
CS 6110 Lecture 2 Lambda Calculus 23 January 2013
Lecturer: Dexter Kozen

1 The Lambda Calculus

Lambda calculus is a notation for describing mathematical functions and programs. It is a mathematical
system for studying the interaction of functional abstraction and functional application. It captures some
of the essential, common features of a wide variety of programming languages. Because it directly supports
abstraction, it is a much more natural model of universal computation than a Turing machine is.

1.1 Syntax

A λ calculus term is:

1. a variable x ∈ Var, where Var is a countably infinite set of variables;

2. a function e0 applied to an argument e1, usually written e0 e1 or e0(e1); or

3. a lambda term, an expression λx. e representing a function with input parameter x and body e. Where
a mathematician might write x 7→ x2, in the λ-calculus we would write λx.x2.

In BNF notation,

e ::= x | λx. e | e0 e1
Note that we used the word term instead of expression. A term is an expression that describes a com-

putation to be performed. In general, programs may contain expressions that are not terms; for example,
type expressions. However, in the untyped lambda calculus that we are now studying, all expressions are
terms. A term represents a value that exists only at run time; a type is a compile-time expression used by
the compiler to rule out ill-formed programs. For now there are no types.

Parentheses are used just for grouping; they have no meaning on their own. Like other familiar binding
constructs from mathematics (e.g., sums, integrals), lambda terms are greedy, extending as far to the right
as they can. Therefore, the term λx. x λy. y is the same as λx. (x (λy. y)), not (λx. x) (λy. y).

For simplicity, multiple variables may be placed after the lambda, and this is considered shorthand for
having a lambda in front of each variable. For example, we write λxy. e as shorthand for λx. λy. e. This
shorthand is an example of syntactic sugar. The process of removing it in this instance is called currying.

We can apply a curried function like λx. λy. x one argument at a time. Applying it to one argument
results in a function that takes in a value for x and returns a constant function, one that returns the value
of x no matter what argument it is applied to. As this suggests, functions are just ordinary values, and can
be the results of functions or passed as arguments to functions (even to themselves!). Thus, in the lambda
calculus, functions are first-class values. Lambda terms serve both as functions and data.

1.2 BNF Notation

In the grammar
e ::= x | λx. e | e0 e1

describing the syntax of the pure λ-calculus, the e is not a variable in the language, but a metavariable
representing a syntactic class (in this case λ-terms) in the language. It is not a variable at the level of
the programming language. We use subscripts to differentiate syntactic metavariables of the same syntactic
class. For example, e0, e1 and e all represent λ-terms.

1

1.3 Variable Binding

Occurrences of variables in a λ-term can be bound or free. In the λ-term λx. e, the lambda abstraction
operator λx binds all the free occurrences of x in e. The scope of λx in λx. e is e. This is called lexical
scoping; the variable’s scope is defined by the text of the program. It is “lexical” because it is possible to
determine its scope before the program runs by inspecting the program text. A term is closed if all variables
are bound. A term is open if it is not closed.

2 Substitution and β-reduction

Now we get to the question: How do we run a λ-calculus program? The main computational rule is called
β-reduction. This rule applies whenever there is a subterm of the form (λx. e) e′ representing the application
of a function λx. e to an argument e′.

To perform a β-reduction, we substitute the argument e′ for all free occurrences of the formal parameter
x in the body e. This corresponds to our intuition for what the function λx. e means.

We have to be a little careful; we cannot just substitute e′ blindly for x in e, because bad things could
happen which could alter the meaning of expressions in undesirable ways. We only want to replace the free
occurrences of x within e, because any other occurrences are bound to a different binding; they are really
different variables. There are some additional subtleties to substitution that we’ll return to later.

There are many notations for substitution, which can be confusing. Pierce writes [x 7→ e′]e. Other
notations for the same idea are encountered frequently, including e[x 7→ e′], e[x ← e′], e[x := e′]. Because
we will use square brackets for other purposes, we will use the notation e{e′/x}.

Rewriting (λx. e) e′ to e{e′/x} is the basic computational step of the λ-calculus. In this rewrite step, the
reduced expression (or redex, for short) is (λx. e) e′, and the right-hand side, or contractum, is e{e′/x}.

2.1 α-renaming

In the term λx.x z, the name of the bound variable x does not really matter. This term is semantically the
same as λy. y z. Renamings like this are known as α-reductions. In an α-reduction, the new bound variable
must be chosen so as to avoid capture. If a term α-reduces to another term, then the two terms are said to
be α-equivalent. This defines an equivalence relation on the set of terms, denoted e1 =α e2. An α-reduction
doesn’t really make computational progress, so it is often referred to as α-renaming. Recall the definition
of free variables FV (e) of a term e. In general, we have λx. e =α λy. e{y/x} when y 6∈ FV (e). The proviso
y 6∈ FV (e) is to avoid the capture of a free occurrences of y in e as a result of the renaming.

