July 2022

Chapter 10

Isolation:
Mapping and Multiplexing

In the physical world, walls are often erected when isolation is sought. A prison
has walls to keep people in; a fortress has walls to keep people out. Some walls
have windows and doors (perhaps incorporating fine mesh screens or thick steel
bars), so that certain activity on one side cannot influence and/or be influenced
by activity on the other side. But even solid walls do not hide all activity—
apartment dwellers with loud neighbors know this.

For enforcing security in a computing system, an isolation mechanism re-
stricts the environment from

e improperly influencing the system’s operation and

e improperly being influenced by reading the system’s state or by monitoring
usage of system resources.

One important case is where the system is an operating system and its envi-
ronment comprises clients it is executing; another important case is where the
system is a client and its environment comprises other clients. System-provided
abstractions to enforce isolation include processes, virtual machines, and con-
tainers. All prevent the environment from violating assumptions on which the
security of a system might depend, so a system designed for a benign environ-
ment can be to be deployed in a more-hostile environment.

Implementations of processes, virtual machines, and containers have much
in common: (i) the interposition of mappings in order to control what objects
are visible to a system or to its environment and (ii) time multiplexing. Those
common building blocks are thus a natural place to start our discussion. De-
tailed implementations for processes, virtual machines, and containers are then
explored in detail.

301

Copyright Fred B. Schneider

All rights reserved

302 Chapter 10. Isolation: Mapping and Multiplexing

10.1 Building Blocks for Isolation

10.1.1 Address-Translation Mappings

An address-translation mapping relocates some set of memory addresses and
causes interrupts' for accesses to all others. Formally, it has a domain that is the
set N of addresses that principals use and a range M U {1}, where M is a set of
memory locations and L (satisfying 1¢ M) indicates that an address is not being
mapped to a memory location. When a principal P executes an assignment
statement x:=x +y while using an address-translation mapping NMmapp that
maps x and y then the CPU would store at memory address NMmapp(x) the
sum of the values at memory addresses NMmapp(x) and NMmapp(y).

Per-principal address-translation mappings NMmapp with domain N and
range Mp U {1} suffice to isolate memory accessed by each principal P if, for
every pair P and @ of principals, MpnMg = @ holds. This is because MpnMg =
@ implies that memory location NMmapp(n) € Mp a principal P references
using name n will necessarily be different from memory location NMmapQ(m) €
Mg that another principal) can access using any name m.

Implementation Considerations. Typical hardware realizations for address-
translation mappings use a processor register MmapReg (say) to specify a map-

ping to use. Per-principal memory isolation is achieved by changing the value

in MmapReg whenever the processor switches from executing instructions for one

principal to executing instructions for another.

Address-Translation Context Switch Protocol. Register MmapReg
specifies mapping NMmapp whenever principal P is executing. Between
executing an instruction for a principal P and an instruction for a different
principal @), register MmapReg is updated to NMmapy,. O

Note, changing the value in MmapReg typically will cause a processor to flush
pipelines and purge caches, so executing Address-Translation Context Switch
Protocol could have performance implications.

Any mapping p from finite sets N to M can be represented by a finite table
where the entry for n € N contains p(n). If N is the set of all addresses for
a virtual memory, then storing this table would consume, if not exceed, the
capacity of a processor’s main memory, leaving no room for programs or data.
However, smaller tables can be used to describe mappings if every entry in the
table maps many elements from N rather than just mapping a single element.

Such a representation is employed in instruction set architectures that inter-
pret a wvirtual address as comprising two parts: a segment name and an offset
into that segment.? The elements of N are virtual addresses, and each segment

ISome reserve the term interrupt for describing asynchronous transfers of control and use
terms fault or trap for synchronous transfers of control. We will use the single term interrupt
for synchronous and for asynchronous transfers of control, since processor hardware follows
the same protocol in either case.

2Figure 7.8 (page 153) depicts a typical segmented virtual memory.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.1. Building Blocks for Isolation 303

is a block of consecutive memory words.®> A segment descriptor gives a triple
(b, len, m), with 0 < len, and defines a mapping between the two subsets

{b,b+1,....b+len-1} c N
{m,m+1,....om+len-1}c M

where every virtual memory address n € N satisfying b < n < b+ len is mapped
to memory location m + (n —b). Therefore, a set Segs of segment descriptors,
where each descriptor corresponds to a disjoint block of N, can be interpreted as
defining a mapping NMmap from names n € N to memory addresses, as follows.

NMmap(n): { m; + (n—-0;) 1if (b;, lem,mi) € Segs and b; <n < b; + len;
1 otherwise

How Segs is represented depends on the instruction set architecture, as do
the details of how MmapReg specifies mapping NMmap(-). MmapReg is called the
segment table register on some computers; it contains the memory address for a
table of segment descriptors (with that table itself a segment). Other computers
eliminate a level of indirection by providing a small number (typically 2 or 4)
of registers MmapReg[i], each storing a segment descriptor. Here, Segs is the
(small) set of segment descriptors contained in those registers. A third scheme,
found in early computers, supported name mappings where Segs was defined
by using two registers: base register Base and limit register Lim. This pair of
registers defined a set Segs that contained the single segment descriptor (0, L, B)
for L the value contained in Lim and B the value contained in Base. An address
n € N satisfying 0 < n < L was relocated to n+ B; if L < n then an interrupt was
generated.

Incorporating Access Control. The set of operations that a principal is
authorized to use for accessing some region of memory can be described by as-
sociating per-principal address-translation mappings with sets of operations. A
simple implementation would extend each segment descriptor with a set Ops of
permitted operations. Thus, a segment descriptor (b, len, m, Ops) would specify
an address-translation mapping NMmap(-) for accessing a region of memory by
using operations in op € Ops but no other operations.

m; +(n—0;) if (b, len;, m;, Ops;) € Segs
NMmap(n): and b; <n < b; +len; and op € Ops;

1 otherwise

3By further dividing each segment into fixed-size pages, a contiguous region of main mem-
ory is not needed for holding the contents of a segment, nor is it necessary for all pages
comprising a segment to be resident. A virtual address now comprises three parts: a segment
name, a page name, and an offset into the page. An additional mapping, implemented by
hardware, translates each page name to the main memory address of the page frame that
holds this page. The existence of paging should be transparent, and thus it is ignored in this
chapter.

Copyright Fred B. Schneider

All rights reserved

304 Chapter 10. Isolation: Mapping and Multiplexing

10.1.2 Time Multiplexing

If a bank of registers and/or region of storage is being time multiplezed among a
set of principals then periods of exclusive access rotate among those principals.
When each period of exclusive access by a principal P ends then the values in
the register bank and storage region are saved in isolated storage memSaved[P]
(say), to be restored at the start of the next period of exclusive access by P:

Time-Multiplexing Context Switch Protocol. At the end of each
period of exclusive access by P to mem, a register bank and/or a storage
region:

1. Suspend execution of P.
2. memSaved[P]:= mem,;
3. Q:=sched();

4. mem :=memSaved[Q];

5

. Resume execution of Q. O

Note the considerable flexibility in the scheduling policy implemented by @ := sched()
to select the principal @ that is next resumed. It might be round-robin, where
each principal receives access for a fixed period and in a rotation. Or, to satisfy
performance requirements, a scheduler might make selections according to past
resource consumption and/or system state.

10.2 Processes

The environment for a program executing on a computer includes: (i) a pre-
defined instruction set implemented by hardware, and (ii) a state comprising
processor registers and memory. So multiple programs being executed together
on the same computer can affect each other’s environments if they share mem-
ory and/or registers. A process is an executing program whose memory and
registers are unaffected by the actions of other processes. Such isolation is at-
tractive for enforcing security in a computer where programs are executing on
behalf of different principals.

10.2.1 Memory and Register Isolation

Isolation for a process’s main memory can be enforced by using per-process ad-
dress translation mappings. Isolation for the processor’s registers is achieved
by time multiplexing. Notice that provided MmapReg is a processor register,
steps 2 and 4 of Time-Multiplexing Context Switch Protocol (page 304) imple-
ment Address-Translation Context Switch Protocol (page 302). Also, because
the program counter is a processor register, step 4 of Time-Multiplexing Context
Switch Protocol causes that register to be loaded and, therefore, each process
resumes execution where it left off when it was suspended.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.2. Processes 305

10.2.2 Implementing Time Multiplexing

Time-Multiplexing Context Switch Protocol has a straightforward implemen-
tation on any processor that supports timer interrupts. We start by sketching
typical processor support for interrupts, followed by a discussion of typical pro-
cessor support for timer interrupts.

Interrupts. On a processor that supports interrupts, an interrupt handler
for each class I of interrupts is specified by storing its address in IntHndlr[]].new,
and a Boolean flag IntHndlr[]].enbl indicates whether class I interrupts are
enabled or disabled.*

Interrupt Processing. Once an interrupt of class I has been raised, it
remains pending until the value of IntHndlr[[].enbl signifies that inter-
rupts of this class are enabled. While enabled, interrupts in a class are
delivered in the order raised; the instruction set architecture defines an
ordering (say) Iy, I3, ..., I, for interrupt delivery across different classes.
And a processor delivers an interrupt of class I as follows.

— The current processor state is pushed onto a stack IntOldStates
stored in main memory.’

— Values are loaded into the processor registers from IntHndlr[]].new,
causing the code for an interrupt handler to start executing because
of the new values in the program counter, general-purpose registers,
etc. O

Timer Interrupts. A processor that supports timer interrupts usually will
have a Timer processor register. T seconds after Timer is loaded with an integer
value T', a timer interrupt is raised.

Time-Multiplexing Protocol Implementation. Timer is loaded with a value
that bounds the interval of exclusive access. For step 2 of Time-Multiplexing
Context Switch Protocol, interrupt handler TimerHndlr for timer interrupts
pops the top entry on Int0ldStates to ProcState[P], where P is the process
that was just suspended. TimerHndlr also performs step 3 through step 5.
Specifically, TimerHndlr (or system software it invokes) selects some process @
to next execute, loads Timer with some integer value, and restores the processor
registers from ProcState[Q]. Execution of @) thus resumes, with the appropriate
address translation mapping and with values for the program counter and other
processor registers that were saved when execution of) was last suspended.

