
Distributed Systems:
Ordering and Consistency

October 11, 2018
A.F. Cooper



Context and Motivation

● How can we synchronize an 
asynchronous distributed system?

● How do we make global state consistent? 
● Snapshots / checkpoints
● Example: Buying a ticket on Ticketmaster



Leslie Lamport
● MIT / Brandeis

● Industrial researcher

● “Father” of distributed computing

● Paxos

● “Time, Clocks, and the Ordering of Events in a 

Distributed System” (1978)
○ Test of time award

○ 11,082 citations (Google Scholar)

● Turing Award (2013) for LateX (notably, not for 

Paxos)
○ Ken Birman was the ACM chair when Paxos 

paper submitted



Takeaways

● What is time?
● What does time mean in a distributed system?
● In a distributed system, how do we order events such that we can get a 

consistent snapshot of the entire system state at a point in time?
○ Happened before relation

○ Logical clocks, physical clocks

○ Partial and total ordering of events



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Model of a Distributed System
Included:

● Process: Set of events, a priori total ordering (sequence)
● Event: Sending/receiving message
● Distributed System: Collection of processes, spatially separated, communicate 

via messages
○ How do you coordinate between isolated processes?

Not Included:

● Global clock



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Happened Before and Partial Ordering

● Used to thinking about global clock time (a total order / timeline)
○ I read a recipe, then I cook dinner (in that order)

● Distributed systems
○ Events in multiple places

■ Everyone in class, each living in a tower
■ Communicate via letter

● How do we know how letters ordered when sent?
○ Events can be concurrent
○ No global time-keeper

■ We talk about time in terms of “causality”
● How can we decide we cooked dinner before reading a cookbook?
● No order unless one event “caused” another
● I cook dinner, I send a letter suggesting the cookbook I used, which “caused” another person to 

read the cookbook



Happened Before and Partial Ordering



Happened Before and Partial Ordering

● Another way to say “a happens before 
b” is to say that “a causally affects b”

● Concurrent events do not causally 
affect each other



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Logical Clocks and the Clock Condition

● We need to assign a sort of “timestamp” to events to order them

● We therefore need a clock (of some kind)
○ Earlier example: What “time” did I eat dinner? What “time” did you read the cookbook?

● A logical clock assigns a “timestamp” (a counter) to events



Logical Clocks and the Clock Condition

● A counter, rather than a real timestamp
● No relation to physical time (for now)



Logical Clocks and the Clock Condition



Logical Clocks and the Clock Condition



Logical Clocks and the Clock Condition



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Total Ordering
● Need a total order that everyone can 

agree on

○ May not reflect “reality” 

○ I ate first or second, you read cookbook 

first or second, or concurrently

● Order events by the time at which 

they occur

● Break ties semi-arbitrarily (by process 

id -- establish a priority among 

processes)

● Not unique; depends on system of 

clocks



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Mutual Exclusion

● Single resource, many processes
● Only one process can access resource at a time

○ E.g., only one process can send to a printer at a time
● Synchronize access
● FIFO granting / releasing of access to resource
● If every process granted the resource eventually releases it, then every request 

is eventually granted (we’ll come back to this “eventually”)



Mutual Exclusion



Mutual Exclusion



Mutual Exclusion



Mutual Exclusion



Mutual Exclusion

● Distributed algorithm
○ No centralized synchronization

● State Machine specification
○ Set of commands (C), set of states (S)

○ Relation that executes on a command and a state, returns a new state

■ Prior example:

● Commands: Request resource, release resource

● States: Queue of waiting request and release commands

● Synchronization because of total order according to timestamps
● Failure not considered



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Anomalous Behavior

● Imagine a game of telephone
○ Person A -- issues request on computer (A)

○ Person A telephones person B (in another city)

○ Person A tells Person B to issue a different request on computer (B) 

● Anomalous result
○ Person B’s request can have a lower timestamp than A

○ B can be ordered before A

○ A preceded B, but the system has no way to know this

● Precedence information is based on messages external to system



Strong Clock Condition



Outline

- Model of distributed system
- Happened Before relation and Partial Ordering
- Logical Clocks and The Clock Condition
- Total Ordering
- Mutual Exclusion
- Anomalous Behavior
- Physical Clocks to Remove Anomalous Behavior



Physical Clocks
● Introduce physical time to our clocks
● Needs to run at approximately correct rate

○ Clocks can’t get too out-of-synch
● We put bounds on how out-of-synch clocks relative to each other



Physical Clocks



Impact: Global State Intuition



Global State Detection and Stable Properties

● Must not affect underlying computation
● Stable property detection

○ Computation terminated

○ System deadlocked

● Consistent cuts
○ Checkpoint / facilitating error recovery

● Algorithm components
○ Cooperation of processes

○ Token passing



Drawbacks -- “Eventually”
● CAP

○ Consistency

○ Availability

○ Partition Tolerance

● COPS
○ Clusters of Order-Preserving Services

○ Don’t settle for eventual

○ Causal+ consistency

○ ALPS

■ Availability

■ (Low) Latency

■ Partition Tolerance

■ Scalability



Drawbacks -- Handling Failures

● Byzantine generals problem
● How do reliable computer systems 

handle failing components?
○ Particularly, components giving conflicting 

information

● Majority voting
○ “Commander” - input generator

○ “Generals” - processors (loyal ones are 

non-faulty)



Drawbacks -- Handling Failures
● Implementing fault-tolerant services using the 

State Machine Approach
● Byzantine failure and fail-stop
● Service only as tolerant as processor executing → 

○ Replicas (multiple servers that fail independently)

○ Coordination between replicas

● State machine
○ State variables

○ Commands

Fred Schneider



Drawbacks -- Every Process

● Process must communicate with all other processes

● Schneider deals with this
○ Replica-generated identifier approach

■ Next class
■ Nutshell: Communication only between processors running the client and SM 

replicas



Drawbacks -- Implementation

● Theory only
○ Useful for reasoning about distributed systems

○ But, gap between theory and practice

● Modern distributed systems require more
○ Physical time

○ Network Time Protocol (NTP) syncing 



Other Types of Clocks

● 1988: Vector clocks (DynamoDB)
● 2012: TrueTime (Spanner)
● 2014: Hybrid Logical Clocks (CockroachDB)
● 2018: Sync NIC clocks (Huygens)



Referenced Works

● Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of the ACM, 
Volume 21, Number 7, 1978.

● K. Mani Chandy and Leslie Lamport. Distributed Snapshots: Determining Global States of Distributed Systems. ACM 
Transactions on Computer Systems, Volume 3, Number 1, 1985.

● K. Mani Chandy and Jayadev Misra. How Processes Learning. ACM, 1985. 
● Leslie Lamport, et. al. The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems, 

Volume 4, Number 3, 1982.
● Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM 

Computing Surveys, Volume 22, Number 4, 1990. 
● Sandeep S. Kulkarni, et. al. Logical Physical Clocks. M. Principles of Distributed Systems, 2014
● Wyatt Lloyd, et. al. Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS. SOSP, 

2011.
● Yilong Geng, et. al. Exploiting a Natural Network Effect for Scalable Fine-grained Clock Synchronization. Proceedings 

of the 15th USENIX Symposium on Networked Systems Design and Implementation, 2018. 



Questions?
● How can we conceive of synchronization in modern, heterogeneous data centers?
● How can we achieve synchronization using commodity hardware
● What does “consistency” even mean as we move toward real-time computing?