2.2 Ω

Let us define an expression we will call Ω:

Ω = (λx. x x) (λx. x x)

What happens when we try to evaluate it? Applying a β-reduction, we get the same term back again:

Ω = (λx. x x) (λx. x x) −→ (x x){(λx. x x)/x} = Ω

We have just coded an infinite loop! When an expression e can go through infinite sequence of evaluation
steps, we write e ⇑. When it evaluates to a value v, we write e ⇓ v or just e ⇓ if we don’t care what the
value is.

2.3 η-reduction

Here is another notion of equality. Compare the terms e and λx. e x If these two terms are both applied to an
argument e′, they will both reduce to e e′, provided x has no free occurrence in e. Formally, (λx. e1 x) e2 −→
e1 e2 if x 6∈ FV (e1). Therefore, e and λx. e x behave the same way when treated as functions and should

2

be considered equal. Another way of stating this is that e and λx. e x behave the same way in all contexts
of the form [·] e′. This gives rise to a reduction rule called η-reduction: λx. e x −→ e if x 6∈ FV (e). The
reverse operation, called η-expansion, has practical uses as well. In practice, η-expansion is used to delay
divergence by trapping expressions inside λ-terms.

2.4 Confluence

In the classical λ-calculus, no reduction strategy is specified, and no restrictions are placed on the order of
reductions. Any redex may be chosen to be reduced next. A λ-term in general may have many redexes,
so the process is nondeterministic. We can think of a reduction strategy as a mechanism for resolving the
nondeterminism, but in the classical λ-calculus, no such strategy is specified. A value in this case is just a
term containing no redexes. Such a term is said to be in normal form.

This makes it more difficult to define extensional equality. One sequence of reductions may terminate,
but another may not. It is even conceivable that different terminating reduction sequences result in different
values. Luckily, it turns out that the latter cannot happen.

It turns out that the λ-calculus is confluent (also known as the Church–Rosser property) under α- and
β-reductions. Confluence says that if e reduces by some sequence of reductions to e1, and if e also reduces
by some other sequence of reductions to e2, then there exists an e3 such that both e1 and e2 reduce to e3.
It follows that normal forms are unique up to α-equivalence. For if e ⇓ v1 and e ⇓ v2, and if v1 and v2 are in
normal form, then by confluence they must be α-equivalent. Moreover, regardless of the order of previous
reductions, it is always possible to get to the unique normal form if it exists.

However, note that it is still possible for a reduction sequence not to terminate, even if the term has a nor-
mal form. For example, (λx.λy.y) Ω has a nonterminating reduction sequence (λxy.y) Ω −→ (λxy.y) Ω −→
. . . but also has a terminating reduction sequence, namely (λx.λy.y) Ω −→ λy.y. It may be difficult to
determine the most efficient way to expedite termination. But even if we get stuck in a loop, the confluence
property guarantees that it is always possible to get unstuck, provided the normal form exists.

3 Encoding language features

Even though all values in the λ-calculus are functions, it would be nice to somehow have objects which could
be worked with like integers and boolean values, and that let us build data structures.

3.1 Encoding booleans

We wish to implement functions TRUE, FALSE, IF, AND, and so forth, such that the expected behavior
holds, including statements such as

IF TRUE x y → x
AND TRUE FALSE → FALSE

If, for no a priori good reason, we define TRUE and FALSE as:

TRUE
4
= λxy. x

FALSE
4
= λxy. y

Then we see we desire to have IF be of the form

IF = λb t f. (if b = TRUE then t, if b = FALSE then f)

And now the definitions used for the boolean values become useful, because TRUE t f → t and
FALSE t f → f , so all we need to do is apply the boolean passed to IF:

IF
4
= λb t f. (b t f)

With IF in hand, defining other boolean operators becomes straightforward (if rather inefficient):

3

AND
4
= λb1 b2. IF (b1) (IF b2 TRUE FALSE) (FALSE)

OR
4
= λb1 b2. IF (b1) (TRUE) (IF b2 TRUE FALSE)

NOT
4
= λb1. IF b1 FALSE TRUE

We have no types here, so while the behavior of these operators is clear when they are fed boolean values
as we have defined them, they can be applied to any λ-term... though with a good chance of garbage coming
out.

3.2 Encoding integers

To encode numbers, we’ll use Church numerals. That is, the number n represented as a function which,
given another function, returns the n-fold composition of that other function: n(f) 7→ fn. So, for example,

0
4
= λf x. x (since f0(x) = x)

1
4
= λf x. fx (f1 = f)

2
4
= λf x. f(fx) (f2(x) = f(f(x)))

SUCC
4
= λn. λfx. f((nf)x) Applying f once more

With these numbers, we can perform simple arithmetic, such as PLUS. An obvious approach might be

PLUS
4
= λn1 n2. λf x. (n2f)((n1f)x)

Here we are applying fn2 to fn1 to get fn1+n2 . Alternately, recall that numbers (as we have defined them)
act on functions to repeatedly apply the function, and addition can be viewed as repeated application of the
successor function:

PLUS
4
= λn1 n2. (n1 SUCC) n2

We can also define a function that computes the predecessor of a number, and therefore subtraction.
And since multiplication is simply repeated addition, we can build a multiplication operator using PLUS.

4