4To simplify the exposition, we assume that IntHndlr[-] is implemented by a processor
register, even though this information actually might be stored by a table located at a pre-
specified and fixed memory location or at the address contained in some a pre-defined processor
register. When IntHndlr[-] is stored in memory, that region would be excluded from the range
of all address-translation mappings.

5Depending on the instruction-set architecture, Int01dStates might be stored at some
pre-specified address in main memory or stored at a location designated by the contents of a
fixed processor register.

Copyright Fred B. Schneider

All rights reserved

306 Chapter 10. Isolation: Mapping and Multiplexing

Protection by using Processor Modes. A process that updates MmapReg,
Timer, IntHndlr[:], or ProcState could compromise isolation being enforced
by address translation (§10.1.1) and time multiplexing (§10.1.2). Therefore,
instruction set architectures distinguish between:

o User-mode instructions. Instructions in Insty access only a subset of
the processor registers, and they access main memory using an address-
translation mapping.

o System-mode instructions. Instg adds to Insty instructions to read/write
all of the processor registers and main memory, as well as instructions
concerned with performing input/output operations.

Such instruction set architectures then facilitate isolation by (i) providing a
mode register to control whether instructions from Insty or Instg are available
for execution, (ii) signaling a privilege interrupt when an instruction ¢ is ex-
ecuted unless mode = Insts or ¢ € Insty hold, and (iii) excluding from Insty
any instruction that can cause changes to MmapReg, Timer, Int0ldStates, or
IntHndlr[-]. A process executing with mode = Insty executes instructions from
Insty and, thus, is not able to compromise the integrity of address translation or
time multiplexing by updating MmapReg, Timer, Int0ldStates, or IntHndlr[:]
or compromise isolation by initiating an input/output operation that stores into
ProcState or the memory of another process.

But limiting execution to instructions from Inst; is too restrictive for in-
terrupt handlers and certain other system software. TimerHndlr, for example,
updates Timer and MmapReg prior to resuming a process, so TimerHndlr must
execute with mode = Instg. To have assurance that isolation still will be main-
tained, we must have some basis for trust that any software executing with
mode = Instg will not misbehave. This trust could derive from an analysis of
that code, from the presence of mechanisms to restrict execution, or a combi-
nation. Obviously, assurance is easier to establish if only certain software can
execute with mode = Insts—a small fragment of system software, for example.

Extending the User-mode Instruction Set. Attempting to execute a system-
mode instruction when mode = Insty holds will cause a privilege interrupt. So
system software is written to provide safe versions of any functionality needed
by user-mode software. By first checking arguments it is passed, that system
software prevents system-mode instructions it will execute from violating the
integrity of address translation and time multiplexing.

Processors typically provide a user-mode supervisor call instruction svc for
allowing user-mode execution to invoke system software. Execution of svc by a
process P causes an interrupt of class svcInt. That interrupt handler executes
with mode = Instg; it parses the operands passed with the svc, and then it
invokes system code to perform the requested service. Once the requested service

SInput/output devices typically do not use address-translation mappings when accessing
memory and, therefore, instructions to control input/output operations are not user-mode
instructions.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.2. Processes 307

has been completed: a process @ is selected to next execute, Timer is loaded
with some integer value, and the processor state is loaded from ProcState[@],
thereby causing execution of @) to be resumed.

10.2.3 Deciding on Kernel Functionality

An svc sometimes can be used to undermine process isolation. To illustrate,
here are functions that an operating system kernel might make available though
svc’s.

e Interprocess communication and synchronization primitives. Such prim-
itives facilitate cooperation among processes and, therefore, they allow
one process to influence the execution of another. But processes that can
influence each other are no longer completely isolated from each other.

e Dynamic allocation primitives. Resource usage by one process becomes
visible to other processes through any delays that arise from allocation
requests when there is contention for resources. Isolation is thus compro-
mised.

How much might a given svc compromise process isolation? To answer would
require analyzing any code that gets executed after the svc is invoked as well
as analyzing any code that reads the updated state—a potentially large body
of code. So a formal analysis is unlikely to be feasible, and an informal analysis
might overlook things. Furthermore, any weakening of process isolation that
svc’s cause could be offset if user-mode software becomes simpler because of
the added kernel functionality. We should be more inclined to trust user-mode
software that is simpler, a benefit that might outweigh the weaker isolation.

Design and implementation flaws in a kernel are another cause of compromise
for process isolation. For example, a bug in an interrupt handler might allow
system code invoked by one process to contaminate ProcState being stored for
some other process. With processes likely to serve as a system’s principals,
a kernel will be part of the system’s trusted computing base. That argues
for making design trade-offs in favor of assurance and, therefore, argues that we
should prefer small and simple kernels over kernels that are rich in functionality.

The trade-offs associated with deciding what functionality to put in a kernel
have led to various design philosophies. Two important views are discussed
below. They differ in (i) assumptions about the feasibility of imposing a single
security policy on an entire user community and (ii) the relative importance of
assurance over functionality. Both embrace the position that the kernel’s design,
if not its code, should be amenable to a formal analysis.

Separation Kernels. A separation kernel implements processes and inter-
process communication, but provides no additional functionality. So the envi-
ronment it creates is indistinguishable from a distributed system where each

Copyright Fred B. Schneider

All rights reserved

308 Chapter 10. Isolation: Mapping and Multiplexing

process executes on a separate processor and uses message passing for commu-
nication with other processes. Because a separation kernel offers only limited
functionality, it can be small and simple.

A justification for trust is one motivation for the small size and simplicity.
But the limited functionality that a separation kernel provides also reflects the
widely held belief that policy should be separable from mechanism. Mechanisms
a kernel might provide for accessing resources would have to enforce some class
of security policies, yet no single class is well suited for all applications. A sep-
aration kernel sidesteps the issue—it doesn’t implement operations for resource
access, so it avoids the need to choose access control policies.

Security Kernel. For computing systems intended to store and process ob-
jects, the trusted computing base comprises the software that implements pro-
cess isolation plus the software that controls access to objects according to some
policy. A security kernel provides exactly this functionality (and no more). Tt
implements processes and it mediates all accesses those processes make to ob-
jects.

When a security kernel is used, assurance for the entire trusted computing
base follows from the assurance argument for the security kernel. That is at-
tractive, because a security kernel can be small which facilitates establishing its
assurance. In addition, when a security kernel is in use, a single implementation
of isolation is protecting both the reference monitor and the implementation of
process isolation. So less total mechanism is involved, and there is less to trust.

Use of a security kernel, however, does mean that a single security policy
must suffice for mediating accesses by all processes to all objects. This is a
mixed blessing. When different applications require radically different policies—
discretionary access control for some and mandatory access control for others.
for example— then the security kernel only can enforce a weak policy, which
each application must extend.

10.2.4 *Hardware Rings of Protection

In a hierarchically-structured system, each layer maintains state and provides
operations for use by higher layers but not by lower layers. The lowest layer,
implemented as hardware, provides machine language instructions; these oper-
ate on registers and main memory. Other layers are implemented in software.
They hide, redefine, and/or augment operations exported by lower layers. A
defining characteristic for all layers in a hierarchical systems is:

Trust in Hierarchical Systems. In a hierarchical system, higher layers
may trust lower layers, but lower layers do not trust higher layers. O

Thus, correct operation of a layer is allowed to depend on correct operation of
lower layers. Higher layers, however, may well attempt to subvert lower layers.
One way to rule out such attacks is additional mechanism. That is what we
next discuss.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.2. Processes 309

Enforcing Isolation from Higher Layers. Because lower layers are trusted
by higher layers, execution in a given layer is authorized to read and write all
state being maintained by higher layers but not authorized to read or write state
maintained by lower layers. That is, for any layers L and L',

L'<L = (read(L")2read(L) A write(L") 2 write(L)) (10.1)

where: (i) relation L’ < L on layers holds” when layer L’ is below (hence, may
be trusted by) layer L, (ii) set read(L) enumerates parts of the state that code
in layer L is authorized to read, and (iii) set write(L) enumerates parts of the
state that code in layer L is authorized to write.

CPU hardware for address translation often will directly enforce (10.1) by
implementing a metaphor of nested or concentric rings and providing

e a register curRing to associate a ring with current execution, and
e a means to specify access restrictions for execution in each given ring.

Each layer L is associated with a non-negative integer value ring(L) that cor-
responds to the ordering of layers:

L'<L = 0<ring(L") < ring(L). (10.2)

Access restrictions on the code being executed are imposed according to the
value of curRing and two fields we add to segment descriptors. Specifically, a
segment descriptor (b;, len;, m;) for mapping names n satisfying b; < n < b; +len;
(as discussed on page 303) is extended with fields

e rb; an integer specifying a read bracket comprising the set of layers L
satisfying 0 < ring(L) < rb;, and

e wb; an integer specifying a write bracket comprising the set of layers L
satisfying 0 < ring(L) < wb;.

A read access to a name in segment (b;, len;, m;, rb;, wb;) is authorized only if
0 < curRing < rb; holds, because then the currently executing layer is in the
read bracket for the segment being accessed; an access violation interrupt occurs
otherwise. If rb; is negative then, reading from the segment is never allowed.
Writes are analogous, but restricted by the write bracket.® Typically, wb; and
rb; are defined in such way that wb; < rb; holds, so that code can read what it
has written.

"In a hierarchically structured system, relation < is total, irreflexive, asymmetric, and
transitive. So it is impossible to have both L’ < L and L < L’ hold. And for every pair of
layers L and L', either L' < L or L < L’ holds.

8S0 curRing can be seen as a generalization of mode, with smaller values for curRing au-
thorizing access to additional state rather than to additional instructions. The distinction
between state and instructions can be ignored here, because the effect of executing any in-
struction is to perform reads and writes to main memory and processor state—restricting
access to state is thus equivalent to disallowing execution of certain instruction instances.

