
BlinkDB
(some figures were poached from 

the Eurosys conference talk)



The Holy Grail
Support interactive SQL queries over massive sets of data 

Individual queries should 
return within seconds Petabytes of data

Select AVG(Salary) from Salaries
Where Gender= Women
GroupBy City
Left Outer Join Rent
On Salaries.City = Rent.City



Why is this hard?
● Using Hadoop: 

○ processing 10TB on 100 machines will take approx an hour

● Using In-Memory computing: 
○ processing 10TB on 100 machines will take you 5 minutes

● Data is continuing to grow!

● So how can we get to second-scale latency?



An opportunity: approximate computing
● Key Observation

○ Most analytics workloads can deal with some amount of inaccuracy as these are often 
exploration queries

● This can buy you a lot!



Existing solutions 

● OLA:  General but … 
○ Variable performance (faster for popular 

items)
○ Hard to provide error bars?
○ Inefficient IO Use

● Sketching, sampling.
○ Low space and time 

complexity 
○ Strong assumptions 

about predictability of the 
workload and on queries 
that can be executed

○ Can’t do joins or 
subqueries

Generality Efficiency



Arrive BlinkDB!
● Data warehouse analytics system built on top of Spark/Hive
● Allows users to trade-off accuracy for response time, and provide users 

with meaningful bounds on accuracy
● Support COUNT, AVG, SUM, QUANTILE

Select AVG(Salary) from Salaries
Where Gender= Women
GroupBy City
Left Outer Join Rent
On Salaries.City = Rent.City
ERROR WITHIN 10% AT CONFIDENCE 95%

Select AVG(Salary) from Salaries
Where Gender= Women
GroupBy City
Left Outer Join Rent
On Salaries.City = Rent.City
WITHIN 5 SECONDS



Goal: Better balance between efficiency and generality
● Key Idea 1: Sample creation

○ Optimisation framework that builds set of multi-dimensional stratified samples from 
original data using query column sets

● Key Idea 2: Sample selection
○ Runtime sample selection strategy that selects best sample size based on query’s 

accuracy or response time requirements (uses an Error-Latency-Profile heuristic)

● Nice feature : Query execution
○ Returns fast responses to queries with error bars 



Step 1: Sample Creation
● Three factors to consider

○ Workload taxonomy (how similar will future queries be to past queries)

○ The frequency of rare subgroups (sparsity) in the data (column entries are often long tail)

○ The store overhead of storing samples

● Design an optimization framework as a linear integer program to find out on 
which sets of columns should stratified samples be built.



Sample creation: workload taxonomy (1)
● Most queries have some similarity with past queries. Challenge is to 

quantify that similarity to minimise overfitting while adapting to the data.

● Multiple approaches: predictable queries, predictable query predicates, 
predictable query column sets, unpredictable queries.

● Use predictable query column sets (QCS)
○ 90% of queries are covered by 10% of unique GCSs in Conviva workload

Select AVG(Salary) where City = “New York”



Sample creation: uniform vs stratified (2)
● There might be huge variations in the number of tuples that satisfy a 

particular column set.

● Uniform sampling doesn’t work well for aggregates in this case:
○ Miss rare groups entirely
○ Groups with few entries would have significantly lower confidence bounds than popular 

data (=> assumption that we care equally)

● Use stratified sampling: rare subgroups are over-represented relative to a 
uniform sample

● Achieve this by computing group counts/buckets on all distinct entries in 
each column set, and sampling uniformly within that bucket (smaller 
samples can be generated from larger samples)



Sample creation: optimization problem (3)
● Goal: maximise the weighted sum of the coverage of the GCSs of the 

queries

● Coverage is defined as the probability that a given value x of columns qj is 
also present among the rows of the sample S where:

○ Priority is given to sparser column sets (sparsity is the number of groups whose size in 
the data set is smaller than some number M)

○ Priority is given to column sets that are more likely to appear in the future
○ Storage remains under a certain budget



Sample Selection
● Goal: Select one or more samples (either uniform or stratified) at runtime 

to meet time/error constraints for query Q of the appropriate size
○ Uniform or stratified: depends on set of columns in Q, selectivity of Q, and data 

placement, complexity

● Two steps: 
○ Select sample type 
○ Select sample size



Sample Selection: Sample Type (1) 
● Pick stratified sample that contains the necessary QSC if possible

●  If no stratified sample contains the necessary QSC, compute Q in parallel 
on in-memory subsets of all computed samples. Pick samples that have 
high selectivity (ratio of columns selected to columns read)

○ High selectivity means better lower error margins



Sample Selection: Sample Size (2) 
● ELP captures rate at which error/sample rate decreases/increases with 

increasing sample sizes

● Error Profile: Determine smallest sample size such that the error 
constraints specified are met

○ Collect data on query selectivity, variance, standard deviation by running query on small 
samples. Extrapolate variance/standard deviation for aggregate functions using closed 
form formulas (ex: variance proportional to 1/n where n is sampling size). Calculate the 
minimum number of rows needed to satisfy error constraint.

● Latency Profile: Determine smallest sample size such that the latency 
constraints specified are met

○ Run on small sample size. Assume that latency scales linearly with size of input



Evaluation sneak-peek

?

?



Limitations & Future Work
● Query set seems actually quite limited (in the paper). What about joins 

and UDFs? How do you get error estimates in this case?

● What exactly is the importance of those rare tuples for applications? 

● Is there a way to account for the initial variance in the data itself and 
“bias” sampling in that way?

● Pre-computed samples are all of the same size

● What is the effect of sampling on the results of more complex queries (ex: 
joins)?

● What happens when data changes? Consistency?


