
CS 5432:
Measured Principals
and Gating Functions

Fred B. Schneider
Samuel B Eckert Professor of Computer Science

Department of Computer Science
Cornell University

Ithaca, New York 14853
U.S.A.

Overview

● New abstractions
– Measured principal
– Gating function

● Example implementations
– TPM Trusted Platform Module

● Applications
– Whole disk encryption
– Cloud-hosted services
– Digital rights management
– Remote Attestation

1

Keys as Principals

Let KP/kP be a public/private key pair where kP is accessible
only to a principal P. We then would have:

– KP speaksfor P

– KP says S using: kP-sign(S)

2

“Accessible only to…”

● Store kP in processor memory?
– How to block attacker access?

● Use external hardware security module (HSM)?
– HSM as secure storage? Exported key is vulnerable.
– HSM as remote eval of crypto function (using key).

§ HSM must authenticate caller.
§ HSM must implement authorization for using key.

… what caller name is authenticated and authorized?

3

Overview

● New abstractions
– Measured principal
– Gating function

● Example implementations
– TPM Trusted Platform Module

● Applications
– Remote Attestation
– Whole disk encryption
– Cloud-hosted services
– Digital rights management

4

What’s in a name?

Authorization based on name presumes:
Translation: Name à properties of executions

– Name must reflect or depend on:
§ Actual bits that will be executed.
§ Execution environment for that code:

• Initialization data read.
• Code already executing as available services.

– Binary code that will be executed
– Execution environment for that code:

– Initialization data read
– Code alredy available as services

– Binary code that will be executed…
5

What’s in a name?

Authorization based on name presumes:
Translation: Name à properties of executions

– Name must reflect or depend on:
§ Actual bits that will be executed.
§ Execution environment for that code:

• Initialization data read.
• Code already executing as available services.

– Binary code that will be executed
– Execution environment for that code:

– Initialization data read
– Code alredy available as services

– Binary code that will be executed…
6

Name construction

A name for App would involve other names:
Hardware processor + I/O

à Boot firmware
à Boot code & data read
à OS IPL code & data read
à OS
à App

7

Measured Principals

Properties of a measured principal:
– Name derived from code, data read at startup, and environment.
– Change any bit(s) and get unpredictably different name.

● Name for a measured principal serves as a label for
properties satisfied by principal’s execution.

● Name for a measured principal could serve as a basis for
trust.

8

Descriptions and Descriptors

● Name N(D) is a name generated for a description D.
● D is a sequence

⟨d1 d2 … dn ⟩
of descriptors di such that
– change to any descriptor di produces new description D’ with

unpredictably different name N(D’)
– di derived from all details of resource at the time of first access by

measured principal with name N(⟨… di … ⟩)
§ Resources include: processor, i/o devices, executables, storage regions, …

– descriptors are listed in order of first access.
● Goal: Description indicates whether associated principal

can be trusted.
9

Completeness of Descriptions

● Incomplete description: Leads to inaccurate
predictions of possible behavior by principal.

● Complete description:
– Blocks attacks by modified versions that spoof.
– Prevent attacker persistence (APT) by file modifications.
– Inconvenient: Customization, patches. upgrades change

file contents… change descriptors… change name.

10

Properties of Naming Schemes

Properties of N(.):
● Collision resistance:

– D ≠ D’ implies N(D) ≠ N(D’) with high probability.
● Preimage resistance:

– Given D, it is infeasible to construct D’ where D ≠ D’ and
N(D) = N(D’) hold.

11

Implementation of Naming Schemes

N(⟨d1 d2 … dn⟩): Implement as a hash chain…
– N(⟨ ⟩) = 0
– N(D . di) = hash(N(D) . hash(di))

Note, incremental calculation N(D . di):
– Allows files (in D) to become inaccessible after use.

E.g., boot loader, IPL, …

If we assume a trusted source for integrity of names
– Only allowed change is: extension by di.

then no need to protect integrity of DP for P.
– Simply check whether DP satisfies N(DP) = NP

12

Descriptors for Code and Data

Code and data are bit strings.
Descriptor dObj for Obj is hash(Obj)

– Complication:
§ Copies of objects that incorporate addresses will have

different descriptors when loaded.

13

Descriptors for HW Processor

Naïve approach: Include ROM with a unique id in each
processor.