Copyright Fred B. Schneider

All rights reserved

310 Chapter 10. Isolation: Mapping and Multiplexing

Notice that (10.1) is satisfied by a segment (b;, len;, m;, rb;, wb;) no matter
what values are used to define the read and write brackets. Here is a proof.
Consider a name n satisfying b; < n < b; + len;, and suppose that L’ < L holds.
We prove read(L") 2 read(L) holds, as required by (10.1), by showing that if
n € read(L) holds then so does n € read(L"). If a read to some name n succeeds
while layer L is executing (so curRing = ring(L) and n € read(L) hold) then
0 < ring(L) < rb; must be satisfied. We have 0 < ring(L") < ring(L) from L' < L
and (10.2), so 0 < ring(L") < rb; follows from 0 < ring(L) < rb;. Thus, reading n
while executing in layer L’ does not cause an access violation: n € read(L") holds,
as we needed to show. The argument to prove conjunct write(L’) 2 write(L) in
the consequent of (10.1) is analogous.

Operation Invocation. In hierarchically-structured systems, a call instruc-
tion executed by code at layer L is allowed to proceed only if (i) the destination
is the gate for an operation op exported by some lower layer L' and (ii) op is
not being hidden or redefined by any interposed layer L” where L' < L"” < L.
Enforcement of these restrictions can be controlled by incorporating information
into descriptors. The descriptor for each segment ¢ now would also include:

e nGates;, the number of gates that segment ¢ contains. Entry points are
enumerated in the first nGates; words of segment i: word 1 contains the
address in segment 4 of the entry point for operation 1, word 2 contains
the address in segment ¢ of the entry point for operation 2, and so on
through word nGates;.

e 1b;, a non-negative integer that the processor loads into curRing whenever
an instruction from segment i is being executed. So in order to specify
that segment 4 stores code for a layer L then xb; is set equal to ring(L).

e cb;, the largest value of curRing from which a call is permitted to a gate
in segment i. By setting cb; = zb; + 1, operations defined by gates in
segment ¢ are hidden or redefined by the layer immediately above; and if
cb; > zb; + 1 then higher layers can themselves directly invoke operations
defined by gates in segment 4.°

Execution of “call op” then proceeds as follows, where op is presumed to be
given as a segment name ¢ and offset p in words. To start, the hardware checks
that p < nGates; and zb; < curRing < c¢b; hold, thereby establishing that (i) op
identifies a gate in segment ¢ and (ii) op is visible to the layer executing the
call. If these checks succeed then execution of the call pushes onto a stack the
return address and the value of curRing, loads xb; into curRing, and loads into
the program counter the value found in word p of segment ¢ (thereby branching
to the entry point of op). When execution of the operation completes, that code

9This scheme does not offer the flexibility to specify that only certain specific operations
that a layer exports should be hidden or redefined in higher layers. Such flexibility could be
attractive, but it is not part of the support existing modern CPUs provide for rings.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.3. Virtual Machines 311

is responsible for restoring the program counter and curRing by popping the
stack, thereby returning control to the caller.

Care is required when referencing arguments from within the body of op—
otherwise, confused deputy attacks (see page 135) are possible. Of concern is
a caller that (i) is executing in some layer not in the read (write) bracket for
the segment named in an argument arg and (ii) passes arg to an operation
in some lower layer L that is in the read bracket. So the caller is not itself
authorized to read (write) arg but, by exploiting a confused deputy in layer L,
effects access to arg nevertheless. The obvious defense is for each operation to
check whether its arguments are accessible to their callers. This check can be
performed in software by consulting the corresponding segment descriptor for
each of the arguments. Some processors offer a separate addressing mode to
facilitate such checks. This addressing mode allows accesses to be made under
a temporarily increased value for curRing, such as the value in curRing when
the call executed.

Layers versus Processes. Layers and processes are both concerned with
system structure. They are orthogonal constructs: a process might be layered,
or a layer might itself be implemented by a set of processes. Both constructs
facilitate decomposing a larger system into smaller units that each can be under-
stood and analyzed separately. So both constructs help in assurance arguments.
The two types structures do differ in what isolation they enforce, each allow-
ing different assumptions to be made about the environment. However, each
construct helps with the Principle of Least Privilege by enforcing isolation that
restricts what parts of the overall system each individual component can access.
So, in both cases, structure is being leveraged for defense.

10.3 Virtual Machines

An instruction set architecture that is implemented by software is known as a
virtual machine. Execution of a virtual machine instruction can be fast if it
involves executing only a single instruction on the underlying processor. Op-
portunities for such direct execution are more frequent if a virtual machine’s
instruction set resembles the instruction set for the underlying processor. A
second benefit of having such a resemblance is that existing programs written
for the underlying processor do not have to be modified or even recompiled for
execution by the virtual machine.

A wirtual machine manager (VMM), also known as a virtual machine mon-
itor or a hypervisor, is a software layer that executes on some underlying pro-
cessor to provide one or more virtual machines. A type I VMM runs on bare
hardware; a type II VMM runs above a software layer (typically, an operating
system); and a real or virtual machine V' is considered self-virtualizing if V' can
run a VMM that implements virtual machines having the same instruction set
as V.

Copyright Fred B. Schneider

All rights reserved

312 Chapter 10. Isolation: Mapping and Multiplexing

A VMM enforces isolation for the memory, registers, and input/output de-
vices associated with each virtual machine, as well as isolating resources used
internally by the VMM. Input/output devices are the sole means for one vir-
tual machine to communicate with another virtual machine or to interact with
the environment. In comparison, an operating system typically will provide
primitives (e.g., svc’s) so that processes can share resources, communicate, and
synchronize. So the activities of one process can influence the activities of
another. The isolation between processes thus is somewhat weaker than the
isolation between virtual machines, which have no ways to influence each other.
In addition, because a VMM offers fewer services than an operating system, the
VMM can be much smaller, which implies—all else equal—that a VMM is less
likely to have vulnerabilities than an operating system.

This strong isolation of virtual machines and higher assurance of VMMSs has
proved useful in various settings.

e Cloud providers employ VMMs to give each customer an illusion of sole
tenancy on some computers. The customer often can select an operating
system and even an entire software stack to be loaded and run on each of
those computers.'®

e In an enterprise datacenter, VMMSs enable a single computer to run mul-
tiple virtual machines, each hosting a server. If (as usually is the case)
the servers are not busy most of the time, then this server consolidation
avoids the overheads of running each server on a separate lightly-loaded
dedicated machine. Moreover, with server consolidation, each server can
be run on a (virtual) processor configured to best suit that server. Were
the servers instead executed as processes under a single operating sys-
tem then they all would be scheduled according to the same policy, likely
resulting in worse performance.

e On the desktop, running a VMM can compensate for weak operating sys-
tem security, because the isolation of virtual machines limits what attacks
are possible when an operating system has become compromised. For
example, if one virtual machine hosts applications to support personal
banking and another is used for web-browsing then content that is down-
loaded during browsing would be prevented by the VMM from subverting
the applications that access your a bank account.

Monitoring and debugging also are facilitated. A typical VMM provides a virtual
console for each virtual machine it implements. The virtual console allows
an executing virtual machine to be paused by a human operator, who then
can inspect or change that virtual machine’s memory and (virtual) processor
registers. Application software, an operating system, or even a VMM itself now

10T his kind of cloud computing is know as infrastructure as a service (1aaS). With platform
as a service (PaaS), the customer is offered a computer that runs some pre-configured software
stack. And software as a service (SaaS) provides customers with specific applications and/or
databases that run in a datacenter.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.3. Virtual Machines 313

can be debugged simply by running that software in some virtual machine and
using the associated virtual console.

10.3.1 A VMM Implementation

Isolation for virtual machines can be enforced by using the same building blocks
we employed above to enforce per-process isolation:

e address translation (§10.1.1) ensures that no virtual machine can retrieve
or alter main memory allocated to another virtual machine or to the VMM,
and

e time multiplexing (§10.1.2) ensures that no virtual machine can retrieve
or alter the (virtual) processor registers of other virtual machines.

Address Translation for Virtual Machines. To ensure that the main
memory for different virtual machines occupies non-overlapping memory regions
of the underlying processor’s main memory, the VMM establishes an address-
translation mapping VMap, for each virtual machine V. VMap, is a mapping
from set M of the addresses in the virtual machine V’s memory to set My u{L1},
where My are addresses for a region of the underlying processor’s memory, L
signifies that an address is not mapped, and the following disjointness condition
holds:
V+V' = (MvﬂMvr =®).

To isolate itself, memory used by the VMM is excluded from My for every
virtual machine V.

An operating system or other software executing in a virtual machine V'
must be able to install its own mapping NMmapy, (say) by loading V’s (virtual)
MmapReg register. Thereafter, a reference by V' to address n should access mem-
ory location VMap ,(NMmapy,(n)). To achieve that effect, it suffices if, during
execution of V', the underlying processor’s MmapReg register specifies strict com-
position'’ NMmap,, o VMap, of address-translation mappings NMmap,, and
VMapy,:

] VMap ,(NMmapy,(n)) if NMmap, (n) #1

(NMmapy o VMapy)(n): { L otherwise

The expense to compute NMmap,, o VMap,, from NMmap,, and VMap, as
part of every context switch would be prohibitive. But it is feasible for VMM
to maintain a local data structure NMVmapy, that equals NMmap,, o VMap,,
and for VMM to update NMVmap,, incrementally each time virtual machine V'
updates NMmapy,. It suffices that the VMM maintain a shadow copy SNMmap,,
of the representation for NMmap,, being stored in V’s memory.

1A function F is defined to be strict iff F/(1) =1 holds. And composition F' o F" of two
functions F": D’ - R’ and F":D"” — R", where R’ ¢ D" holds, is defined to be function
F:D’ > R” such that F(z) = F"(F'(z)).

Copyright Fred B. Schneider

All rights reserved

314 Chapter 10. Isolation: Mapping and Multiplexing

To keep SNMmap,, current, the VMM must learn about updates to V'’s
representation for NMmap,,. That is easily arranged on a processor having a
translation cache that stores mapping information for recent accesses. VMM
can infer the address of V’s representation for NMmapy,, because VMM receives
control whenever V' attempts to load MmapReg—the address of V’s representa-
tion for NMmapy,, will be an argument Segsy (say) to the load instruction.
So translation cache entries can be marked in a way that causes the VMM’s
interrupt handler to get control whenever the VMM must update SNMmapy,.

