
Remote Procedure Calls

Taiyang Chen

10/06/2009

Overview

  Remote Procedure Call (RPC): procedure call
across the network

  Lightweight Remote Procedure Call (LPRC):
procedure call across domains

RPC Outline

  Background
  History
  Environment

  Motivation and Goals
  Design
  Implementation

  Binding
  Packet Transport
  Optimizations

  Performance
  Conclusions

History

  Idea back in 1976
  Courier by Xerox in 1981

  First business use

  Sun RPC
  Sun Network File System in 1984
  Now Open Network Computing RPC
  Implementation on Unix-like systems and Windows

  A. D. Birrell and B. J. Nelson in 1984
  Nelson's doctoral thesis

Environment

  Dorado machines (your own IBM 370/168
workstation)

  3/10Mbps Ethernet
  Standard PUP protocol: unreliable datagram,

reliable byte streams
  Cedar: programming environment for building

systems and programs
  Mesa: strongly typed programming language

Motivation and Goals

  Distributed computing
  Simple distributed applications using RPC

  Powerful interface
  Ease of building RPC, like a procedure call

  Efficient calls
  Secure communication

  Not yet, but possible

Design Decisions

  Same semantics to local procedure call
  Procedure call vs message passing

  Reliable and efficient transmission
  Arguments and results
  Network security
  Mesa

  No shared addresses
  Paging system
  High cost, even today

From Local Procedure Call...

To Remote Procedure Call

Components

  User/Server: caller/callee process
  Stub: packing and unpacking procedures and

arguments, auto-generated by Lupine
  RPCRuntime: transport layer
  Network: PUP
  Interface: Mesa module defining procedure

names, arguments and results
  Importer
  Exporter

Implementation

  Binding
  Packet Transport
  Optimizations

Binding

  Naming
  Type
  Instance

  Location
  Grapevine: distributed database for binding
  Key = RName
  Entry = Individual or Group
  Group = Set of RNames (Types)
  Individual = Connect-site (Instance)

Interface

  Server uses ExportInterface(type, instance,
procedure)

  Client uses ImportInterface(type, [instance])

Look-up Table

  Unique binding identifier

Binding Overview

Binding: ExportInterface

Binding: ImportInterface

Binding

Packet Transport

  No specialized package-level protocol
  Unsatisfactory experiments

  Small packets
  Minimizing elapsed call time
  No large data transfers

  One call, one return (or exception)

Transport Types

  Simple call: all arguments fit in one packet
  Complicated call: need to split into multiple

packets

Simple Call

  Two packets
  Retransmission and Acknowledgement

Call Details

  Call ID
  Activity: one outstanding remote call

-  Machine ID
-  Process ID

  Sequence Number: monotonic (global counter)

Look-up Table

  Unique binding identifier
  Call identifier

Complicated Call

  Probe packet
  Acknowledge all but the last packet

Exception Handling

  Signals
  Dynamically scanning Mesa runtime system

  Exception packet
  Handled by RPCRuntime

Optimizations

  Idle server processes
  Process identifier swap

  Bypassing software layers
  Modified network driver to treat RPC packets
  RPC = Dominant
  CHEATING

Performance

RPC Summary

  Advantages
  Simple distributed interface for programmers
  Portable (different stub generators)
  Secure (future work)

  Disadvantages
  Error handling: special network cases
  Performance: two orders of magnitude slower than

local procedure calls

ONC RPC (RFC 1831)

  Binding independent
  Language interfaces

  Transport independent
  Network protocols

  Authentication
  Asynchronous batching

RPC Conclusions

  Small code base (~2,200 lines)
  Distributed computing
  Bulk data transfer
  Security