– Must be able to read id.
– If id can be read, then emulation is possible.

14

Descriptor details: HW Processor

Better approach: For a processor id,
– include unique signing key kid in ROM.
– include instruction to generate kid-sign(M).
– trusted party (manufacturer) has public key KC

Distribute public key Kid for use as descriptor / name for
processor.

kC-sign(Kid speaksfor id)
Distribute certificate for ISA, too.

kC-sign(Kid speaksfor ISAx86)

15

For privacy …

… might want a single processor to have multiple names.
– Prevents correlation of attributes by attackers who monitor

requests at services.
– Prevents detection that two measured principals are executing

on the same processor.

Solution: Processor invents new attestation identify key
(signing key) e.g., kid2 for each different identity. A trusted
third party certifies authenticity of corresponding public
key Kid2.

16

Descriptors for Properties

Avoid brittleness of object descriptors by using descriptors
for properties of the object rather than for implementation
of the object.

Properties don’t change (much) due to upgrades etc.
– E.g., signed certificate from trusted org about “linux” property.
– E.g., signed output of an analyzer chkr.

17

Descriptor Auxiliary Information

Descriptors are opaque bit strings
– Hash of object or public key of processor

Trust in object might depend on object details, to allow:
– Identification and retrieval of objects associated with descriptor.
– Verification of descriptor by recalculating it from objects.
– Assessment of whether those objects should be trusted.

… So include auxiliary information with a descriptor.
Examples: di auxiliary information is

– Linux4.8.0.36-generic … name of a system in a public repository
– /user/fbs/cs5432/finalExam.txt … name of a file

Auxiliary information allows object to be independently downloaded and
analyzed.

18

Overview

● New abstractions
– Measured principal
– Gating function

● Example implementations
– TPM Trusted Platform Module

● Applications
– Remote Attestation
– Whole disk encryption
– Cloud-hosted services
– Digital rights management

19

Gating Functions Defined

Gating function [K-F](.) (FBS notation) associates access
control with use of a key K and a crypto function K-F(.).
● K can be accessed only for evaluating gating functions

[K-F](.).
– Ensures confidentiality and integrity of K

● [K-F](.) requires system to satisfy Config([K-F]), which
specifies a set of measured principals that must be
executing for calculation of K-F(.) to proceed.

N.b. The brackets […] are intended to suggest that crypto function K-
F(.) has been wrapped with access control.

20

Uses for Gating Functions?

● Authentication / attestation of a system.
● Isolation?

– Confidentiality by encryption.
– Integrity by signatures or MAC or authenticated encryption.
– Comparison: processes, virtual machines, containers.

§ GF weaker: Achieve integrity by creating unavailability.
§ GF stronger: Restricts what code can have access.
§ GF stronger: Supports attestation.

21

Overview

● New abstractions
– Measured principal
– Gating function

● Example implementations
– TPM Trusted Platform Module

● Applications
– Remote Attestation
– Whole disk encryption
– Cloud-hosted services
– Digital rights management

22

Hardware Support

Simplified version of Trusted Platform Module (TPM) has:
● Measurement registers and instructions to update them.

– Measurement registers are volatile.
– Values in measurement registers are what Config(.) checks.

● Key registers and instructions for provisioning a key register with a
fresh key.
– Key registers are not volatile.

● Instructions to perform certain crypto operations using key in a given
key register if certain Config(.) exists in measurement registers:
– sealing: protect confidentiality and integrity of local content.
– quoting: to establish authenticity of locally produced content.
– binding: to import remote content if local system is proper.

23

TPM Design Precis

Confidentiality of keys follows because:
– Unencrypted keys born in key registers and never leave key

registers in plaintext form.
– Instructions that use values in key registers compute functions

that do not reveal the key.
– Key register values persist across boots but measurement

register values don’t.
§ Access to keys requires the same measured principals to be running

after a reboot

24

Measurement Registers

Measurement registers: mr0, mr1, …, mrN.
● mr0 auto incremented with each reboot.

– Enables creation of ephemeral keys (if mr0 is in Config)
– Ephemeral keys defend against TOCTOU (time of check, time of

use) attacks. In such an attack:
§ Fielded system is authenticated.
§ Attacker instigates reboot and starts executing a different system.
§ Execution proceeds – with authorization -- but using attacker’s code.