Time Multiplexing for Virtual Machines. As discussed for implement-
ing processes, limiting execution to user-mode instructions suffices to protect
the integrity of the address-translation and time-multiplexing implementations.
Therefore, virtual machines are executed with mode = Instyy on the underlying
processor. Time multiplexing also requires that, for each virtual machine V,
VMM maintains a data structure VM[V].procState containing fields to store
virtual machine V’s registers (e.g., program counter, general-purpose registers,
MmapReg register, mode register, and IntHndlr[-]) as well as other fields used
to derive the values to be loaded into the underlying processor’s registers for
running V.

System-mode Instructions. The VMM intercepts and then emulates system-
mode instructions that a virtual machine V' executes.

e Intercept. Virtual machines are executed with mode = Insty, causing in-
structions ¢ from Instg to raise a privilege interrupt.'?

o Emulate. A VMM-installed handler for privilege interrupts emulates ¢ by
updating information being stored by VMM in VM [V].procState and/or
by executing system-mode instructions (with mode = Instg) on the under-
lying processor.

Some system-mode instruction have straightforward emulations. For exam-
ple, a virtual machine V’s update to its MmapReg register is emulated by VMM
updating the value for that register stored in VM [V].procState. Other emula-
tions are more complicated. For example, when the Timer register of virtual
machine V is loaded with a value T', then emulation of the subsequent timer
interrupt is facilitated if a field VM[V].NextTimerInt is being maintained to
store the earliest possible time'® TimeNow + T for that timer interrupt.

12 An assumption is being made here about the instruction set architecture. On some pro-
cessors, however, a privilege interrupt is not raised by an attempt to execute an instruction
L ¢ Instyy when mode = Instyy holds. Methods to handle that case are discussed in §10.3.2.

13TimeNow is assumed to be a register that always contains the current time. Most hardware
processors have such a register. If such a register is not available then it can be emulated by a
variable TimeOfDay maintained by the VMM. The VMM records in another variable LastIT
the value it last loaded into the interval timer. And whenever the VMMs handler for timer
interrupts is invoked, LastIT is added to TimeOfDay.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.3. Virtual Machines 315

Interrupts. Emulation also is used to implement a virtual machine’s inter-
rupts. For the interrupt processing sketched earlier (page 305), the VMM would
maintain queues VM [V].IntPending[I] that contain, in order of occurence, an
element for each class I interrupt that has been raised at virtual machine V' but
not yet delivered. In addition, VMM emulates stack Int0ldStates on a vir-
tual machine by maintaining a separate stack VM [V].IntOldStates of processor
states for each virtual machine V. The VMM emulation for interrupt delivery
is thus described by the following code, where I; through I,, are the classes of
interrupts.

for Int:=1,, I, ..., I, do
if VM[V].IntHndlr[Int].enbl A —empty(VM[V'].IntPending[Int])
then push VM [V].procState onto VM [V'].IntOldStates
VM [V].procState := VM[V].IntHndlr[Int].new

An interrupt should be raised at a virtual machine V' immediately for some
instructions (e.g., svc or a system-mode instruction while the virtual machine
is in user-mode). For other delayed interrupt instructions (e.g., loading the
interval timer or initiating an input/output operation), an interrupt at V' should
be raised only after some external activity finishes. A VMM can emulate either
kind of instructions, but only if the VMM receives control when the instruction
is executed by V. So it suffices that execution by V of both kinds of instructions
raise an interrupt on the underlying processor. The following conditions ensure
those interrupts will be raised.

e Execution of a user-mode instruction that should immediately raise an
interrupt at V will immediately raise an interrupt at the underlying pro-
Cessor.

e All delayed interrupt instructions are system-mode.

The VMM emulation for a delayed interrupt instruction initiates some re-
quested activity which, when completed, raises an interrupt at V. Moreover, for
improved performance, a VMM might combine requests from multiple virtual
machines into a single request that the underlying processor makes. We see this
in systems where a VMM uses a single (real) disk to implement separate virtual
disks for each virtual machine. Input/output requests to virtual disks would be
made by executing delayed interrupt instructions. But if the VMM combines
these input/output operations into a single input/output operation to some real
disk then a single interrupt will be raised to signify the completion. So, upon
delivery of this single interrupt, the VMM would have to raise input/output
interrupts at multiple virtual machines.

Resuming a Virtual Machine. Execution of a virtual machine V is resumed
by loading the underlying processor’s state using the information managed by
the VMM. Specifics are given in the table that follows, where Q is the maximum

Copyright Fred B. Schneider

All rights reserved

316 Chapter 10. Isolation: Mapping and Multiplexing

time-slice a single virtual machine may execute uninterrupted. Notice, the un-
derlying processor’s mode register does not reflect the virtual processor’s mode
while a virtual machine V' is executing—the value of the virtual processor’s mode
register appears in VM [V].procState.

register source for value to load
program counter | program counter in VM[V'].procState
general purpose | register value in VM [V].procState

mode Insty no matter what is stored in VM [V].procState
MmapReg (VM[V].VMap+,) o (VM[V].procState. MmapReq)
Timer min(TimeNow + Q, mmi/n(NextTimerIntW))

10.3.2 Binary Rewriting

On some processors, executing a system-mode instruction when mode = Insty
holds does not cause a privilege interrupt.'* These non-virtualizable instruc-
tions are not intercepted but they must be emulated. That emulation can be
invoked if, in any code that a virtual machine executes, we have replaced each
non-virtualizable instruction with code that invokes the VMM. That program
rewriting requires:

(i) A means to identify each non-virtualizable instruction and replace that
instruction with other code.

(ii) A mechanism to invoke the VMM from within that replacement code.

Two approaches to (i) are prevalent in practice: binary translation (described
next) and paravirtualization (described after, in §10.3.3). For (ii), many proces-
sors include a special hypervisor call instruction that, when executed, raises an
interrupt associated with a distinct class; the corresponding interrupt handler
is configured to invoke the VMM. Absent a hypervisor call instruction, the su-
pervisor call instruction (svc) discussed earlier can be used, provided the VMM
can distinguish svc executions intended to invoke operating system services
from svc executions intended to invoke a VMM instruction emulation.!?

Binary Translation Implementation. The process by which an input exe-
cutable of a program in some input machine language is converted into an output
ezecutable for an equivalent program in some output machine language is known
as binary translation.'® We might want to migrate software that runs on one
machine onto different hardware, or we might want existing hardware to execute

14The Intel X86 instruction set architecture is a noteworthy example. It has a few in-
structions (e.g., IRET and POPF) whose execution does not cause a privilege interrupt but has
different effects depending on the value of mode.

1576 distinguish an svc execution intended to invoke the VMM, a special operand value,
never used by the operating system to specify a service, would suffice.

16 A machine language program is commonly called a binary. So a program to convert
between machine languages is doing translation from one machine’s binary to another’s, hence
the name “binary translation”.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.3. Virtual Machines 317

programs written for hardware that does not yet exist. By taking a liberal view
of what constitutes equivalent programs, binary translation also can be used to
add instrumentation to machine language programs so that run-time behavior
will be measured.

In static binary translation, a translator produces the entire output exe-
cutable B’ from input executable B before execution of B’ starts. Static binary
translation is impossible if run-time information determines which parts of B
constitute instructions and which are representing data values, since a translator
would be unable able to ascertain what fragments of the input executable should
be converted. Uncertainty about instruction boundaries arises when instruction
formats are variable-length, instruction alignment has few restrictions, com-
puted branch destinations are supported, and/or instructions are mixed with
data.

Dynamic binary translation converts instructions in the input executable
only when those instructions are reached during execution. By alternating be-
tween execution and translation of instruction blocks, the translator can know
and use the processor state produced by execution of the last block for convert-
ing the next block. That processor state not only provides the translator with
the starting location for the first instruction in the block to be converted but
also provides the translator with values needed for calculating the destination
of a computed branch if that is the first instruction in this block.

Translation and Execution as Coroutines. Given an input executable
B, an offset d indicating the location in B for the next instruction to ex-
ecute, and values to load into processor registers before execution com-
mences:

(1) Construct B’ by translating instructions in B, starting at offset d and
continuing until reaching a branch instruction ¢ whose destination is
being computed.

(2) Translate branch instruction ¢ into an instruction that transfers con-
trol to the translator. Use the offset for ¢ in B as the offset value
d passed to the translator; the processor register values passed are
whatever values those registers contain when the translation of ¢ is
reached.

(3) Execute B'. O
When execution of B’ in step (3) reaches the translation of ¢, control transfers

to the translator (thereby returning to step (1)), which resumes converting B,
starting with instruction ¢.

VMM use of Dynamic Binary Translation. Dynamic binary translation
enables a machine language containing non-virtualizable instructions to be im-
plemented on a processor that has some form of hypervisor call.

Copyright Fred B. Schneider

All rights reserved

318 Chapter 10. Isolation: Mapping and Multiplexing

Implementing Virtual Machines by using Binary Translation.

— Implement a dynamic binary translator that replaces system-mode
instructions with hypervisor calls. By definition, non-virtualizable
instructions are system-mode instructions, so the translator will re-
place all non-virtualizable instructions.

— Implement an interrupt handler for hypervisor calls. This handler
should contain code for emulating each system-mode instruction.

— Modify the VMM code for Resuming a Virtual Machine (page 315) so
that it transfers control to the dynamic binary translator, providing
as arguments the values in the registers of the virtual machine. The
value in the program counter serves as offset d for Translation and
Execution as Coroutines, above. O

Awoiding Translation. Dynamic binary translation increases the size of the
trusted computing base (by adding the binary translator) and increases run-time
overhead (since performing the translation takes time and likely involves making
a context switch). The larger trusted computing base seems unavoidable. But
we can reduce the run-time overhead by limiting how much of the code gets
translated during execution and by not translating the same block of instructions
anew every time that block is to be executed. We now consider implementation
of these optimizations.

If the following condition holds for the instruction set then the input exe-
cutable is equivalent to the output executable, so dynamic binary translation is
not necessary in order to obtain a binary to execute in user mode.

