Distributed Systems:
Ordering and Consistency

October 12018
A.F. Coo

Context and Motivation

e How can we synchronize an
asynchronous distributed system?
How do we make global state consistent?
Snapshots / checkpoints

e Example: Buying a ticket on Ticketmaster

Leslie Lamport

MIT / Brandeis
Industrial researcher
“Father” of distributed computing
Paxos
“Time, Clocks, and the Ordering of Eventsin a
Distributed System” (1978)
o Test of time award
o 11,082citations (Google Scholar)
Turing Award (2013) for LateX (notably, not for
Paxos)
o Ken Birman was the ACM chair when Paxos
paper submitted

Takeaways

e Whatistime?
What does time mean in a distributed system?

In a distributed system, how do we order events such that we can get a

consistent snapshot of the entire system state at a point in time?
o Happened before relation
o Logical clocks, physical clocks
o Partial and total ordering of events

Outline

- Model of distributed system

- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition

- Total Ordering

- Mutual Exclusion

- Anomalous Behavior

- Physical Clocks to Remove Anomalous Behavior

Outline

- Model of distributed system

- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition

- Total Ordering

- Mutual Exclusion

- Anomalous Behavior

- Physical Clocks to Remove Anomalous Behavior

Model of a Distributed System

Included:

e Process: Set of events, a priori total ordering (sequence)
Event: Sending/receiving message
Distributed System: Collection of processes, spatially separated, communicate
via messages
o How do you coordinate between isolated processes?

Not Included:

e Globalclock

Outline

- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition

- Total Ordering

- Mutual Exclusion

- Anomalous Behavior

- Physical Clocks to Remove Anomalous Behavior

Happened Before and Partial Ordering

e Used to thinking about global clock time (a total order / timeline)
o lreadarecipe, then | cook dinner (in that order)
e Distributed systems
o Events in multiple places
m Everyoneinclass, each living in a tower
m Communicate via letter
e Howdowe know how letters ordered when sent?
o Events can be concurrent
o No global time-keeper
m Wetalk about time in terms of “causality”
e How can we decide we cooked dinner before reading a cookbook?
e Noorder unless one event “caused” another
e | cookdinner, | send aletter suggesting the cookbook | used, which “caused” another person to
read the cookbook

Happened Before and Partial Ordering

Definition. The relation “—” on the set of events of
a system is the smallest relation satisfying the following
three conditions: (1) If @ and b are events in the same
process, and a comes before b, then a — b. (2) If a is the
sending of a message by one process and b is the receipt
of the same message by another process, then a — b. (3)
If a— b and b — ¢ then a — ¢. Two distinct events g
and b are said to be concurrent if a ~ b and b » a.

Happened Before and Partial Ordering

e Another way to say “a happens before
b” is to say that “a causally affects b” g

e Concurrent events do not causally
affect each other

process Q
process R

Outline

- Logical Clocks and The Clock Condition

- Total Ordering

- Mutual Exclusion

- Anomalous Behavior

- Physical Clocks to Remove Anomalous Behavior

Logical Clocks and the Clock Condition

e We need to assign a sort of “timestamp” to events to order them

e Wetherefore need a clock (of some kind)
o Earlier example: What “time” did | eat dinner? What “time” did you read the cookbook?

e Alogical clock assigns a “timestamp” (a counter) to events

Logical Clocks and the Clock Condition

e A counter, rather than areal timestamp
e Norelation to physical time (for now)

More precisely, we define a clock C; for each process P,
to be a function which assigns a number C;(a) to any
event a in that process. The entire system of clocks is
represented by the function C which assigns to any event
b the number C(b), where C(b) = C;(b) if b is an event
in process P,.

Logical Clocks and the Clock Condition

B
o
»

process P
process Q
process R

I
Cl. If a and b are events in process P;, and @ comes Fex %
before b, then Ci(a) < Ci(b).
C2. If a is the sending of a message by process P,

and b is the receipt of that message by process P;, then
Cila) < Cy(b).

- '2
r

¥4 Ssaooud !

O ssaooud |

i
i
1
I
i
|
i
1
1

¥ sssdoxd

L Clocks and the Clock Condition

i
20
L g4 ssadoxd

Logica

Logical Clocks and the Clock Condition

] 2 4
p -~ e
LC1: T, is incremented after each event
at p.
LC2: Upon receipt of a message with q

timestamp 7, process p resets 1),:
T, := max(T,, 7) + 1.

Figure 4. Logical clock example.

Outline

- Total Ordering

- Mutual Exclusion

- Anomalous Behavior

- Physical Clocks to Remove Anomalous Behavior

Total Ordering

Need a total order that everyone can
agree on
O May not reflect “reality”

O | ate first or second, you read cookbook
first or second, or concurrently
Order events by the time at which

they occur

To break ties, we use any arbitrary
total ordering < of the processes, More precnsely, we
define a relation = as follows: if @ is an event in process
P;and b is an event in process P;, then a = b if and only
if either (i) Ci(a) < C;(b) or (ii)) Ci(a) = C;(b) and P,
< Pj. It is easy to see that this defines a total ordering,
and that the Clock Condition implies that if

Break ties semi-arbitrarily (by process @ — b then a == b. In other words, the relation = is a

id -- establish a priority among
processes)

Not unique; depends on system of
clocks

way of completing the “happcned before” partial order-
ing to a total ordering.’

