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� Introduction

��� Context

After my lectures on this topic were delivered in July ���� at Marktoberdorf� my col�
leagues and I made available much more related material both at the Nuprl home page
on the World Wide Web ��the Web�	 �www
cs
cornell
edu�Info�NuPrl�nuprl
html	
and in publications �

�� some soon to appear ����


At the Web site the thesis of Jackson ���� and the article by Forester �
�� are especially
relevant to my lecture
 Also� the ���� Nuprl book is now available on line at the Web
site as is the Nuprl � reference manual and a host of Nuprl libraries


As a result of the ready access to this material and because the material in the Cor�
nell Technical Report series is part of an expanding digital library whose longevity
seems guaranteed� I designed this article to concentrate on the material not available
elsewhere� e
g
 a discussion of the Core Theory and its relation to Nuprl �


A naive account of Core Type Theory is especially simple� and I think it provides a
bridge to understanding the more daunting axiomatization of the Nuprl type theory
which is used in all of the on�line libraries
 This article presents the Core Theory and
relates it to a corresponding part of Nuprl
 Comparisons are made to set theory as a
way to motivate the concepts


��� Types and Sets

The informal language of mathematics uses types and sets� but when mathematicians
want to be rigorous about a concept� they tend to rely on the ��� year old tradition
of reducing it to concepts in pure set theory
 In this article� we will �nd the rigorous
concepts in type theory
 For pedagogical reasons� we will often mention the set theory
version of a concept as well


The idea of a type is built up inductively �as is the Zermelo hierarchical concept of
set	
 We start with primitive types and type constructors


�



The Core Theory needed for Nuprl involves only six type constructors� product� disjoint
union� function space� inductive type� set type� and quotient type
 We need some primitive
types as well� void� unit� Type� and Prop
 I have chosen to add co�inductive types as
well although they are not in Nuprl �


� The Core Theory

��� Primitive Types

void is a type with no elements
unit is a type with one element� denoted �

There will be other primitive types introduced later
 Notice� in set theory we usually
have only one primitive set� some in�nite set �usually �	
 Sometimes the empty set�
�� is primitive as well� although it is de�nable by separation from �


Compound Types We build new types using type constructors
 These tell us how
to construct various kinds of objects
 �In pure set theory� there is only one kind� sets	


The type constructors we choose are motivated both by mathematical and compu�
tational considerations
 So we will see a tight relationship to the notion of type in
programming languages
 The notes by C
A
R
 Hoare� Notes on Data Structuring �
���
make the point well


��� Cartesian Products

If A and B are types� then so is their product� written A � B
 There will be many
formation rules of this form� so we adopt a simple convention for stating them
 We
write

A is a Type B is a Type

A�B is a Type�

The elements of a product are pairs� ha� bi
 Speci�cally if a belongs to A and b belongs
to B� then ha� bi belongs to A�B
 We abbreviate this by writing

a � A b � B

ha� bi � A�B�

In programming languages these types are generalized to n�ary products� say
A� �A� � � � ��An
 They are the basis for de�ning records







We say that ha� bi � hc� di in A�B i� a � c in A and b � d in B


In set theory� equality is uniform and built�in� but in type theory we de�ne equality
with each constructor� either built�in �as in Nurpl	 or by de�nition as in this core
theory


There is essentially only one way to decompose pairs
 We say things like� �take the
�rst elements of the pair P �� symbolically we might say �rst�P 	 or �of�P 	
 We can
also �take the second element of P �� second�P 	 or 
of�P 	


��� Function Space

We use the words �function space� as well as �function type� for historical reasons

If A and B are types� then A � B is the type of computable functions from A to B

These are given by rules which are de�ned for each a in A and which produce a unique
value
 We summarize by

A is a Type B is a Type

A� B is a Type

The function notation we use informally comes from mathematics texts� e
g
 Bour�

baki�s Algebra
 We write expressions like x �� b or x
f
�� b� the latter gives a name to

the function
 For example� x �� x� is the squaring function on numbers


If b computes to an element of B when x has value a in A for each a� then we say
�x �� b	 � A � B
 We will also use lambda notation� ��x�b	 for x �� b
 The informal
rule for typing a function ��x�b	 is to say that ��x�b	 � A � B provided that when
x is of type A� b is of type B
 We can express these typing judgments in the form
x � A � b � B
 The phrase x �A declares x to be of type A
 The typing rule is then

x � A � b � B

� ��x�b	 � A� B

If f� g are functions� we de�ne their equality as

f � g i� f�x	 � g�x	 for all x in A


If f is a function from A to B and a�A� we write f�a	 for the value of the function


�



��� Disjoint Unions �also called Discriminated Unions�

Forming the union of two sets� say x � y� is a basic operation in set theory
 It is basic
in type theory as well� but for computational purposes� we want to discriminate based
on which type an element is in
 To accomplish this we put tags on the elements to
keep them disjoint
 Here we use inl and inr as the tags


A is a Type B is a Type

A�B is a Type

The membership rules are

a � A

inl�a	 � A�B

b � B

inr�b	 � A�B

We say that inl�a	 � inl�a�	 i� a � a� and likewise for inr�b	


We can now use a case statement to detect the tags and use expressions like

if x � inl�z	 then � � � some expression in z � � �
if x � inr�z	 then � � � some expression in z � � �

in de�ning other objects
 The test for inl�z	 or inr�z	 is computable
 There is an
operation called decide that discriminates on the type tags
 The typing rule and
syntax for it are given in terms of a typing judgment of the form E � t � T where is a
list of declarations of the form x� � A�� � � � � xn � An called a typing environment
 The
Ai are types and xi are variables declared to be of type Ai
 The rule is

E � d � A�B E� u � A � t� � T E� v � B � t� � T

E � decide�d�u�t�� v�t�	 � T

��� Subtyping

Intuitively�A is a subtype of B i� every element of A is also an element of B� we write
this relation as A � B
 Clearly � � A for any A
 Notice that A is not a subtype of
A�B since the elements of A in A�B have the form inl�a	
 We have these properties
however