Binary Translation Elimination Condition. Execution of any non-
virtualizable instruction while in user-mode advances the program counter
but does not make any other changes to the state (memory or registers)
of the virtual machine. O

This condition holds for many of the commercially-available processors that have
non-virtualizable instructions. In addition, the preponderance of code running
on computers is user-mode; only operating system code executes in system-
mode. So when a VMM is implemented using dynamic binary translation on a
processor where Binary Translation Elimination Condition holds, then only the
operating system code in a virtual machine must incur the run-time overhead
of dynamic binary translation.

We now show that when Binary Translation Elimination Condition holds,
executing the input executable in user mode is equivalent to executing the out-
put executable. The interesting cases are system-mode instructions, given that
Implementing Virtual Machines by using Binary Translation does not replace
user-mode instructions.

Case 1: A system-mode instruction v that is non-virtualizable. According
to Binary Translation Elimination Condition, execution of ¢ on a processor
in user-mode will advance the program counter but change no other aspect

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.3. Virtual Machines 319

of the processor’s state. That behavior is equivalent to what would be
observed if ¢+ were replaced by a hypervisor call and the hypervisor call
interrupt handler emulated the user-mode execution of ¢. So execution of
¢ in the input executable already exhibits equivalent behavior to execution
of the output executable.

Case 2: Other system-mode instructions. Such an instruction ¢ will cause
a privilege interrupt when executed, because virtual machines are exe-
cuted by an underlying processor in user-mode. So, an interrupt handler
installed by the VMM receives control and executes a routine to emulate
t. This behavior is equivalent to what would be observed if ¢ were re-
placed by a hypervisor call, because the hypervisor call interrupt handler
in Implementing Virtual Machines by using Binary Translation (above)
emulates execution of ¢.

A second means for reducing run-time overhead from binary translation is
to introduce a VMM-maintained translation cache, which stores output exe-
cutables for previously executed (and, therefore, previously translated) blocks
of instructions, and it also stores the values of any registers that affected the
translation.

Use of a Translation Cache. For a block of instructions that starts at
offset d, a binary translator need not produce an output executable for
execution, provided

(i) the required output executable O was previously produced and is
stored in the translation cache, and

(ii) output executable O stored in the translation cache is what the binary
translator would produce if invoked now. O

Provided (i) and (ii) are cheap to check, Use of a Translation Cache lowers
overhead—executing a block from the translation cache does not require trans-
lating that block again. When Binary Translation Elimination Condition holds
too, the translation cache would store only those parts of the virtual machine’s
operating system that execute in system-mode; the full performance benefit of
a translation cache thus is achieved by incurring only modest storage costs.

To check condition (ii) in Use of a Translation Cache, we can leverage address
translation hardware to intercept those writes that could cause cache entries to
become stale.

Translation Cache Invalidation.

— When an output executable O is inserted into the translation cache.
Disable writes for a region of memory that includes all fragments of
the input executable that the translator read when producing O.

— When a write is attempted to a region of memory where writes have
been disabled by the translation cache. Delete the corresponding out-
put executable from the translation cache; then allow the write to
proceed. O

Copyright Fred B. Schneider

All rights reserved

320 Chapter 10. Isolation: Mapping and Multiplexing

Condition (ii) is satisfied if the output executable is in the translation cache
and if current register values equal cached values for registers that affected the
translation.

A performance problem arises with this scheme, because address-translation
hardware typically works at the granularity of memory pages but far less than a
page is used to produce an output executable for a single block of instructions.
So writing to a page could cause many output executables to be deleted from
the translation cache. Some of those deletions would be unwarranted if only
a small part of the page is being updated or if state (but not instructions)
is what changed. However, the unwarranted deletions can be avoided if the
implementation of condition (ii) saves in each cache entry the translator’s input
and uses that value for later comparison with the contents of memory. This
checking of the binary translator’s input can be incorporated into the output
binary.

10.3.3 Paravirtualization

Transfers of control between a virtual machine and the VMM disrupt instruc-
tion pipelining and require main-memory caches to be purged. So performance
suffers when a VMM implements system-mode instructions by emulating them
in software. Moreover, having the VMM replicate the hardware interface leads
to further performance problems.

e The operating system in a virtual machine duplicates work performed
by the VMM. For example, input/output from an application running
in a virtual machine involves executing a driver in the VMM as well as
executing a driver in the operating system.

e Work done in the VMM can negate work done in the operating system. Re-
ordering of transfer requests that a VMM’s disk driver does to enhance disk
performance might undermine request re-ordering done by the operating
system’s driver to enhance disk performance.

Such performance problems suggest favoring an instruction set that does not
often involve software-emulation by the VMM.

Virtual machines implemented using paravirtualization support the same
user-mode instructions as the underlying processor, a subset of its system-mode
instructions, and a hypervisor call. The subset of supported system-mode in-
structions typically excludes system-mode instructions that are expensive to em-
ulate in software and also excludes all non-virtualizable instructions.!” VMM-
serviced hypervisor calls replace the system-mode instructions that are not in
the subset of supported system-mode instructions.

Software built exclusively from user-mode instructions does not have to be
changed to run in a virtual machine implemented by paravirtualization. So
paravirtualization is transparent to application software. But operating system

17Recall, non-virtualizable instructions are, by definition, system mode.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.3. Virtual Machines 321

routines invoke system-mode instructions; that code must be changed for execu-
tion under paravirtualization. In practice, those changes are typically localized
to a handful of routines.

Leverage from Hypervisor Calls. Paravirtualization offers the flexibility to
define virtual machines having hypervisor calls that do not replicate the func-
tionality of system-mode instructions. Abstractions well suited to virtualization
now can be offered by a VMM. For instance, an abstract input/output device
could well be easier to emulate in software than a real device is. And par-
avirtualization would enable a VMM to offer that simpler input/output device,
resulting in a VMM that is smaller than one that incorporates emulations for
real input/ouptut devices; operating system drivers in virtual machines now
can be simpler, too. An abstract input/output device’s interface also can be
designed to discourage operating system driver functionality that is duplicated
or negated by a VMM'’s software emulation of the device.

In addition, if virtual machines employ hypervisor calls to interact with
VMDM-implemented resources then functionality can be relocated from a VMM
into separate, designated virtual machines.

Privileged Virtual Machines. A designated virtual machine V' can im-
plement a given service for the VMM (and thus for other virtual machines)
provided the VMM offers the following.
— The VMM identifies a specific subset of its hypervisor calls as pro-
viding a control interface for the service.

— The VMM identifies the designated virtual machine V' as being priv-
ileged for the service. V might be, for example, the first virtual
machine that the VMM boots or a virtual machine that boots some
specific operating system.

— The VMM ensures that hypervisor calls in the control interface for
a service can be invoked only by a virtual machine that is privileged
for that service. O

Virtual machines would still use ordinary hypervisor calls for requesting services
from the VMM or for retrieving corresponding responses. But instead of the
VMM incorporating all of the code to perform that service, the VMM would
forward the request to a privileged virtual machine; hypervisor calls in the corre-
sponding control interface are what allows that virtual machine to communicate
with the VMM and with client virtual machines. Ordinary virtual machines can-
not interfere, because ordinary virtual machines cannot invoke hypervisor calls
from a control interface and, therefore, they cannot receive or reply to service
requests from clients.

This architecture expands the trusted computing base to include the oper-
ating system and other code that runs in a privileged virtual machine. All else
equal, establishing assurance for this larger code base would be more costly.
The architecture does offer some benefits, though. First, by moving functional-
ity from the VMM into virtual machines, the VMM involves less code, providing

Copyright Fred B. Schneider

All rights reserved

322 Chapter 10. Isolation: Mapping and Multiplexing

a basis for increased assurance in the VMM. Second, code executing in a vir-
tual machine that has an operating system (with all of its functionality) can
be simpler than code that, being within the VMM, cannot use operating sys-
tem services. Finally, the architecture allows an existing operating system with
existing I/O drivers to provide virtual machines with access to input/output de-
vices. We run this existing operating system in a privileged virtual machine, and
doing so avoids the need to write or rewrite input/output drivers for execution
in the VMM. Software emulation to create virtualized versions of input/output
devices is also now straightforward—virtualized devices can be implemented as
servers, benefiting from existing input/output drivers and other functionality
that an operating system offers.

10.4 Containers

Isolation is undermined whenever resources are being shared. For example,
one process can interfere with others by abusing files, network ports, or locks.
Even a shared processor could be problematic if one process is able to initiate
activities that deprive others of processor cycles, causing missed deadlines. A
container is an environment in which specified system resources are accessible
only to a given set of processes. Processes outside a container cannot use the
container’s resources to influence processes within the container and vice versa.
Thus, for processes within a container, isolation is enforced for resources that
the operating system is providing in addition to isolation being enforced for
memory and registers.

10.4.1 TImplementation of Containers

A run-time environment for supporting containers typically is located'® in or
above the system layer that is implementing the resources and processes to be
isolated by a container. The run-time environment would provide the full set of
system operations, but it would intercept invocations that should be blocked or
where arguments must be checked or modified before executing the container
support software’s implementation of these same operations. Overhead is typi-
cally reduced by locating container support software in the kernel, although then
each container must include software libraries for functionality needed beyond
what the kenel provides.'?

Isolation by Namespace Mappings. A namespace mapping translates a
name used within a container to the name used by the operating system for
accessing that resource. Per-container isolation cannot be violated by accessing
resources with names from a given namespace if

18See Figure 10.1 on page 325.

19A container that includes its own libraries can be run on any system that exports a given
(standardized) kernel interface—additional software need not be installed. Moreover, after
the container has been installed, processes running on that host but outside the container can
continue using other libraries for the same functionality.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.4. Containers 323

(i) the only way for a process to affect or be influenced by a resource requires
naming that resource in a system operation that is being intercepted,

(ii) the same namespace mapping is used by all processes within a given con-
tainer, and

(iii) namespace mappings used in different containers have disjoint ranges.

Namespace mappings are also useful in connection with system operations where
the set of affected objects is implicit rather than being explicitly given as ar-
guments. This is because the ranges of the namespace mappings identify those
system objects that are accessible within a given container, so an implicit ref-
erence now can be adjusted to refer to the appropriate subset.