25

Measurement Registers

Measurement registers: mr0, mr1, …, mrN
● mr1, …, mrN reset to 0 on reboot
● Instructions (with semantics):

MRreset(mri): mri := 0
MRextend(mri, mem): mri := hash(mri , hash(mem))

Sets of measurement registers are used to create names for
measured principals.

26

Trust in Measurement Registers

Trust principals that execute MRextend if
– they are measured principals, and
– their names correspond to descriptions we have analyzed, and
– they were loaded by systems we trust.

… Result is chain of trust back to boot loader, firmware,
processor hardware.

– Trust each subsequent link by trusting its predecessor
– Trust first link (=root of trust) based on information from an

external source.

27

Configuration Constraints: Config

C = {⟨1,v1⟩ … ⟨i,vi⟩ … }
defines configuration constraint that is satisfied during
execution if

mr1=v1 ∧ … mri=vi ∧ …
holds. C may name only a subset of the measurement
registers.

A configuration constraint Ckr is associated with each key
register kr when a new key is generated there. So there is a
configuration constraint associated with each gating function.

28

seal and unseal: Basics

Authenticated shared-key encrypt/decrypt.
– Shared key K generated into sealing key register skri.
– Configuration constraint C associated with skri.

seal creates a C/K-sealed value.
unseal recovers v from a C/K-sealed value v.

Properties of sealed values:
– read a C/K-sealed value v reveals nothing about v.
– update causes subsequent unseal to fail.
– … availability is compromised by write (unlike other forms of

isolation).

29

seal and unseal: Instructions

sealing key registers: skr1, …, skrN, store: skri.key and skri.config
crSet is bit vector of length N: crSet[1]=1 iff mri ∈ crSet

SKRgen(skri, crSet):
skri.key := fresh symmetric key;
skri.config := { ⟨ j, vj ⟩ | crSet[j] ∧ mrj = vj}

seal(skri, in, out): ß Any principal can invoke!
out := shri.key-EncryptA(in)

unseal(skri, in, out): ß Only certain invokers succed!
if ConfigSat(skri.config)

then out := shri.key-DecryptA(in)
else fail

30

seal and unseal: Uses

● seal can save state between executions / sessions.
● Protocol now needed to perform a software upgrade:

– unseal all data;
– Upgrade the software;
– Reset and reload measurement registers;
– Reprovision sealing key registers (uses updated values in

measurement registers);
– seal all data (uses updated sealing key registers);

… seal/unseal are slow, but ”data” might just be a single
key that is used to encrypt/decrypt full state.

31

Key Archives

Coping with a small fixed number of key registers:
Time-multiplexing

– Cannot extract raw key values from key registers.
– Store and restore key registers (with configuration

constraints) using a key archive.
§ KRseal: invokes seal for a set of key registers (values and

config constraints) and stores the result as a key archive.
§ KRunseal: invokes unseal for key archive and reloads the

key registers.
• By including mr0 in kr.config for key register kr stale key values in old

key archive don’t work when reloaded.

32

quoting: Basics

quoted bit string: Signed using (private) key in some
quoting key register qkri.

– Configuration constraint for qkri means quoted bit string is
generated by a specific system (and thus can be trusted).

– qkrid: special key register having a fixed value and no
configuration constraints.
§ qkrid contains the unique signing key kid associated with processor.

33

quoting: Instructions

QKRgen(qkri, crSet, mem):
Qkri.config := { ⟨ i, vi ⟩ | crSet[i] ∧ mri = vi}

let k/K be a fresh private/pubic key pair

in qkri.key := k;

mem := qkrid.key-sign(qkr key: i | K)

Quote(qkri, in, out):
if ConfigSat(qkri.config)

then out := qkri.key-sign(sig: i | in)

else fail

Note disambiguating prefix is signed strings.

Note K not being stored in key register.
34

What Configuration?

… is currently in effect for a key register?
KRgetConf(kri, r, out):

out := qkrid.key-sign(keyConfig: i | r | kri.config)

… is in effect now?
KRgetCurConf(crSet, r, out):

cc := {⟨ i, vi ⟩ | crSet[i] ∧ mri = vi}
out := qkrid.key-sign(curConfig: r | cc)

By including mr0 in crSet, the resulting certificate can be included
in an immutable data object, thus incorporated into its descriptors.
This descriptor avoids replay attacks for old versions of the object.