A � A� B � B�

A�B � A� �B�

A�B � A� �B�

A� � B � A� B�

For A � B we also require that a � a� in A implies a � a� in B


�



��	 Inductive Types

De�ning types in terms of themselves is quite common in programming� often pointers
are used in the de�nition �in Pascal and C for example	� but in languages like ML�
direct recursive de�nitions are possible
 For example� a list of numbers� L can be
introduced by a de�nition like

de�ne type L � N � �N � L	�

In due course� we will give conditions telling when such de�nitions are sensible� but
for now let us understand how elements of such a type are created
 Basically a type
of this kind will be sensible just when we understand exactly what elements belong to
the type
 Clearly elements like inl��	� inl��	� � � � � are elements
 Given them it is clear
that inr�h�� inl��	i	� inr�h�� inl��	i	 and generally inr�hn� inl�m	i	 are elements� and
given these� we can also build

inr�hk� inr�hn� inl�m	i	i	 and so forth�

In general� we can build elements in any of the types

N � N � Y
N � N � �N � N � Y 	
N � N � �N � N � �N � N � Y 		

The key question about this process is whether we want to allow anything else in the
type L
 Our decision is no� we want only elements obtained by this �nite process


In set theory� we can understand similar inductive de�nitions� say a set L such that
L � N � �N � L	� as least �xed points of monotonic operators F � Set � Set
 In
general� given such an operator F � we say that the set inductively de�ned by F is the
least F	closed set� call it I�F 	
 We de�ne it as

I�F 	 � 
fY jF �Y 	 � Y g�

We use set theory as a guide to justify recursive type de�nitions


For the sake of de�ning monotonicity� we use the subtyping relation� S � T 
 This
holds just when the elements of S are also elements of T � and the equality on S and
T is the same
 For example�

if S � T then N � N � S � N � N � T 


�



Def� Given a type expression F � Type � Type such that if T� � T� then F �T�	 �
F �T�	� then write �X�F �X	 as the type inductively de�ned by F


To construct elements of �X�F �X	� we basically just unwind the de�nition
 That is�

if t � F ��X�F �X		 then t � �X�F �X	


We say that t� � t� in �X�F �X	 i� t� � t� in F ��X�F �X		


The power of recursive types comes from the fact that we can de�ne total computable
functions over them very elegantly� and we can prove properties of elements recursively

Recursive de�nitions are given by this term�

�	ind�a� f� z�b	

called a recursor or recursive�form
 It obeys the computation rule

�	ind�a� f� z�b	 evaluates in one step to
b�a�z� �y �� �	ind�y� f� z�b		�f �


�Note in this rule we use the notation b�s�x� t�y� to mean that we substitute s for x
and t for y in b
	

typing

The way we �gure out a type for this form is given by a simple rule
 We say that

�	ind�a� f� z�b	 is in type B

�



provided that a � �X�F �X	� and if when Y is a Type� and Y � �X�F �X	� and z
belongs to F �Y 	� and f maps Y to B� then b is of type B


induction

The principle of inductive reasoning over �X�F �X	 is just this


�	induction

Let R � �X�F �X	 and assume that Y is a subtype of R and that for all x in Y � P �x	
is true
 �This is the induction hypothesis
	 Then if we can show �z � F �Y 	�P �z	� we
can conclude

�x � R�P �x	�

With this principle and the form �	ind� we can write programs over recursive types
and prove properties of them
 The approach presented here is quite abstract� so it
applies to a large variety of speci�c programming languages
 It also stands on its own
as a mathematical theory of types


typing rules

We will write these informal rules as inference rules
 To connect to the Nuprl ac�
count I will use its notation which is rec�X�T 	 for �X�T and rec ind�a� f� z�b	 for
� ind�a� f� z�b	
 In our Core Type Theory� recursive types are written as �X�T where
� stands for the least �xed point operator
 This is perhaps more standard notation�
however� rec�X�T 	 is the Nuprl syntax and is mnemonic


Here is the rule which says rec�X�T 	 is a type using a sequent style presentation of
rules�

E�X � Type � T � Type

E � rec�X�T 	 � Type

For example� we can derive rec�N��� ��N	 is a type as follows�

� � � Type
� � � Type E�N � Type � N � Type

E � ��N � Type

E�N � Type � ��� ��N	 � Type

E � rec�N��� ��N	 � Type

Remember that � is a primitive type
 This type is essentially �� list
�

To introduce elements we use the following rule of unrolling�

E � t � T �rec�X�T 	�X�
E � t � rec�X�T 	

�



Here are some examples on in rec�N��� ��N	
 Recall that type � � f�g


The nil list is derived as�

� � � �

N � Type � inl��	 � �� rec�N��� ��N	
� inl��	 � rec�N�� � ��N	

Lists are derived as�

� � � � � inl��	 � rec�N��� ��N	
� pair��� inl��		 � � � rec�N��� ��N	

� inr�pair��� inl��			 � �� �� rec�N��� ��N	
� inr�pair��� inl��			 � rec�N��� � �N	

To make a decision about� for example� whether l is nil or not� unroll on the left�

E� l � �� �� rec�N��� ��N	 � g � G

E� l � rec�N��� � �N	 � g � G

recursion combinator typing

This version of recursive types allows �primitive recursion� over recursive types also
called the natural recursion
 The Nuprl syntax is

rec ind�t� f� z�g	

The usual convention for the syntax also applies here� t and g are two sub�terms and g
is in the scope of two binding variables f and z
 �We de�ne the recursion combinator
to be ��x�rec ind�x� f� z�g		
	

For evaluation� we recall the computation rule�

rec ind�t� f� z�g	�� g�t�z� ��w�rec ind�w� f� z�g�f		�

called 	 reduction
 We don�t evaluate t� but simply substitute it into g


Typing of the recursion combinator is the key part�

E � t � rec�X�T 	 E�X � Type� z � T� f � X � G � g � G

E � rec ind�t� f� z�g	 � G

Where is the induction� It�s in the top right�hand side
 For sanity check� unwind�
rec ind�t� f� z�g	 � G reduces to g�t�z� ��w�rec ind�w� f� z�g�f		� � G
 As we expect�
g � G� z and y have the same type� f is a function from elements of recursive type to
G
 Then we bottom out on X
 Thus X in f � X � G is the key part


The longer you know this rule� the clearer it gets
 It summarizes recursion in one rule