Hierarchical namespaces warrant special attention, both because they are
common in computing systems and because they admit namespace mappings
with simple implementations. In a hierarchical namespace, set II1(¢) of names
is the set of paths starting at the root ¢ of some tree. Per-container isolation
follows if each container uses only resources with names from a disjoint subtree
since, by definition, II(¢) N TI(¢') = @ holds when ¢ and ¢’ are roots of disjoint
subtrees. Moreover, any individual partition of a namespace (if not too small)
can itself be partitioned. So a software layer can allocate some of its resources
to the next higher layer and even partition those resources among functions that
higher layer implements. As an example, a container C' that is associated with
some tree to of a hierarchical namespace could host a set of (sub-)containers by
partitioning t¢ into disjoint subtrees, one per (sub-)container.

Namespace Mappings for Containers. FEach type of resource that an oper-
ating system supports will have a namespace for identifying resource instances
of that type. Different resource types (e.g., files, network ports, locks, pro-
cesses) typically have different namespaces.?’ A process uses names from these
namespaces as arguments when making system calls; a single namespace for
each resource type is typically shared by all processes in the system.

An obvious route to getting per-container isolation for system resources is
to interpose namespace mappings that satisfy isolation conditions (ii) and (iii)
above. For each resource type, the same namespace mapping would be as-
sociated with all processes within a given container but mappings associated
with different containers would have disjoint ranges. So per-container isolation
is facilitated by having a way to interpose per-process state that specifies a
namespace mapping to use for each namespace the operating system defines.
We would want the effects of such mappings, once in place, to be irreversible
and to be inherited when a new process is spawned. That suggests a names-
pace mapping installed by a child should compose with the namespace mapping
associated with its parent rather than replacing the parent’s mapping.

208ome operating systems, however, include all resources in the namespace for the file
system. For example, each process would be associated with an entry in a proc subdirectory,
each lock by an entry in a locks subdirectory, etc.

Copyright Fred B. Schneider

All rights reserved

324 Chapter 10. Isolation: Mapping and Multiplexing

A file system chroot (change root) operation will illustrate. Execution of
chroot(w) redefines the root of the current file system to be the directory at
path . The current file system is now a sub-tree of what it was, so only a subset
of files are still accessible to the process or to any processes it spawns (assuming
a process inherits the file system root from its creator). The new restriction on
access to files means that executing chroot can further restrict what files are
accessible but cannot reverse the effect of a previous chroot and restore access
to files. Filesystem isolation for containers then follows by associating with each
container C' a disjoint subtree m¢ and having the process that creates C invoke
chroot(m¢) prior to spawning processes to populate C.

Performance Isolation. For most system resources, a scheduler determines
which process next gets access and for how long. The goal is to provide guar-
antees for the time, space, and/or bandwidth each process consumes of some
resource that is being managed. Nothing about this architecture requires that
consumption be attributed to processes—attribution could be to containers.
When attribution is to containers, then performance guarantees would be for
aggregated activity by processes within a container rather than for activity by
an individual process.

Per-container performance isolation is just a set of stringent performance
guarantees. Therefore, performance isolation can be realized through a choice
of scheduling policies. Limits and entitlements can ensure resource availability;
fair-share schedulers can implement guarantees for time-multiplexed resources.
Enforce these policies, and it is no longer possible for an attacker to perpetrate
a denial of service attack on processes within one container by compromising
another container.

Moreover, modest system support suffices for enforcing per-container per-
formance isolation:

e The system would associate with each process a label identifying the con-
tainer (if any) that hosts this process.

e Use of a resource by a process would be attributed to the container that
contains the process. Capacity allocated to a container would be available
for use by any process in that container.

e The system would associate with each container a label that the system’s
scheduler uses for assigning capacity of each resource to processes within
the container.

10.4.2 Comparing Containers with Virtual Machines

Containers are virtual machines. They virtualize the interface an operating sys-
tem kernel provides to processes, thereby creating an environment where the
processes in one container are isolated from the processes in other containers—
even though all might share underlying processors, their memories, and an op-
erating system kernel. Isolation also is the goal when virtualizing a processor’s

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

10.4. Containers 325

VM, VM, VM,
Ch Cs Cs
library, library,, library
container support (OF] 0S 0S
operating system kernel hypervisor (type I)
hardware hardware
Support for Containers Support for Virtual Machines

Figure 10.1: Architectures for Isolation

instruction set architecture. It is natural to wonder about the strengths and
weakness that come with each type of virtual machine. When should we use
one or the other?

Figure 10.1 compares the structure of a system that supports containers with
a system that supports virtual machines. In that figure, the height of each layer
was chosen to reflect common beliefs about that software:

e Virtual machines incorporate an entire operating system, so virtual ma-
chines are large. Containers only include application code and needed
software libraries, so containers are much smaller.

e A type I hypervisor that does not use binary translation can be comparable
in size to an operating system kernel, making that hypervisor small relative
to the size of an operating system.

e Container support (i.e., namespace mappings, performance isolation, and
management of other attributes) is comparable in size to an operating
system kernel.

These common beliefs do not always hold, though. Large hypervisors are becom-
ing more common in order to incorporate performance optimizations, employ
binary translation, and/or include a full operating system to avoid duplicating
input/output functionality or for type II hypervisors. Container support soft-
ware is also starting to become bloated with features to extend the functionality
of an underlying kernel.

Performance Comparison. Being part of a container should not slow exe-
cution of a process, since that process’s instructions are directly executed, as are
the instructions for any system software it invokes. In comparison, a virtual ma-
chine does not directly execute system-mode instructions, resulting in increased
execution times for processes. Even processes that do not include system-mode

Copyright Fred B. Schneider

All rights reserved

326 Chapter 10. Isolation: Mapping and Multiplexing

instructions are slowed when executed by a virtual machine if those processes in-
voke operating system services, because that operating system code runs slower
when it execute system-mode instructions.

Because process creation involves system-mode instructions, the overhead of
intercept and emulate or binary translation for virtual machines also means that
starting a new process within a container is likely to be considerably faster than
starting a new process within a virtual machine. The impact is not significant
if new processes are started infrequently. But a common design for a network
service is to start a new process for each request that is received. That design
performs considerably better in a container than in a virtual machine. For
deployment in a virtual machine, the better design is to have a fixed pool of
server processes. FEach server process loops, with each iteration removing a
request from a shared queue, parsing the request, and delivering the indicated
service.

To start a new virtual machine requires booting its operating system, which
typically is time-consuming. Therefore, starting a new virtual machine can-
not be frequent and cannot be on the critical path for generating interactive
responses. One wouldn’t start a new virtual machine to service each request,
for example, even though that architecture brings strong isolation. In contrast,
starting a new container involves only a small delay—time is required only to
set up some tables (e.g., for namespace mappings) and to add entries or change
other tables in the kernel (e.g., to record parameters for performance isolation
and other things).

Isolation Comparison. The environment of a process includes abstractions
that are provided by the operating system kernel. Some of these abstractions
(e.g., files, locks, network ports, other processes) are accessed by making system
calls; others (e.g., the processor) are accessed implicitly. Either way, by access-
ing these abstractions, one process might influence the environment of another
process. By comparison, a virtual machine has only one way to influence its
environment—input /output operations. So we conclude that processes per se
provide weaker isolation guarantees than virtual machines.

Containers change the picture. The goal is to have the environment for
a process executing in a container be affected only by other processes within
that container, so processes executing within containers benefit from a stronger
isolation guarantee than processes that are not within containers. That isolation
guarantee, however, is weaker than what virtual machines provide. First, even if
a container were to mediate access to all operating system resources, containers
do not isolate one process in the container from other processes within that
container. Second, container support software usually does not mediate access to
all system resources, so avenues will typically remain for influence from outside
a container.

Another basis for comparing isolation guarantees is to consider assurance.
All else equal, the complexity of a software component is correlated with its size.
Since more complex artifacts are thought to be easier to attack, component size

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

Notes and Reading 327

can be used to predict assurance about isolation guarantees. We first consider
such an analysis for virtual machines.

e A type I hypervisor that does not use binary translation is considerably
smaller than an operating system. So its size would predict isolation
guarantees that a type I hypervisor enforces for virtual machines should
be harder to compromise than the guarantees that an operating system
enforces for processes executing within the virtual machine.

e A process might elevate its privilege or corrupt state by exploiting a bug in
an operation that an operating system implements. This justifies predict-
ing lower assurance for the isolation an operating system provides within a
virtual machine than for the isolation that a hypervisor provides between
virtual machines.

By running an operating system in a virtual machine, then, we would predict
that an attacker executing in one virtual machine is more likely able to influence
other activity on that virtual machine than able to influence activity in another
virtual machine.

An assurance-based analysis for isolation with containers is subtle. The size
of an operating system kernel with added container support software is com-
parable to the size of a type I hypervisor that does not use binary translation.
But system operations accessible within a container are an avenue for perpe-
trating attacks that might not only influence other execution in the container
but execution outside the container, too (though not extending beyond a vir-
tual machine). That suggests there would be a weaker isolation guarantee for
containers than for virtual machines. However, a type II hypervisor includes a
full operating system (and thus considerably more code than required for run-
ning containers), justifying a lower degree of assurance in the isolation being
provided for virtual machines; use of binary translation has the same effect.

Notes and Reading

Processes. Early computers executed one job at a time; enforcing isola-
tion was not a concern. As technology improved, processors got faster but
input/output devices didn’t. A desire to maximize processor utilization then
led to the advent of multiprogramming [48] and interrupts [5], whereby a pro-
cessor executed instructions in parallel with (still, relatively slow) input/output
operations. By having multiple jobs co-resident in main memory, if one job had
to wait for an input/output operation to complete then the processor could ex-
ecute another job. Isolation now was needed, however, to prevent a bug in one
job from corrupting memory occupied by another [9]. So processors included a
base and a limit register, and system software used these to associate a disjoint
memory region with each job.