35

bind and unbind

Goal: Ensure that information sent from outside a
system S can be read only by S.

Solution:
– Distribute public encryption key KS far and wide.
– Content sent to S is encrypted: KS-encrypt(msg)
– S uses gating function -- where Config is for S --- to

recover plaintext
plain := [kS-decrypt](….)

36

sealing vs binding

● seal and unseal both access the same key register on
a single machine.
– unseal requires a specific configuration.

● bind uses a public key, so it can be executed on any
machine.
– unbind requires a specific configuration on a specific machine.

37

bind and unbind: Instructions

UKRgen(ukri, crSet, mem):
ukri.config : ={ ⟨ i, vi ⟩ | crSet[i] ∧ mri = vi}

let k/K be a fresh private/pubic key pair

in ukri.key := k;

mem := qkrid.key-sign(ukr key: i | K)

UKRdec(ukri, in, out):
if ConfigSat(ukri.config)

then out := ukri.key-decrypt(in)

else fail

38

TPM Summary

● measurement registers
– Configuration constraints Config(.)

● seal/unseal
– Key archives

● quote
– Configuration retrieval

● unbind

39

Applications

● Full disk encryption (BitLocker)
● Cloud-hosted services
● Digital rights management (DRM)
● Remote attestation

40

Full Disk Encryption

Goal: Protect disk content against device theft.
● Use sealing on each disk block?

– TPM operations are too slow.
● Use software-implemented shared key encryption.

§ Generate disk key when first boot system.
§ Use seal/unseal to protect disk key when stored on disk after power-down.

• Sealing key stored in key register.
§ Also copy disk key to some secure device for disk recovery after failure.
§ Use OS memory protection for disk key while computer is running.

• Assumes memory is obliterated at power down.
§ Must encrypt memory when memory is stored for hibernation mode.

– Use length-preserving encryption for disk driver compatibility.
§ Protects confidentiality but cannot protect integrity

41

Full Disk Encryption: Implementation

Where to locate encrypt/decrypt routines for disk blocks?
– In application? (Limits app developers)
– In disk driver? (Limits disk developers)
– In operating system!

§ 1 cache à 2 caches of disk blocks
• Cache for encrypted blocks (disk driver access this)
• Cache for decrypted blocks (I/O system calls access this)
• OS copies from one cache to the other.

Boot block: not encrypted

42

Cloud-Hosted Services: Servers

Goal: Server is a measured principal.
– sealing key used to protect server state while server

is not running
– quoting key allows clients to authenticate responses

from server. (Public key must be known).
– binding key used to protect content sent by client to

server.

43

Cloud-Hosted Services: Environment

The environment must support:
● Memory isolation for server.

– E.g., processor, virtual machine, …
● Measured principals and gating functions

§ E.g., hardware TPM, virtual machine TPM, …
– Use sealing to protect server state between sessions.
– Use quoting to protect comm integrity to client.
– Use binding to protect comm confidentiality and integrity from

client.

44

Digital Rights Management (DRM)

Goal: Enforce access control for digital objects
located anywhere in the network and on any host.
Enables:

– monetize content in digital form.
§ Non-interactive: Music and texts. Pirate can still record sound

and images, though some loss of fidelity.
§ Interactive: Games and simulations.

– mandatory access control of an institution’s documents.

45

DRM: Implementation

● Distribute protected content in encrypted form.
– Use separate encryption key for each copy.

● Bind decryption key and forward to client
– Client is a measured principal.
– Client generates bind/unbind and forwards bind key

to server.
– Server checks client description to ensure

authorization will be enforced.
– Server forwards decrypt key using bind key.

46

New locus of control

Measured principals and gating functions enable
software producers to control:

– What programs are run.
– What information can be accessed.
– What programs can process a given digital object.

… Compare with today: Computer owner and
operator have control over these things.

47

Abuses now facilitated

● [Vendor Lock-in] Software designed to prevent
competitors software from executing on a platform.
– Limits competition
– Discourages new entrants to market

● Automation of access control that is today grounded in
human judgement.
– Fair use (for copyright)
– Obscenity
– Fake news

48

In favor …

Benefits of ceding control to software producers:
– Experts can evaluate software and prevent installation of

vulnerabilities. Users don’t and most can’t.
§ App stores can support vendor lock-in, too.

