops allowing feedback in the dataflow
○ Stateful dataflow vertices capable of consuming/producing data without coordination
○ Notifications for vertices once a “consistent point” has been reached (ex: end of iteration)

● Dataflow graphs are directed and can be cyclic

● Stateful vertices asynchronously receive messages + notifications of
global progress

● Progress is measured through “timestamps”

Timestamps in Naiad (Construction)
● Timestamps are key to nodes “tuning” the degree of

asynchrony/consistency desired in the system within different
epochs/iterations

● Dataflow graphs have specific
structure (ingress/egress nodes,
 loop contexts)

● Encode path they have taken in DAG

Timestamps in Naiad (Use)
● Timestamps are used to track forward progress of the computation

○ Helps a vertex determine when it wants to synchronise with other vertices
○ Vertex can receive timestamps from different epochs/iterations (no longer synchronous)
○ T1 could result in T2 if path from T1 to T2

● Every node implements methods OnRecv/SentBy, and
OnNotify/NotifyAt

○ Notify only sent when will never send a smaller timestamp to that node

● Every node must reason about the possibility of receiving “future
messages”

○ Set of possible timestamps constrained by set of unprocessed events + graph structure
○ Used to determine when safe to deliver notification

Timestamps in Naiad (Use)
● How do you compute the frontier?

● Pointstamps have occurence count + precursor count
○ Occurence count: number of concurrently unprocessed events for that pointstamp

○ Precursor Count: number of unprocessed events that could result-in that pointstamp

● When pointstamp p becomes active:
○ Increment occurrence count + initialise precursor count to number of pointstamps that

could result-in p + increment precursor count of pointstamps that p could result-in
○ When remove pointstamp (occurence count = 0), decrement precursor count for

pointstamps that p could result in
○ If precursor count = 0, then p is on the frontier

Timely Dataflow example
● Timely dataflow is hard to write.

(McSherry’s implemetation has 700
lines)

● Introduced two new high-level
front-ends that leverage timely
dataflow

○ GraphLINQ
○ Lindi

PageRank - Take 3 : Naiad
edges = edges.PartitionBy(x => x.source);

// capture degrees before trimming leaves.

var degrees = edges.Select(x => x.source).CountNodes();

var trim = false;

if (trim)

edges = edges.Select(x => x.target.WithValue(x.source)).FilterBy(degrees.Select(x => x.node))

 .Select(x => new Edge(x.value, x.node));

// initial distribution of ranks.

 var start = degrees.Select(x => x.node.WithValue(0.15f))

 .PartitionBy(x => x.node.index);

// define an iterative pagerank computation, add initial values, aggregate up the results

var iterations = 10;

var ranks = start.IterateAndAccumulate((lc, deltas) => deltas.PageRankStep(lc.EnterLoop(degrees),

lc.EnterLoop(edges)), x => x.node.index, iterations, "PageRank").Concat(start)

// add initial ranks in for correctness.

.NodeAggregate((x, y) => x + y) // accumulate up the ranks.

.Where(x => x.value > 0.0f); // report only positive ranks.

// start computation, and block until completion.

computation.Activate();

computation.Join();

Source: Naiad Github

Results

● Claim: perform as well as different specialised systems

Taking a step back: are universal frameworks the
way to go?

● Spark is the de-facto default in industry
○ GraphX more popular than GraphChi or PowerGraph despite better performance

● Naiad was also becoming very popular.

● I’d argue that research is moving to an “in-between”

Taking a step back: are universal frameworks the
way to go? (YES)

● Data is becoming more complex
○ Workflows don’t fit neatly into graph/ML/batch, but combination of all

● Developers like simplicity
○ One system to configure and manage
○ If Spark hadn’t been written in Scala, would it have succeeded?

● Systems like Spark or Naiad have “good enough” performance in all cases
compared specialized systems

Taking a step back: are universal frameworks the
way to go? (NO)

● Systems make fundamental (and incompatible) tradeoffs
○ Size of input
○ Structure of data (skew, selectivity)
○ Engineering decision (cost of loading input/preprocessing)

Taking a step back: are universal frameworks the
way to go? (Sort of?)

● Evidence suggests that it is possible to capture “the core structure” of
what all these workloads look like. And use this intermediate
representation to convert part of workloads to best framework

(Musketeer - Eurosys’15) (Weld - CIDR’17)Current Spark ecosystem

Timely Dataflow

LINDI Graph
LINQ

(Naiad - SOSP’13)

Taking a (more radical) step back: are distributed data
processing frameworks the way to go?

● Is data really that big? What are the overheads associated with going
distributed unnecessarily?

○ 80% of Cloudera customers + 80% of jobs in Facebook have < 1GB input (VLDB’12)

● What is the COST of big data systems (Configurations that outperform a
single thread (McSherry, HotOS’15)

○ Parallelism doesn’t necessarily mean efficiency

Backups

Arrive Recursion/Iteration! CIEL (2011)
● Dryad DAG is : 1) acyclic 2) static => limits expressiveness

● CIEL enables support for iterative/recursive computations by
○ Supporting data-dependent control-flow decisions
○ Spawning new edges (tasks) at runtime
○ Memoization of tasks via unique naming of objects

Lazily evaluate task:
Start from the result future
and attempt to execute tasks
if dependencies are both
concrete references. If
future references,
recursively attempt to
evaluate tasks charged with
generating these objects.

Evaluation - Iterative Workloads
● Unclear what the takeaway are: different

in result seem to be due to Hadoop
engineering decisions

● Performance improvement stems from
better locality of tasks in CIEL (schedule
tasks with warm caches/next to data)

● No evaluation of memoization? Would
have liked to see how results change with
number of iterations

K-means on synthetic graph