Batch processing is not conducive to program debugging; timesharing [32, 57]

Copyright Fred B. Schneider

All rights reserved

328 Chapter 10. Isolation: Mapping and Multiplexing

is. Compatible Time Sharing System (CTSS) [11, 60] led the way?! in the imple-
mentation of this form of multiprogramming, which gives each user a terminal
and the illusion of exclusive access to a computer. In CTSS, timer interrupts
enabled system software to time multiplex the processor’s registers and main
memory. A user had exclusive access to this session state for a time slice, in
rotation with other users. Between time slices, the user’s session state would
be stored on an external magnetic drum. Input/output operations for swap-
ping session states to/from the drum could run in parallel with the processor
delivering time slices, because session states for multiple users occupied main
memory concurrently. Base and bounds registers prevented execution by one
user from corrupting memory being used by another. The base register also fa-
cilitated relocation, resulting in better memory utilization since holes now could
be avoided when a session state was swapped into main memory.

The success of CTSS and promise of timesharing justified ARPA funding
MIT’s project?? MAC (Multiple Access Computing) to explore the design and
construction of Multics (Multiplexed information and computing system), a
timesharing system that could serve as a public utility [10]. Because users of a
public utility might not necessarily trust each other, system security was now
a first-class concern. The designers of Multics proposed using a segmented
(and paged) virtual memory [14] to enforce isolation for main memory. General
Electric’s GE-645 processor developed to host Multics was a modified version of
the GE-635, which was similar to the IBM 7094 that had been running CTSS.
Segment descriptors on the GE-645 were derived from the Burroughs B5000 [8],
but with support added for hardware rings of protection [20, 56, 54]. Multics
not only became a commercial product,?® but the mechanisms and principles
it contributed to the field of computer security are still having an impact [51].
The Multicians web site [37] gives a history of Project MAC and Multics, along
with links to publications.

Operating systems grew larger and more complex, as patches, features, and
performance optimizations were added. The larger system invariably would have
more bugs and, therefore, be easier to attack. So Roger Schell proposed [65, 52,
22] an operating system architecture where security would depend only on the
operating system kernel. This “security kernel” would only implement processes
and a reference monitor. Because a security kernel would be small, assurance
could be established by using formal methods. And because all accesses by
processes were mediated in the security kernel, bugs elsewhere in the operating
could not be exploited to compromise system security.

A number of implementation efforts were undertaken to validate the archi-
tecture Schell had been advocating. Most enforced security models based on

21CTSS first became operational in 1961 on a modified IBM 709. By 1964, a version was in
production use at MIT, running on an IBM 7094 that included an interval timer and two 32K
banks of memory. The label “compatible” was included in the name because the system also
handled batch jobs using IBM’s FMS (FORTRAN Monitor System), a widely used operating
system for the IBM 709 and IBM 7094.

22Bell Telephone Laboratories was a collaborator from 1965 to 1969.

23The number of commercial installation peaked at about 80 by the early 1980’s, with the
last site shut down on October 30, 2000.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

Notes and Reading 329

DoD’s system of security classifications and user clearances—DoD was funding
the efforts—and many at least started to construct some sort of formal argu-
ments to establish correctness of their designs: a prototype built at MITRE for
the DEC PDP-11/45 [53, 36], the Ford Aerospace KSOS (Kernelized Secure
Operating System) secure UNIX system [33], Honeywell’'s STOP operating
system for Scomp (secure communications processor) [17], a redesign of Mul-
tics [63, 55], and UCLA Data Secure Unix [61].

By locating access mediation within the kernel, a system was limited to
enforcing a single security policy. That restriction turned out to be problematic
for real deployments. First, the multilevel security policy being enforced by
existing security kernels required having certain so-called “trusted processes”
that would be exceptions to the policy. Second, different security policies made
sense for different applications. These problems led Rushby [50] to invoke “less
is more” and suggest separation kernels as an alternative to security kernels.

Virtual Machines. Virtual machines were developed at IBM—albeit, sur-
reptitiously [58, 59]. Atlas [27], a computer built at the University of Manch-
ester, had introduced the idea of demand paging, which created a larger virtual
memory by time-multiplexing pages of physical memory. Demand paging freed
programmers from the headaches of implementing storage management. It also
facilitated timesharing, because the processor would automatically load and
relocate session state, incrementally and as needed. To explore virtual mem-
ory, IBM researchers built the IBM M44 [38] by modifying an IBM 7044 so
it supported dynamic address relocation; an associated operating system MOS
(Modular Operating System) [39] implemented timesharing by providing M44x
“virtual machines” (the first use of this term) that each was connected to a
terminal and resembled an IBM 7044.

IBM interest and energy was focused elsewhere, though. The company was
creating System/360, a family of processors that each implemented the same
instruction set architecture but delivered different levels of performance. Pre-
viously, IBM had marketed one line of processors to commercial users and an
incompatible one to scientific users. The System/360 family would serve all
of IBM’s markets. Support for timesharing, however, was not seen by IBM
as important, and System/360 processors did not support virtual memory. So
when IBM bid on providing the hardware for Multics, no System/360 processor
was suitable. IBM had to propose building hardware for address translation to
augment a System/360 processor. Project MAC’s management rejected that,
fearing non-standard hardware would discourage other sites from running Mul-
tics.

IBM had established the Cambridge Scientific Center?* to foster relations
with MIT and academia. Loss of the Multics bid and IBM’s indifference to
timesharing undermined that mission. However, Norm Rasmusssen, founding
director of the Cambridge Scientific Center, did understand the importance of
time-sharing, so he launched an effort there to build a time-sharing system. The

24The center was housed in the same building (575 Technology Square) as Project MAC.

Copyright Fred B. Schneider

All rights reserved

330 Chapter 10. Isolation: Mapping and Multiplexing

system would run on a System/360 model 40 that had been augmented with
custom hardware [28] for address translation. Operational in January 1967, the
system comprised CP-40 [1], which implemented virtual System/360’s, and the
Cambridge Monitor System (CMS), a new single-user System/360 operating
system that supported timesharing for one user.?® This software was subse-
quently rewritten to run on a System /360 Model 672¢ and became available to
IBM customers as CP-67/CMS [35]. A port to System 370 processors produced
VM/370 [13]; a port of VM/370 to IBM’s Z computers later became available
as z/VM.

Once virtual machines were shown to be viable for timesharing, security re-
searchers investigated trade-offs with using a hypervisor to enforce isolation [31]
and to serve as a security kernel [46].27 To evaluate having a hypervisor be
a security kernel, UCLA built the UCLA-VM system [43] for a DEC PDP-
11/45, and System Development Corporation built the KVM/370 [18] retrofit
to IBM’s VM/370. Further evidence that hypervisors should be trusted came
from an IBM penetration study [2] of VM/370, where only a few dozen vulner-
abilities were discovered, and most were connected to the idiosyncratic System
360 input/output architecture. However, the most compelling case for using a
hypervisor to enforce security is the DEC VAX Security Kernel [24, 29], which
met all DoD requirements for the highest levels of assurance, demonstrated tol-
erable levels of performance (i.e., factor of 2 degradation), and could run DEC’s
VMS and ULTRIX-32 operating systems on commercial hardware (albeit with
microcode modifications to enable virtualization of the VAX architecture).

Not all instruction set architectures can be virtualized by emulating a small
subset of the instructions and running the rest directly on the underlying pro-
cessor. Goldberg’s Ph.D. dissertation [19] discusses what makes instructions
problematic for such so-called “trap and emulate” implementations on third gen-
eration processors—processors having two-modes of operation and base/bounds
registers to relocate addresses. Terms type I, type I1, self-virtualizing, and recur-
sive virtual machines were also introduced in that dissertation. Subsequently,
Goldberg and Popek [41] formalized conditions and proved that satisfying them
suffices for implementing virtual machines by using trap and emulate on third-
generation processors.

Outside of IBM’s offerings, third-generation processors typically have not
satisfied the Goldberg-Popek conditions. A VMM for one of those computers
cannot just employ trap and emulate; it must use other approaches. One such
approach is to change the instruction set architecture. Popek and Kline [42]

25Most time sharing systems are multi-user, which requires them to incorporate mechanisms
for sharing resources. As a single-user system, CMS avoided that complexity and, thus, it
represented a novel point in the design space.

26 Announced August 1965, System/360 Model 67 brought address translation to the Sys-
tem/360 family. It and TSS (an ambitious multi-user timesharing system) were IBM’s re-
sponse to losing the Multics bid and realizing that timesharing would become more than a
niche market.

27For enforcing multilevel security, a fixed security label is associated with each user, with
virtual machine, and with virtual input/output device. A reference monitor incorporated into
the hypervisor then enforces the usual access restrictions according to these labels.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

Notes and Reading 331

report on commissioning such changes to a DEC PDP 11/45. Producers of pro-
cessors do have both the incentive and the means to introduce modifications if
those changes could bring significant increases to sales. That motivated DEC
to undertake the microcode modifications to the VAX for supporting the DEC
VAX Security Kernel. It also led Intel to develop the VT-x extensions (avail-
able November 2005) and AMD to develop the AMD-V extensions (available
May 2006) to help with virtualization of the x86 architecture®® because servers
deployed in a cloud often run a VMM and the market for those servers is large.

There are software alternatives to trap and emulate for implementing a VMM
when an instruction set architecture does not satisfy the Goldberg-Popek con-
ditions. VMWare’s virtualization [7, 15] for the x86 was the first to employ
dynamic binary translation [16] for unvirtualizable instructions. The VMWare
developers leveraged their experience [49] with using the Embra [64] binary
translator.

The term paravirtualization was coined®® for describing Denali [62], a VMM
to support an x86 variant having a simplified virtual memory and interrupt
architecture. That variant was devised intending to facilitate hosting large
numbers of virtual machines running unmodified x86 applications as network
services in a cloud. Xen [3], developed around the same time, also used paravir-
tualization. The goal for Xen was hosting commodity x86 operating systems
Linux and Windows (albeit with some modifications to the code) that ran com-
modity applications (with no modifications to that code). Xen subsequently
added support for full x86 virtualizations by leveraging VT-x and AMD-V.

Examples of paravirtualization, however, predate Denali and Xen. Disco [6]
had implemented virtual machines for MIPS but changing the interrupt flag
from being stored in a processor register to being stored in a special memory
location. Long before that, however, IBM’s CP-67 and VM/370 had repur-
posed the System/360’s diagnose instruction to provide direct communication
between a virtual machine’s operating system and the VMM, thereby enabling
the operating system to avoid duplicating activities that the VMM would per-
form. And the DEC VAX Security Kernel had used paravirtualization to avoid
having to virtualize device I/O.