– Protects individual machines but also protects the ecosystem.
Compromised machine anywhere can attack yours.

Transfer of rights comes with transfer of responsibilities. Network-
connected implies responsibilities not to host attackers… Should/could
random users shoulder that?

49

Back to authentication of
things (= HW + SW) …

50

Overview

● New abstractions
– Measured principal
– Gating function

● Example implementations
– TPM Trusted Platform Module

● Applications
– Whole disk encryption
– Cloud-hosted services
– Digital rights management
– Remote Attestation

51

Remote Attestation

Provide:
– Name P for a measured principal executing on a remote host.
– Attestation public key KP for verifying messages signed by P.

Given a description DP obtained from remote host or
elsewhere.

– Can check whether P = N(DP) holds.
– Can use DP to decide whether to trust P (and KP).

52

TOCTOU attacks

If signing key kP not refreshed at each reboot…

Attack:
– Remote processor sends P, DP, KP to client.
– Attacker reboots remote processor and runs new code.

Defense:
– Include mr0 or current time in DP.
… Old kP will no longer work after reboot for software that
satisfies DP or for attacker’s software.

53

Protocol 1 for Remote Attestation

Assumptions:
A1: R trusts S and has KS speaksfor S.
A2: S is exec environment for P.
A3: S implements a gating function [kP-sign].

1. R à S: ⟨r, P⟩, where r is fresh nonce
2. S: Generate KP/kp where Config([kP-sign]) = {P}
3. S à R: [kS-sign](r, P, KP)
4. R: Accept KP provided:

– Msg 3 verified as from S (by using KS) and N(DP)=P holds.

54

Discharging Assumptions

Assumption A1: R trusts S and KS speaksfor S.
– R sends S a fresh challenge r
– S uses quote and KRgetConf to construct certificate

kid-sign(r, S, DS, KS, Config[kS-sign])

– S sends certificate to R
– R checks:

§ Source of cert (using Kid) and timeliness (using r).
§ Whether N(DS) = Config[kS-sign]) holds.
§ Uses knowledge of DS to decide whether to trust S.
§ Concludes: KS speaksfor N(DS)

= KS speaksfor S

55

Discharging Assumptions

Assumption A2: S is exec environment for P.
– Check that DS is a prefix of DP.

Assumption A3: S implements a gating function [kP-sign].
– Check DS to see if processor id appears as initial descriptor.
– Obtain manufacturers certificate

kC-sign(Kid speaksfor ISAx86)
and check ISAx86.

56

Attestation at System Startup

● Startup involves stages D1, D2, … Dn

● Startup Attestation Protocol
– associates Ki/ki with each stage N(Di).
– generates set AttCerts from which

Ki speaksfor N(Di)
can be inferred.

57

Protocol 2 for Remote Attestation

k0=kid, K0=Kid, N(D0)=N(hw)=id;
for i:= 0 to n-1 do

N(Di) loads software, creating Di+1

N(Di) generates fresh ki+1/Ki+1 to support
Config([ki+1-sign]) = N(Di+1)

AttCerts := AttCerts ∪ {Ki says Ki+1 speaksfor N(Di+1)}
N(Di) relinquishes control to N(Di+1)

N.b. Trust in N(Di) must imply N(Di) will relinquish
control to an N(Di+1) that can be trusted.

58

Avoiding HW support

Goal: Ensure ki not revealed or abused without
using key registers or gating functions.

Solution: Di deletes ki just before Di relinquishes
control to Di+1.

59

Stale AttCerts?

Idea: Incorporate kid-sign(mr0) into AttCerts.

Implementations:
– Option 1: Include mr0 in D0

– Option 2: Include in each Di a certificate signed by
a trusted 3rd party and including timestamp and
challenge.

60

Boot Attestation

● Trusted boot: Software establishes trust in its exec
environment by checking whether AttCerts contains
expected content. (SW can take action if it doesn’t.)
– Processor register rt reset on boot.
– rt is updated whenever AttCerts is updated, so

rt = hash(AttCerts).

● Secure boot: Processor check successive values of rt
against predetermined allowable sequence (in
firmware). Halt if values diverge.

61

General Principle

A layer is responsible for
– measuring and validating the target of a

control transfer
– updating a summary measurement

before transferring control.

62