�



de�nition of ind using rec ind

Here is how to de�ne a natural recursion combinator on N� call it ind�n� b�u� i�g	� using
rec ind�	
 Let�s say how this behaves
 The base case is�

ind��� b�u� i�g	� b

The inductive case is�

ind�succ�n	� b�u� i�g	� g�n�u� ind�n� b�u� i�g	�i�

We combine the base and the inductive cases into one rule as follows�

E � n � N u � N� i � G�u�x� � g � G�succ�u	�x�
E � ind�n� b�u� i�g	 � G�n�x�

To derive this rule for ind we can encode N into � list�

�
 � � f�g



 � � inl��	

�
 We can de�ne the successor of m as succ�m	 � inrh��mi

�
 N is isomorphic to rec�N�� � ��N	

This presentation of N doesn�t have any intrinsic value� it�s just a way to look at N
�for an alternative presentation try deriving ind from rec�N� � �N		
 It gives us an
existence proof for the class of natural numbers


Given the above setup� we want to derive the rule for ind�

E � n � N E � b � G���x� E� u � N� i � G�u�x� � g � G�succ�u	�x�
E � ind�n� b�u� i�g	 � G�n�x�

using the rule of rec ind�

E � t � rec�X�T 	 E� X � Type� x � T� f � �y � X � G�y�x�	 � g � G

E � rec ind�t� f� x�g	 � G�t�x�

Notice the following facts in the above two rules�

� In the rule for induction the �rst hypothesis denotes that we are doing induction
over the natural nymbers� the second one is the base case of this induction �notice
that we substitute x by zero	 and the third is the induction hypothesis� by which
we prove the fact for the successor of u assuming it for u


� In the rule for recursive�induction x should be of type T �which is the body of the
recursive type	
 This is because we want to be able to compute the predecessors
of x


�



If we want to indicate the new variables we use in the recursive induction rule we write
the rule adding this information�

E � t � rec�X�T 	 E� X � Type� x � T� f � �y � X � G�y�x�	 � g � G

E � rec ind�t� f� x�g	 � G�t�x�

This is an elegant induction form describing any possible recursive de�nition


Lets see how this works in the case of building the ind rule
 We constuct a �g from
g� so that if we use �g in rec ind we will derive ind�n� b�u� i�g	
 Before we present �g�
lets try to get a bit of the intuition
 The most important part of the ind rule is its
induction hypothesis
 We want to specialise the rec ind rule so that we can pull out
and isolate this induction hypothesis


The idea is the following�

Let i be the function f applied to u� i � f�u	� where u is the predecessor
of x we are looking at
 We can get this predecessor u �as we have already
noticed before	 by using the hypothesis x � T and by decomposing x


For example� if T is the type of � list� then T � ����N 
 We do a case split and we
get two cases� in the �rst case we get � which represents zero� and in the second case
we get ��N which is the successor
 We can construct �g� given g of the ind form� by
taking a close look at the structure of x�

� T is a disjunct �and� hence� �g is a decide	�

� T �s inl side has the zero� so we need it as the base case �which is b	 and

� T �s inr side is a pair which we want to spread and use
 In the spread� u will
denote the predecessor of x


It seems that the following form for �g can give us all we need�

�g � decide�x� z�b� p�spread�p� �� u�g�f�u	�i�		

As an exercise you can prove that �g � G �hint � use the fact that b � G���x�	


We know that
b � G�inl��	�x�

Also
y � X and f � X � G�y�x�

so
x � inr�pair��� u		

which means
x � succ�u	�

So in fact we are doing the substitution G�succ�u	�x� and� thus g � G�succ�u	�x�


��



We leave to the reader to carry out the simple type�checking �applying the rules for
decide and spread to this de�nition	
 The interesting point is that in �g � G� we are
building up x either as inl��	 or as inr�pair��� u		� in one case this is G���x� and in
the other G�succ�x	�x�


We have now shown that we have built the natural induction form for integers from
the recursion combinator


��
 Co�inductive Types

The presentation of inductive types is from Nax Mendler�s ���� thesis �Inductive
De�nitions in Type Theory	 and writings
 Nax discovered a beautiful symmetry in
the type de�nition process and used it to de�ne a class of types that are sometimes
called �lazy types� �see Thompson book� Type Theory and Functional Programming

����	
 Essentially co�inductive types arise by taking maximal �xed points of monotone
operators
 The standard example is a stream� say of numbers

de�ne type S � N � S


The elements of this type are objects that generate unbounded lists of numbers ac�
cording to a certain generation law
 The generators are recursively de�ned and have
the form


	ind�a� f� z�g	

much like the recursors


Here is how the types are de�ned


De�nition Given a monotone operator F on types� 
X�F �X	 is a type� called the
co�inductive type generated by F 


An element of 
X�F �X	 is de�ned from the generator 
	ind�a� f� z�b	
 This is well
de�ned under these conditions�

Given a type D� the seed type� if d�D and Y is a type such that 
X�F �X	 � Y with
f � D � Y and z�D then b�F �Y 	�

then 
	ind�d� f� z�b	 � 
X�F �X	


For example� if we call 
Y�N�Y a Stream� then 
	ind�k� f� z�hz� f�z��	i	 will generate
an unbounded sequence of numbers starting at k


��



In order to use the elements of a co�inductive type� we need some way to force the
generator to produce an element
 This is done with a form called out
 It has this
property�

If t � 
X�F �X	
then out�t	�F �
X�F �X		


This form obeys the following computation rule


out�
	ind�d� f� z�b		
evaluates to b�d�z� �y �� 
	ind�y� f� z�b	�f �


��� Subset Types and Logic

One of the most basic and characteristic types of Nuprl is the so�called set type or
subset type� written fx �A jP �x	g and denoting the subtype of A consisting of exactly
those elements satisfying condition P 
 This concept is closely related to the set theory
notion written the same way and denoting the �subset� of A satisfying the predicate
P 
 In axiomatic set theory the existence of this set is guaranteed by the separation

axiom
 The idea is that the predicate P separates a subset of A as in the example of
say the prime numbers� fx �N j prime�x	g


To understand this type� we need to know something about predicates
 In axiomatic
set theory the predicates allowed are quite restrictive� they are built from the atomic
membership predicate� x � y using the �rst order predicate calculus over the universe
of sets
 In type theory we allow a di�erent class of predicates � those involving
predicative higher�order logic in a sense
 This topic is discussed in many articles and
books on type theory ���� ��� ��� ��� �
� ��� and is beyond the scope of this article� so
here we will just assume that the reader is familiar with one account of propositions�
as�types or representing logic in type theory