  Grapevine authentication
  Packet data encryption

LRPC Outline

  Background
  History
  Environment

  Motivation and Goals
  Design

  RPC problems
  RPC optimizations
  LPRC design

  Implementation
  Binding
  Calling
  Interfaces and stubs

History

  B. N. Bershad, T. E. Anderson, E. D. Lazowska
and H. M. Levy in 1990

  Exokernel in 1995
  LPRC in ExOS based on Aegis's protected control

transfer
  More efficient than the Fastest RPC (259 µs vs 340

µs)
  Tornado in 2003

  Protected Procedure Call (PPC)
-  Clustered Object call: client and server clustered objects
-  Stub Generator
-  Remote PPC: remote interrupts

Environment

  DEC SRC Firefly multiprocessor workstation
  5 MicroVAX II CPUs (1 MIPs each)
  16MB memory

  SRC Firefly RPC
  Inferior performance to LRPC (464 µs vs 157µs for

the simplest cross-domain call)
  Modula2+: strongly typed programming

language, influenced by Mesa

Firefly RPC

  Close to Cedar RPC
  Grapevine is now a global call table
  Transport: UDP/IP
  Improvements

  Direct thread wakeup from the Ethernet interrupt
  Retaining packet buffer instead of UID
  Same address space for packet buffer, Ethernet

driver and interrupt handlers, sacrificing security
  Special Ethernet operations in assembly language

LRPC Motivation

  RPC performance across domains is
disappointing

  Most communication traffic are...
  Cross-domain on the same machine

-  Cross-machine activity is very low on most systems
  Simple, small values

-  Most procedure calls incur fewer than 50 bytes of
parameters

  Independent threads exchanging large
messages

LRPC Goals

  Performance, safety and transparency
  Simple control transfer: execution within server

domain
  Simple data transfer: shared argument stack
  Simple stubs: optimized
  Concurrency: no locking

LRPC Design

  Problems in Cross-Domain RPC
  RPC Optimizations (for the above)
  LRPC = PPC + RPC

Problems in Cross-Domain RPC

  Stub overhead
  Message buffer overhead
  Access validation
  Message transfer
  Scheduling
  Context switch
  Dispatch

RPC Optimizations

  Shared buffer region
  Handoff scheduling

  Direct context switch

  Passing arguments in register

LRPC = PPC + RPC

  PPC
  Call to server procedure is a kernel trap
  Kernel does validation and dispatches client thread

to the server domain
  RPC

  Similarity
-  Binding
-  Interfaces and stubs

  Improvement
-  Calling

Binding

  Kernel
  Validation: Grapevine
  Linkage record: RPC's look-up table

  Clerk
  Argument passing: RPCRuntime
  Procedure descriptor list (PDL)
  Argument stack (A-stack): mapped read-write and

shared by both domains
  Binding Object: unique identifier

Interfaces and Stubs

  Interfaces written in Modula2+
  Stub generation in simple assembly language
  Portability

Calling

Kernel Server Stub

User Stub

Client Domain Server Domain

Binding Object

A-stack

E-stack

Verification

Linkage Record

Thread Control Block

Domain Transfer

Calling Details

  User stub
  Traps a new A-stack, Binding Object and procedure

ID into kernel
  Verification

  Binding and procedure ID, finds Procedure
Descriptor (PD)

  A-stack, finds linkage record
  No other thread is using current A-stack/linkage

record
  Linkage Record

  Caller return address and current stack point
  Stored in caller's thread control block

  Domain Transfer

Multiprocessing

  Caching domain contexts on idle processors
(similar idea to RPC)

  Reduces TLB misses
  Process tag

Other Considerations

  Checking cross-machine calls
  Dynamic A-stack resizing
  Exception handling

  Termination any time
  Revoking Binding Object
  Asynchronous termination

Performance

LRPC Summary

  Advantages
  Efficient cross-domain RPC
  Safety using protection calls

  Disadvantages
  Exception handling is more complicated than RPC

(revoking Binding Object)
  Heavy dependence on kernel verification (end-to-

end)

LRPC Conclusions and Comparison

  LRPC improves performance over RPC on
same-machine, cross-domain calls

  Sufficient evidence that most calls are same-
machine in practice

  LRPC has better security
  RPC is still the general protocol for NFS and

distributed applications

Thank you!