Outline

- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior

Mutual Exclusion

e Single resource, many processes
Only one process can access resource at a time
o E.g.,onlyone process cansend to a printer at atime
Synchronize access
FIFO granting / releasing of access to resource
e Ifeveryprocess granted the resource eventually releases it, then every request
is eventually granted (we’ll come back to this “eventually”)

Mutual Exclusion

l. To request the resource, process P; sends the mes-
sage Tn:P; requests resource to every other process, and
puts that message on its request queue, where T, is the
timestamp of the message.

T.:P| T1 :P|

request Q* G request
AS

Mutual Exclusion

2. When process P, receives the message T,.:P; re-
quests resource, it places it on its request queue and sends
a (timestamped) acknowledgment message to P..”

TQ:P1 T1:P1

Mutual Exclusion

3. To release the resource, process P; removes any
Tn:P; requests resource message from its request queue
and sends a (timestamped) P; releases resource message
to every other process.

release /Q'“\ a release
A

To:Py Q e TPy

Mutual Exclusion

4. When process P; receives a P; releases resource
message, it removes any T,,:P; requests resource message
from its request queue.

Mutual Exclusion

e Distributed algorithm
o No centralized synchronization
e State Machine specification
o Setof commands (C), set of states (S)
o Relation that executes on acommand and a state, returns a new state
m Priorexample:
e Commands: Request resource, release resource
e States: Queue of waiting request and release commands

Synchronization because of total order according to timestamps
Failure not considered

Outline

- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior

Anomalous Behavior

e Imagine a game of telephone

o Person A --issues request on computer (A)

o Person A telephones person B (in another city)

o Person Atells Person B to issue a different request on computer (B)
e Anomalousresult

o Person B’s request can have a lower timestamp than A

o Bcanbeordered before A

o Apreceded B, but the system has no way to know this

e Precedence information is based on messages external to system

Strong Clock Condition

Strong Clock Condition. For any events a, b in ¥:
if a = b then C(a) < C(b).

This is stronger than the ordinary Clock Condition be-
cause —» is a stronger relation than —. It is not in general
satisfied by our logical clocks.

Outline

- Physical Clocks to Remove Anomalous Behavior

Physical Clocks

e Introduce physical time to our clocks
e Needstorun at approximately correct rate
o Clocks can'’t get too out-of-synch
e We put bounds on how out-of-synch clocks relative to each other

¥ ssedosd

& ssedoxd

* 3

———]

9

L Clocks

Physica

Impact: Global State Intuition

Global State Detection and Stable Properties

e Must not affect underlying computation c1
e Stable property detection

o Computation terminated

o System deadlocked
e Consistent cuts

o Checkpoint / facilitating error recovery
e Algorithm components

o Cooperation of processes
o Token passing

process

C3 channel

Drawbacks -- “Eventually”
e CAP

O

Consistency

o Availability
o Partition Tolerance
e COPS
o Clusters of Order-Preserving Services
o Don't settle for eventual
o Causal+ consistency
o ALPS

m Availability

m (Low)Latency

m Partition Tolerance
m Scalability

If every process which is granted the
resource eventually releases it, then every request is
eventually granted.

Drawbacks -- Handling Failures

D ¥ B gy 7o AL T E T 8 B O B TR B

e Byzantine generals problem i e S
How do reliable computer systems % »

handle failing components?
o Particularly, components giving conflicting

information
e Majority voting _
o “Commander” - input generator o s e O SIS (b T S

o “Generals” - processors (loyal ones are
non-faulty)

Drawbacks -- Handling Failures

e Implementing fault-tolerant services using the
State Machine Approach
Byzantine failure and fail-stop
Service only as tolerant as processor executing —
o Replicas (multiple servers that fail independently)
o Coordination between replicas
e State machine

o Statevariables
o Commands

Fred Schneider

Drawbacks -- Every Process

e Process must communicate with all other processes

e Schneider deals with this
o Replica-generated identifier approach
m Nextclass
m Nutshell: Communication only between processors running the client and SM
replicas

ack

T°:P1 T] :P1

Drawbacks -- Implementation

e Theoryonly
o Useful for reasoning about distributed systems
o But, gap between theory and practice

e Moderndistributed systems require more
o Physical time
o Network Time Protocol (NTP) syncing

Other Types of Clocks

1988: Vector clocks (DynamoDB)

2012: TrueTime (Spanner)

2014: Hybrid Logical Clocks (CockroachDB)
2018: Sync NIC clocks (Huygens)

Referenced Works

e Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of the ACM,
Volume 21, Number 7, 1978.

e K.Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global States of Distributed Systems. ACM
Transactions on Computer Systems, Volume 3, Number 1, 1985.

e K.Mani Chandy and Jayadev Misra. How Processes Learning. ACM, 1985.
Leslie Lamport, et. al. The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems,
Volume 4, Number 3, 1982.

e Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM
Computing Surveys, Volume 22, Number 4, 1990.

e Sandeep S. Kulkarni, et. al. Logical Physical Clocks. M. Principles of Distributed Systems, 2014
Wyatt Lloyd, et. al. Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. SOSP,
2011.

e Yilong Geng, et. al. Exploiting a Natural Network Effect for Scalable Fine-grained Clock Synchronization. Proceedings
of the 15th USENIX Symposium on Networked Systems Design and Implementation, 2018.

Questions?

e How can we conceive of synchronization in modern, heterogeneous data centers?
e How can we achieve synchronization using commodity hardware
e What does “consistency” even mean as we move toward real-time computing?