The Nuprl style is to use the type of propositions� denoted Prop
 This concept is
strati�ed into Propi as in Principia Mathematica� and it is related by the propositions�
as�types principle to the large types such as Type
 Propi are indeed considered to be
a �large types
� �See ���� for an extensive discussion of this notion
	 For the work we
do here we only need the notions of Type and Prop which we take to be Type� and
Prop� in the full Nuprl theory


�




The point of universes or large types is that they allow us to use expressions like
Type� A � Type� A � Type� Type � Type� etc
 as if they were types except that
Type � Type is not allowed
 Instead� when we need such a notion we must attend
to the level numbers used to stratify the notions of Type and Prop
 We can say
Typei � Typej if i � j� and Typei � Typej when i � j


Thus the objects of mathematics we consider include propositions
 For example�
� � � in N and � � � are true propositions about the type N � so � � � � Prop and
� � � � Prop
 We also consider propositional forms such as x �N y or x � y
 These
are sometimes called predicates


Propositional functions on a type A are elements of the type A� Prop


We also need types that can be restricted by predicates such as fx � N jx � � or
x � �g
 This type behaves like the Booleans


The general formation rule is this
 If A is a type and B � A� Prop� then fx � AjB�x	g
is a subtype of A


The elements of fx � AjB�x	g are those a in A for which B�a	 is true


Sometimes we state the formation in terms of predicates� so if P is a proposition for
any x in A� then fx � AjPg is a subtype of A
 We Clearly have fx � AjPg � A


��
 Dependent types and modules

We will be able to de�ne modules and abstract data types by extending the existing
types in a simple but very expressive way � using so�called dependent types


dependent product

Suppose you are writing a business application and you wish to construct a type
representing the date�

Month � f�� � � � � �
g

Day � f�� � � � � ��g

Date � Month �Day

We would need a way to check for valid dates
 Currently� h
� ��i is a perfectly legal
member of Date� although it is not a valid date
 One thing we can do is to de�ne

Day��	 � f�� � � � � ��g

Day�
	 � f�� � � � � 
�g





Day��
	 � f�� � � � � ��g

��



and we will now write our data type as

Date � m � Month�Day�m	�

We mean by this that the second element of the pair belongs to the type indexed by
the �rst element
 Now� h
� 
�i is a legal date since 
� � Day�
	� and h
� ��i is illegal
because �� �� Day�
	


Many programming languages implement this or a similar concept in a limited way

An example is Pascal�s variant records
 While Pascal requires the indexing element to
be of scalar type� we will allow it to be of any type


We can see that what we are doing is making a more general product type
 It is very
similar to A�B
 Let us call this type prod�A�x�B	
 We can display this as x � A�B

The typing rules are�

E � a � A E � b � B�a�x�
E � pair�a� b	 � prod�A�x�B	

E � p � prod�A�x�B	 E� u � A� v � B�u�x� � t � T

E � spread�p�u� v�t	 � T

Note that we haven�t added any elements
 We�ve just added some new typing rules


dependent functions

If we allow B to be a family in the type A � B� we get a new type� denoted by
fun�A�x�B	� or x �A� B� which generalizes the type A� B
 The rules are�

E� y �A � b�y�x� � B�y�x�

E � ��x�b	 � fun�A�x�B	
new y

E � f � fun�A�x�B	 E � a � A

E � ap�f � a	 � B�a�x�

Example � � Back to our example Dates
 We see that m �Month � Day�m� is just
fun�Month�m�Day	� where Day is a family of twelve types
 And ��x�maxday�x�	 is
a term in it


� Equality and Quotient Types

According to Martin�L�of�s semantics� a mathematical type is created by specifying
notation for its elements� called canonical names� and specifying our equality relation
on these names
 The equality relation can be an equivalence relation
 This relation is
one feature that distinguishes mere notation from the more abstract idea of an object�
i
e
 from notation with meaning
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For example� sets of ordered pairs of integers� hx� yi can be used as constants for ratio�
nal numbers
 In this case� the equality relation should equate h
� �i and h�� 
i� generally
ha� bi � hc� di i� a 
 d � b 
 c
 Similarly� let Z�mod n denote the congruence integers�
i
e
 the integers with equality taken mod n so that x � y mod n i� n divides �x	 y	

The only di�erence between Zand Z�mod n is the equality relation on the integer
constants


Following Beeson ��� we might speak of the constants without an equality relation as a
pre�type
 Then a type arises by pairing an equality with a pre�type� say hT�Ei where
E is an equivalence relation on T 
 But when we think of functions on a type� say
f � Q� Q� we do not expect equality information to be included as part of the input
to f 
 The �data� comes from T 
 This viewpoint is thus similar to Martin�L�of�s as
long as we provide a way to de�ne new types by changing the equality relation on data
and keeping the equality information �hidden� from operations on the type
 This is
accomplished by the quotient type


To form a quotient type we need a type T and an equivalence relation E on T 
 The
quotient of T by E is denoted T��E
 �Nuprl uses a slightly more  exible notation as
we see in section �
	 The elements of T��E are those of T but equality is de�ned by
E and denoted x � y in T��E
 For example the rational numbers can be taken to be
�Z� N�	��E where

E�hx� ni� hy�mi	 i� m 
 x � n 
 y�

It is noteworthy that because the equality information is �hidden� we cannot in general
say

x � y in T��E implies E�x� y	

under the propositions�as�types interpretation of implication


Type theory can express the logical idea that given x � y in T��E we know that
E�x� y	 is �true� in the sense that there is a proof of E�x� y	 but we cannot access it

One way to say this is to replace the predicate E�x� y	 by the weaker type f�jE�x� y	g

We call this the �squashed type
� If E�x� y	 is true then this type� call it sq�E�x� y		
has � as member according to our rules for the set type
 If E�x� y	 is not true� then
sq�E�x� y		 is empty
 We can thus say

x � y in T��E implies sq�E�x� y		�

� A Nuprl Type Theory

In this section we look at some features of the Nuprl type theory
 The �rst section
is a discussion of the uniform syntax of Nuprl � terms
 The second section considers
Allen�s semantics ��� �� for Nuprl without recursive types
 Mendler ���� provides a
semantics for recursive types as well� but it is more involved than what we present
here
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��� Nuprl Term Syntax

Following Frege� Church� and Martin�L�of� we take the basic unit of notation to be a
term
 A formula for a sentence� �x � int� x� � �� is a term as is the expression for the
square of a number� x�


We will distinguish the concrete syntax or the display form of a term from its abstract
structure


����� abstract structure of terms

What are the constituent parts of a term�

operator name

In our analysis a term is built from an operator and subterms
 We choose to name
the operator� so there is some means of �nding an operator name
 This seems to be
convenient for computer processing and helps in the conduct of mathematics as well

Informal practice sometimes settles for a glyph or symbol as the operator name� e
g

R



subterms

Given a term� there must be a �nite number of subterms
 These could be collected as a
list or a multi�set �bag	
 In many cases� say a

b
� it is not clear how to order the subterms

a and b
 But there must be a way to address �or locate	 uniquely each subterm
 We
have chosen to list the subterms


binding structure

We know that mathematical notation for sentences can be de�ned with combinators

which do not introduce an idea of binding


We adopt the analysis of notation based on binding
 So with each operator there is a
binding mechanism
 Informal mathematics uses many di�erent mechanisms� but we
will attempt to analyze all of them as �rst�order
 That is� the binding structure can
be de�ned by designating a class of �rst order variables� i
e
 just identi�ers� as binding
occurrences
 The generic form of an operator with binding structure is

opx� �����xn�t�� � � � � tm	

where xi are �rst order variables and tj are terms
 The binding structure is speci�ed
by saying which of the xi is bound in which tj
 This could be done graphically as in

opx�y�z�ax�y� by�z� cx�z	

In Nuprl we have chosen to use the form

op�x� y� ax�y� y� z� by�z�x� z� cx�z	�

because it is a simple way to represent the general binding structure described above
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����� operations on terms

The common operations on terms are these


�
 Create an operator




 Provide displays for terms built with an operator


�
 Navigate to subterms


�
 Replace a free variable with a term


�
 Rename bound variables


�
 Substitute a term for a free variable using renaming to avoid capture


The behavior of substitution should satisfy a number of criteria beyond being mathe�
matically correct
 We expect any required renaming of bound variables to behave in a
predictable manner
 It should be possible to easily understand the renaming process
in ways that a�ect computation and reasoning


����� Nuprl term structure

The term structure of Nuprl � evolved from experience with Martin�L�of�s type theory
and Nuprl �
 We made the earlier term structure more uniform and more general


terms

A term has the form
op�!v�� t�� � � � � !vn� tn	

where !vi is a list of identi�ers whose scope is the subterm ti
 These !vi are lists of
binders
 If !vi is empty then it and the dot separating binders from terms are not
written
 The component op is the operator� it is not a subterm


If opa� opb� opc are operators and t� ti are terms� then here are examples of terms


opa�x� t	
opb�x� y� t�� y� z� t�� x� z� t�	
opc�t�� x� t�� x� y� t�	

��



operators

Operators are themselves compound objects
 Their form is

opnamefi� � f�� � � � � in � fng

These were introduced to express families of operators such as universes� Ui� and the
injection of natural numbers
 These are written as

universefi � posg
natural numberfu � natg
variablefv � stringg�

We call the ij an index and the fi an index family name�

alternatives � �calculus with operator names

Another representation of terms that is natural is based on using the lambda calculus
to de�ne all binding ����
 For example� �x � A� B�x	 would be represented as all��x �
A� B�x		
 And spread�p�u� v� t	 would be spread�p� ��u� v� t		


This approach is natural in Lisp where �terms are coded as S�expressions� but it creates
notations with redexes such as all���x � nat� �y � A� B�x� y		�
		
 The presence of these
redexes notation appears unnatural� and they complicate pattern matching
 Moreover�
because of redexes� there can be an arbitrary number of terms that represent a given
informal notation such as �y � A� B�
� y	


In the case of representing a term such as op�x� y� a� y� z� b�x� z� c	� the form op���x� y� a	�
��y� z� b	���x� z� c		 will not represent the binding structure if we replace subterm by
��equivalent ones� e
g


op���x� y� a	���u� v� a�u�y� v�z�	� ��y� x� c�y�x� x�z�		

alternatives � �calculus with arities

Martin�L�of has introduced a variant of the approach discussed in section �
�
 The
idea is that the lambda calculus with operator names is a description of syntax �he
speaks of a theory of expressions	
 �x � A� B�x	 is represented as all�A��x� B�x		

The binding structure of the language is given by the untyped lambda calculus


Martin�L�of then notes that the untyped lambda calculus is de�cient as a theory of
syntax because

� equality of terms is undecidable

� de�nitions are not eliminable �because of the Y combinator	

He proposes to �x this by an account of arities
 These are explained in terms of
saturated expressions versus expressions with �holes� in them
 But we can also view
the entire arity apparatus as a simply typed lambda calculus in which the base type�
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o� stands for saturated expressions� such as y � sin�y	
 The type o � o stands for
expressions with one hole in them� say �� sin��	
 But he indicates these holes using
the lambda mechanism� writing �y� y � sin�y	 as an expression of arity o � o
 An
operator such as the integral

R b
a y � sin�y	dy is analyzed as a complex that takes two

saturated expressions and one with holes and produces a saturated expression
 So
it has arity �o � o � �o � o		 � o where � is used to denote arities of compound
expressions


The arity calculus is the same thing as a simply typed lambda calculus whose types
are built from o and the constructors � and �
 We know that equality is decidable
and de�nitions are eliminable


��� Semantics

The Nuprl semantics is a variation on that given by Martin�L�of for his type theory
and formalized by Stuart Allen �see ���	
 There are three stages in the semantic speci�
�cation� the computation system� the type system and the so"called judgement forms

We shall specify a computation system consisting of terms� divided into canonical and
noncanonical� and a procedure for evaluating terms which for a given term t returns at
most one canonical term� called the value of t
 In Nuprl whether a term is canonical
depends only on the outermost form of the term� and there are terms which have no
value
 We shall write s evals to t to mean that s has value t


Next we shall abstract from the system of types and equality on types de�ned in
Section �
 A type is a term T with which is associated a transitive� symmetric relation�
t � s � T � which respects evaluation in t and s� that is� if T is a type and t evals to t�

and s evals to s�� then t� � s� � T if and only if t � s � T 
 We shall sometimes say
�T type� to mean that T is a type
 We say t is a member of T � or t � T � if t � t � T 

Note that t � s � T is an equivalence relation �in t and s	 when restricted to members
of T 
� Actually� t � s � T is a three"place relation on terms which respects evaluation
in all three places
 We also use a transitive� symmetric relation on terms� T � S�
called type equality� which t � s � T respects in T � that is� if T � S then t � s � T if
and only if t � s � S
 The relation T � S respects evaluation in T and S� and T is a
type if and only if T � T 
 The restriction of T � S to types is an equivalence relation


For our purposes� then� a type system for a given computation system consists of a
two"place relation T � S and a three"place relation t � s � T on terms such that

T � S is transitive and symmetric�
T � S if and only if �T �� T evals to T � # T � � S�
t � s � T is transitive and symmetric in t and s�
t � s � T if and only if �t�� t evals to t� # t� � s � T �

�There is a similarity between a type and Bishop�s notion of set� Bishop says that to give a set�

one gives a way to construct its members and gives an equivalence relation� called the equality on

that set� on the members�
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T � T if t � s � T �
t � s � T if T � S # t � s � S


We de�ne �T type� and �t � T� by

T type if and only if T � T �
t � T if and only if t � t � T 


Finally� so"called judgements will be explained
 This requires consideration of terms
with free variables because substitution of closed terms for free variables is central
to judgements as presented here
 In the description of semantics given so far �term�
has meant a closed term� i
e
� a term with no free variables
 There is only one form
of judgement in Nuprl� x��T��� � ��xn�Tn � S �ext s�� which in the case that n is �
means s � S
 The explanation of the cases in which n is not � must wait


substitution

For the purposes of giving the procedure for evaluation and explaining the semantics
of judgements� we would only need to consider substitution of closed terms for free
variables� and so we would not need to consider simultaneous substitution or capture

However� for the purpose of specifying inference rules later we want to have simulta�
neous substitution of terms with free variables for free variables
 The result of such a
substitution is indicated as in Section ��

t�t�� � � � � tn�x�� � � � � xn�

where � � n� x�� � � � � xn are variables �not necessarily distinct	 and t�� � � � � tn are terms

It is handy to permit multiple occurrences of the same variable among the targets for
replacements� all but the last of which are ignored
 t�t�� � � � � tn�x�� � � � � xn� is the result
of replacing each free occurrence of xi in t by si for � � i � n� where si is tj with j
the greatest k such that xi is xk


the computation system

Figure � shows the terms of Nuprl
 Variables are terms� although since they are
not closed they are not executable
 Variables are written as identi�ers� with distinct
identi�ers indicating distinct variables
� Nonnegative integers are written in standard
decimal notation
 There is no way to write a negative integer in Nuprl� the best one
can do is to write a noncanonical term� such as ��� which evaluates to a negative
integer
 Atom constants are written as character strings enclosed in double quotes�
with distinct strings indicating distinct atom constants


The free occurrences of a variable x in a term t are the occurrences of x which either
are t or are free in the immediate subterms of t� excepting those occurrences of x which
become bound in t
 In Figure � the variables written below the terms indicate which
variable occurrences become bound� some examples are explained below


�An identi�er is any string of letters� digits� underscores or at�signs that starts with a letter� The

only identi�ers which cannot be used for variables are term of and those which serve as operator

names� such as int or spread�
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x n void

int atom axiom nil

Uk inl�a� inr�a� rec�A� x� B	
x x

��x	b	 
a�b�
x x

A�B x �A�B A��B x�A��B
x x x x

A�B A

B x�y�A

B fA�Bg
x y x

y

fx�A�Bg a � b in A
x x

canonical if closed

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
noncanonical if closed

any�a� t�a� a�b
� � � �

a�b a�b a
b a mod b
� � � � � � � �

spread�a�x�y	t� decide�a�x	s�y	t�
� x y x � x x y y

y

rec ind�a�f�x	g� ind�a�x�y	s�b�u�v	t�
� f f � x y x u v u

x y v

less�a�b�s�t� int eq�a�b�s�t�
� � � �

x� y� u� v range over variables�

a� b� s� t� A�B range over terms�

n ranges over integers�

k ranges over positive integers�

Variables written below a term indicate where the variables become bound�

��� indicates principal arguments�

Figure �� Terms
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Lower Precedence

��in left associative

����� �� 

 right associative


 �as in a
b	 left associative

��� �in�x	 left associative

��
�mod left associative

inl�inr�� �pre�x	 �

	 �as in a	b	 right associative

�x
 �

�a� �as in t�a�	 �

Higher Precedence

Figure 
� Operator Precedence in Abbreviations

� In x �A�B the x in front of the colon becomes bound and any free occurrences
of x in B become bound
 The free occurrences of variables in x �A� B are all
the free occurrences of variables in A and all the free occurrences of variables in
B except for x


� In 
a�b� no variable occurrences become bound� hence� the free occurrences of
variables in 
a�b� are those of a and those of b


� In spread�s�x�y	t� the x and y in front of the dot and any free occurrences of
x or y in t become bound


Parentheses may be used freely around terms and often must be used to resolve am�
biguous notations correctly
 Figure � gives the relative precedences and associativities
of Nuprl operators


The closed terms above the dotted line in Figure � are the canonical terms� while the
closed terms below it are the noncanonical terms
 Note that carets appear below most
of the noncanonical forms� these indicate the principal argument places of those terms

This notion is used in the evaluation procedure below
 Certain terms are designated
as redices� and each redex has a unique contractum
 Figure � shows all redices and
their contracta


The evaluation procedure is as follows
 Given a �closed	 term t�

If t is canonical then the procedure terminates with result t








Redex Contractum

��x	b��a� b�a�x�

spread�
a�b��x�y	t� t�a� b�x� y�

decide�inl �a� �x	s�y	t� s�a�x�

decide�inr �b� �x	s�y	t� t�b�y�

rec ind�a�f�z	b� b�a�z� ��y	rec ind�y�f�z	b���f �

int eq�m�n�s�t� s if m is n� t otherwise

less�m�n�s�t� s if m is less than n� t otherwise

�n the negation of n

m�n the sum of m and n

m�n the di�erence

m�n the product

m
n � if n is �� otherwise� the  oor of the
obvious rational


m mod n � if n is �� otherwise� the positive
integer nearest � that di�ers from m
by a multiple of n


ind�m�x�y	s�b�u�v	t� b if m is ��
t�m�ind�m	 ��x�y	s�b�u�v	t��u� v�
if m is positive�
s�m�ind�m� ��x�y	s�b�u�v	t��x� y�
if m is negative


a� b� s� t range over terms�

x� y� u� v range over variables�

m�n range over integers�

Figure �� Redices and Contracta
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Otherwise� execute the evaluation procedure on each principal argument of t� and if
each has a value� replace the principal arguments of t by their respective values�
call this term s


If s is a redex then the procedure for evaluating t is continued by evaluating the
contractum of s


If s is not a redex then the procedure is terminated without result� t has no value


��� The Type System

For convenience we shall extend the relation s evals to t to possibly open terms
 If s
or t contain free variables then s evals to t does not hold� otherwise� it is true if and
only if s has value t


Recall that the members of a type are its canonical members and the terms which
have those members as values
 The integers are the canonical members of the type
int
 The type void is empty
 The type A�B is a disjoint union of types A and B

The terms inl�a� and inr�b� are canonical members so long as a � A and b � B�
a and b need not be canonical
 The canonical members of x �A � B are the terms

a�b� with a � A and b � B�a�x�� a and b not necessarily canonical
 Note that the
type from which the second component is selected may depend on the value of the
�rst component


A term of the form t�a� is called an application of t to a� and a is called its argument

The members of x�A��B are called functions� and each canonical member is a lambda

term� ��x� b	� whose application to any a � A is a member of B�a�x�
 It is required
that applications to equal members of type A be equal
 Clearly� t�a�� B�a�x� if t �
x�A��B and a � A


The signi�cance of some constructors derives from the representation of propositions as
types
 A proposition represented by a type is true if and only if the type is inhabited

The type a
b is inhabited if and only if the value of a is less than the value of b

The type �a�b in A� is inhabited if and only if a � b � A
 Obviously� the type
�a�a in A� is inhabited if and only if a � A� so �a in A� has been adopted as
a notation for this type
 The members of fx�A�Bg are the members a of A such
that B�a�x� is inhabited
 Types of the form fx�A�Bg are called set types
 The set
constructor provides a device for specifying subtypes� for example� fx�int��
xg has
just the positive integers as canonical members


The members of x�y�A

B are the members of A
 The di�erence between this type
and A is equality
 a � a� � x�y�A

B if and only if a and a� are members of A and
B�a� a��x� y� is inhabited
 Types of this form are called quotient types
 The relation
�b� b � B�a� a��x� y� is an equivalence relation over A in a and a�� this is built into the
criteria for x�y�A

B being a type


Now consider equality on the other types already discussed
 �Recall that terms are
equal in a given type if and only if they evaluate to canonical terms equal in that
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type
 Recall also that a � a� � A is an equivalence relation in a and a� when restricted
to members of A
	 Members of int are equal �in int	 if and only if they have the
same value
 Canonical members of A�B �x � A � B	 are equal if and only if they
have the same outermost operator and their corresponding immediate subterms are
equal �in the corresponding types	
 Members of x�A��B are equal if and only if their
applications to any member a of A are equal in B�a�x�
 We say equality on x�A��B
is extensional
 The types a
b and �a�b in A� have at most one canonical member�
axiom
 Equality in fx�A�Bg is just the restriction of equality in A to fx�A�Bg


We must now consider the notion of functionality
 A term B is type�functional in

x�A if and only if A is a type and B�a�x� � B�a��x� for any a and a� such that
a � a� � A
 A term b is B�functional in x �A if and only if B is type"functional in
x �A and b�a�x� � b�a��x� � B�a�x� for any a and a� such that a � a� � A
 There are
restrictions on type formation involving type"functionality
 These can be seen in the
type formation clauses for x �A�B� x�A��B� and fx�A�Bg
 In each of these B must
be type"functional in x�A
� We may now say that the members of x�A��B are the
lambda terms ��x
b	 such that b is B"functional in x�A
 In the type x�y�A

B� that B
must be type"functional in both x�y�A follows from the fact that x�A��y�A��B��B
must be a type
 There are also constraints on the typehood of x�y�A

B which
guarantee that the relation �b� b � B�a� a��x� y� is an equivalence relation on members
of A and respects equality in A
 It should be noted that if A is empty then every term
is type"functional in its free variables over A
 Hence� x�void � � is a type �with no
members	 even though � is not a type


Equal types have the same membership and equality� but not conversely
 Type� etc

The relations that must hold between the respective immediate subterms are seen
easily enough in the de�nition of type equality
 It should be noted that in contrast to
equality between types of the form x �A�B or x �A	 
 B� much less is required for
fx �A j Bg�fx �A j B�g than type"functional equality of B and B � in x�A
 All that
is required is the existence of functions which for each a � A evaluate to functions
mapping back and forth betweenB�a�x� and B��a�x�
 Equality between quotient types
is de�ned similarly
 If x does not occur free in B then A�B�x �A�B�A��B�x�A��B
if x and y do not occur free in B then A

B�x�y�A

B
 As a result there is no need
for clauses in the type system description giving the criteria for t � t� � A � B and
the others explicitly


Now consider the so"called universes� Uk �k positive	
 The members of Uk are types

The universes are cumulative� that is� if j is less than k then membership and equality
in Uj are just restrictions of membership and equality in Uk
 Universe Uk is closed
under all the type"forming operations except formation of Ui for i greater than or
equal to k
 Equality �hence membership	 in Uk is similar to type equality as de�ned
previously except that equality �membership	 in Uk is required wherever type equality
�typehood	 was formerly required� and although all universes are types� only those Ui
such that i is less than k are in Uk
 Equality in Uk is the restriction of type equality
to members of Uk


�In the formation of these as members of Uk� B must be Uk�functional in x�A�
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So far the only noncanonical form explicitly mentioned in connection with the type
system is application
 We shall elaborate here on a couple of forms� and it should then
be easy to see how to treat the others
 The spread form is used for computational
analysis of pairs
 The pair of components is spread apart so that the components can
be used separately


spread�e�x�y	t�� T �e�z� if
e � x �A�B

# T is type functional in z��x �A�B	
# �a� b� t�a� b�x� y� � T �
a�b��z�

if a � A and b � B�a�x�

Since e � x �A�B� then for some a and b 
a�b��e where a � A� and b � B�a�x�

Hence spread�e�x�y	t� and t�a� b�x� y� have the same value� so it is enough that
t�a� b�x� y� � T �e�z�� But from our hypotheses it follows that t�a� b�x� y� � T �
a�b��z��
so it is enough that T �e�z� � T �
a�b��z�� Now e � 
a�b� � x �A�B since e �
x �A � B and equality respects evaluation� therefore T �e�z� � T �
a�b��z� in light of
T �s functionality in z��x �A�B�


judgments

The signi�cance of judgments lies in the fact that they express the claims of a proof

They are the units of assertion
 The judgments of Nuprl have the form

x��T��� � ��xn�Tn � S �ext s�

where x�� � � � � xn are distinct variables and T�� � � � � Tn� S� s are terms �n may be �	�
every free variable of Ti is one of x�� � � � � xi��� and every free variable of S or of s is one
of x�� � � � � xn
 The list x��T��� � ��xn�Tn is called the hypothesis list or assumption list�
each xi�Ti is called a declaration �of xi	� each Ti is called a hypothesis or assumption�
S is called the consequent or conclusion� s the extract term �the reason will be seen
later	� and the whole thing is called a sequent


Before explaining the conditions which make a Nuprl sequent true we shall de�ne a
relation H$l� where H is a hypothesis list and l is a list of terms� and we shall de�ne
what it is for a sequent to be true at a list of terms
 Allen ��� calls this pointwise
functionality


x��T��� � ��xn�Tn $ t�� � � � � tn if and only if
�j � n� tj�� � Tj���t�� � � � � tj�x�� � � � � xj�

# �t��� � � � � t
�

j� Tj���t�� � � � � tj�x�� � � � � xj� �
Tj���t��� � � � � t

�

j�x�� � � � � xj�
if �i � j� ti�� � t�i�� � Ti���t�� � � � � ti�x�� � � � � xi�

The sequent

x��T��� � ��xn�Tn � S �ext s�


�



is true at t�� � � � � tn if and only if
�t��� � � � � t

�

n� � S�t�� � � � � tn�x�� � � � � xn� � S�t��� � � � � t
�

n�x�� � � � � xn�
# s�t�� � � � � tn�x�� � � � � xn� �
s�t��� � � � � t

�

n�x�� � � � � xn� � S�t�� � � � � tn�x�� � � � � xn� 	
if x��T��� � ��xn�Tn $ t�� � � � � tn
# �i � n� ti�� � t�i�� � Ti���t�� � � � � ti�x�� � � � � xi�

Equivalently� we can say that s is S"functional in x� � �T�� � � � � xn � �Tn if
x��T��� � ��xn�Tn $ t�� � � � � tn
 The sequent

x��T��� � ��xn�Tn � S �ext s� is true if and only if
�t�� � � � � tn� x��T��� � ��xn�Tn � S �ext s� is true at t�� � � � � tn

The connection between functionality and the truth of sequents lies in the fact that
S is type"functional �or s is S"functional	 in x � T if and only if T is a type and for
each member t of T � S is type"functional �s is S"functional	 in x �fx�T� x�t in Tg

Therefore� s is S"functional in x � T if and only if T is a type and the sequent x�T �
S �ext s� is true


It is not possible in Nuprl for the user to enter a complete sequent directly� the extract
term must be omitted
 A sequent is never displayed with its extract term
 The system
has been designed so that upon completion of a proof� a component called the extractor
automatically provides� or extracts� the extract term
 This is because in the standard
mode of use� the user tries to prove that a certain type is inhabited without regard to
the identity of any member
 In this mode the user thinks of the type �that is to be
shown inhabited	 as a proposition� and that it is merely the truth of this proposition
that the user wants to show
 When one does wish to show explicitly that a � A� one
instead shows the type �a in A� to be inhabited


Also� the system can often extract a term from an incomplete proof when the extraction
is independent of the extract terms of any unproven claims within the proof body
 Of
course� such unproven claims may still contribute to the truth of the proof�s main
claim
 For example� it is possible to provide an incomplete proof of the untrue sequent
� �
� �ext axiom�� the extract term axiom being provided automatically


Although the term extracted from a proof of a sequent is not displayed in the sequent�
the term is accessible by other means through the name assigned to the proof in the
user�s library


��� Rules

The Nuprl system has been designed to accommodate the top"down construction of
proofs by re�nement
 In this style one proves a judgement �i
e
� a goal	 by applying
a re�nement rule� obtaining a set of judgements called subgoals� and then proving
each of the subgoals
 In this section we will describe the rules
 The actual rules are


�



available at the Nuprl web page
 First we give some general comments regarding the
rules and then proceed to give a description of each rule


����� the form of a rule

To accommodate the top"down style of the proofs the rules of the logic are presented
in the following re�nement style


H � T ext t by rule
H� � T� ext t�
			

Hk � Tk ext tk
The goal is shown at the top� and each subgoal is shown indented underneath
 The
rules are de�ned so that if every subgoal is true then one can show the truth of the
goal� where the truth of a judgement is to be understood as de�ned above
 If there
are no subgoals �k � �	 then the truth of the goal is axiomatic


The rules have the property that each subgoal can be constructed from the information
in the rule and from the goal� exclusive of the extraction term
 As a result some of
the more complicated rules require certain terms as parameters


Implicit in showing a judgement to be true is showing that the conclusion of the
judgement is in fact a type
 We cannot directly judge a term to be a type� rather�
we show that it inhabits a universe
 An examination of the semantic de�nition will
reveal that this is su%cient
 Due to the rich type structure of the system it is not
possible in general to decide algorithmically if a given term denotes an element of a
universe� so this is something which will require proof
 The logic has been arranged so
the proof that the conclusion of a goal is a type can be conducted simultaneously with
the proof that the type is inhabited
 In many cases this causes no great overhead� but
some rules have subgoals whose only purpose is to establish that the goal is a type�
that is� that it is well�formed
 These subgoals all have the form H � T in Ui and
are referred to as well�formedness subgoals


����� web access

The complete set of Nuprl rules is available on the Web under �

 Libraries
 The
explanation given here should make them understandable


� Conclusion

At the summer school I presented the details of Max Forester�s constructive proof
of the Intermediate Value Theorem �
�� which was taken from Bishop and Bridges
���
 I also discussed the stamps problem from the Nuprl �

 library
 I related this
to Sam Buss� account of feasible arithmetic by using the e%cient induction tactic


�



�complete nat ind with y at the end of int �	 ����
 All of this material is now on the
Web� and this article should help make it more accessible
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