Containers. Containers bring together various security mechanisms that
were developed to facilitate using Unix as a host for web servers and other net-
work applications.?? What follows is an abbreviated history; a detailed account
is given by Randal [45]; that paper also gives the history of virtual machines
and compares containers with virtual machines.

28Robin and Irvine [47] enumerate ways x86 does not satisfy the Popek-Goldberg condi-
tions [41].

298teve Gribble, the faculty member who directed the Denali effort, credits graduate student
Andrew Whitaker with coining the term “paravirtualization” [21].

30Unlike the other isolation abstractions discussed in this chapter, containers are noteworthy
for also serving as a widely used software distribution vehicle. Prominent examples of com-
mercial technologies for development and deployment of containers include Docker (derived
from Linux containers) and Kubernetes (developed at Google).

Copyright Fred B. Schneider

All rights reserved

332 BIBLIOGRAPHY

Bell Labs researchers had added the chroot command to Unix in 1979 [26].
A decade later, the Bell Labs Plan 9 [40] operating system featured a single
hierarchical namespace that not only included directories and files but contained
names for other system resources, too. However, stronger isolation and support
for delegating administration would be needed for a system to host independent
network servers and applications.

These requirements motivated the development of jails [23] in FreeBSD Unix
version 4.0 (released in 2000). Each jail provided a disjoint set of processes with
exclusive access to a sub-tree of the file system and to an IP address. Processes
in a jail could use both unprivileged system operations and privileged (“root” in
Unix terminology) system operations—but these operations could access only
those system resources allocated to the jail. So processes in a jail could interact
with each other, could use and administer resources allocated to the jail, but
had no means to interact with or even ascertain the existence of other processes
or other system resources.

The zones [44] construct was introduced in 2004 to support server consol-
idation under Solaris 10 (another Unix successor). FreeBSD jails lacked two
capabilities needed for hosting such workloads. First, performance isolation is
important when servers share a computing system and, therefore, zones (unlike
jails) supported per-zone entitlements, limits, and partitions of certain system
resources into resource pools, as well as fair-share CPU scheduling [25] for allo-
cation of CPU capacity across (and within) different zones. Second, each zone
(unlike a jail) had its own namespace mappings for certain system resources
(e.g., semaphores and message queues used for communications and synchro-
nization, and IP addresses). Given these mappings, configuration changes were
not needed to avoid resource-name conflicts when a server running on its own
computer was moved to a computer that was hosting multiple servers (each in
a separate zone).

Developed by the LXC (LinuX Containers) project [30] and available starting
in 2008, the underlying mechanisms for Linux containers [34] are a generalization
of jails and zones. Biederman [4] had done an analysis and identified the name-
spaces for all system resources exported by the Linux kernel; a Linux container
would have a separate copy of each namespace. Menage and Seth, working at
Google, generalized Linux cpusets, and obtained cgroups as a mechanism for
defining parameters to control each subsystem and for associating these param-
eters with a group of processes and their progeny [12]; Linux containers incor-
porated cgroups to support having per-container associated attributes. Some
evolution was still to come—mnotably integration of authorization to restrict sys-
tem operations—but the biggest changes would concern support for assembling
the contents of containers, as exemplified by the Docker ecosystem.

Bibliography

[1] R.J. Adair, R.U. Bayles, L.W. Comeau, and R.J. Creasy. A virtual machine
system for the 360/40. Technical Report 320-2007, Cambridge Scientific

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

BIBLIOGRAPHY 333

Center, May 1966.

C. R. Attanasio, P. W. Markstein, and R. J. Phillips. Penetrating an
operating system: A study of VM/370 integrity. IBM Systems Journal,
15(1):102-116, 1976.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art
of virtualization. In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, SOSP 03, pages 164-177, New York, NY,
USA, Ocotber 2003. Association for Computing Machinery.

Eric W. Biederman. Multiple instances of the global Linux namespaces. In
Proceedings of the Linux Symposium, volume 1, pages 101-112, July 2006.

F. P. Brooks. A program-controlled program interruption system. In Papers
and Discussions Presented at the December 9-13, 1957, Eastern Joint Com-
puter Conference: Computers with Deadlines to Meet, IRE-ACM-AIEE ’57
(Eastern), pages 128-132. Association for Computing Machinery, 1957.

Edouard Bugnion, Scott Devine, and Mendel Rosenblum. Disco: Running
commodity operating systems on scalable multiprocessors. In Proceedings
of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP
97, page 143-156, New York, NY, USA, 1997. Association for Computing
Machinery.

Edouard Bugnion, Scott Devine, Mendel Rosenblum, Jeremy Sugerman,
and Edward Y. Wang. Bringing virtualization to the x86 architecture with
the original VMware workstation. ACM Transactions on Computer Sys-
tems, 30(4), November 2012.

Burroughs Corporation. The Descriptor—A Definition of the B5000 Infor-
mation Processing System, 1961. Michigan.

E. F. Codd, E. S. Lowry, E. McDonough, and C. A. Scalzi. Multiprogram-
ming STRETCH: Feasibility considerations. Communications of the ACM,
2(11):13-17, November 1959.

F. J. Corbat6 and V. A. Vyssotsky. Introduction and overview of the
Multics system. In Proceedings of the 1965 Fall Joint Computer Conference,
Part I, AFIPS Conference Proceedings, pages 185-196, New York, NY,
USA, November 1965. Association for Computing Machinery.

Fernando J. Corbaté, Marjorie Merwin-Daggett, and Robert C. Daley. An
experimental time-sharing system. In Proceedings of the 1962 Spring Joint
Computer Conference, AIEE-IRE 62 (Spring), pages 335-344, New York,
NY, USA, May 1962. Association for Computing Machinery.

Jonathan Corbet. Notes from a container, October 2007.
https://lwn.net/Articles/256389/.

Copyright Fred B. Schneider

All rights reserved

334 BIBLIOGRAPHY

[13] R. J. Creasy. The origin of the VM /370 time-sharing system. IBM Journal
of Research and Development, 25(5):483-490, September 1981.

[14] Jack B. Dennis. Segmentation and the design of multiprogrammed com-
puter systems. Journal of the ACM, 12(4):589-602, October 1965.

[15] Scott W. Devine, Edouard Bugnion, and Mendal Rosenblum. Virtualiza-
tion system including a virtual machine monitor for a computer with a
segmented architecture. U.S. Patent 6,397,242 B1. Filed October 26, 1998,
issued May 28, 2002.

[16] Kemal Ebcioglu and Erik R. Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In Proceedings of the 24th Annual In-
ternational Symposium on Computer Architecture, ISCA 97, pages 2637,
New York, NY, USA, 1997. Association for Computing Machinery.

[17] L. J. Fraim. Scomp: A solution to the multilevel security problem. IEEE
Computer, 16(7):26-34, 1983.

[18] B. D. Gold, R. R. Linde, R. J. Peeler, M. Schaefer, J. F. Scheid, and
P. D. Ward. A security retrofit of VM/370. In Proceedings of the National
Computer Conference, NCC, pages 335-344. IEEE, 1979.

[19] Robert P. Goldberg. Architectural Principles for Virtual Computer Sys-
tems. PhD thesis, Harvard University, February 1973.

[20] Robert M. Graham. Protection in an information processing utility. Com-
munication of the ACM, 11(5):365-369, May 1968.

[21] Steve Gribble. Personal communication.

[22] Stanley R. Ames Jr., Morrie Gasser, and Roger R. Schell. Security kernel
design and implementation: An introduction. IEEE Computer, 16(7):14—
22, 1983.

[23] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omni-
potent root. In Proeedings of the 2nd International System Administration
and Networking Conference (SANE 2000), May 2000.

[24] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,
and Clifford E. Kahn. A VMM security kernel for the VAX architecture. In

Proceedings of the 1990 IEEE Symposium on Security and Privacy, pages
2-19. IEEE Computer Society, May 1990.

[25] J. Kay and P. Lauder. A fair share scheduler. Communications of the
ACM, 31(1):44-55, January 1988.

[26] B. W. Kernighan and M. D. Mcllroy. UNIX™ Time-sharing system: UNIX
Programmer’s Manual. Bell Telephone Laboratories, January 1979. Murray
Hill, New Jersey.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

BIBLIOGRAPHY 335

[27]

[30]

[31]

[40]

T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-level
storage system. IRE Transactions on Electronic Computers, EC-11(2):223—
235, 1962.

A. B. Lindquist, R. R. Seeber, and L. W. Comeau. A time-sharing system
using an associative memory. Proceedings of the IEEE, 54(12):1774-1779,
1966.

Steve Lipner, Trent Jaeger, and Mary Ellen Zurko. Lessons from VAX/SVS
for high-assurance VM systems. IEEE Security and Privacy, 10(6):26-35,
2012.

LXC. Infrastructure for container projects. Sponsored by Canonical Ltd.
https://linuxcontainers.org.

Stuart E. Madnick and John J. Donovan. Application and analysis of the
virtual machine approach to information system security and isolation. In
Proceedings of the Workshop on Virtual Computer Systems, pages 210-224,
New York, NY, USA, 1973. Association for Computing Machinery.

John McCarthy. A time-sharing operator program for our projected IBM
709. Memoradum to Philip M. Morse, Cambridge, MA, 1959.

E. J. McCauley and P. J. Drongowski. KSOS—The design of a secure
operating system. In Proceedings of the National Computer Conference,
NCC, pages 345-353. IEEE, 1979.

Paul B. Menage. Adding generic process containers to the Linux kernel. In
Proceedings of the Linux Symposium, volume 2, pages 45-57, July 2007.

R. A. Meyer and L. H. Seawright. A virtual machine time-sharing system.
IBM Systems Journal, 9(3):199-218, September 1970.

Jonathan K. Millen. Security kernel validation in practice. Communications
of the ACM, 19(5):243-250, May 1976.

Multicians. https://multicians.org/index.html.

R. A. Nelson. Mapping devices and the M44 data processing systsem.
Technical Report RC 1303, IBM Research Division, October 1964.

R. W. O’Neill. Experience using a time-shared multi-programming system
with dynamic address relocation hardware. In Proceedings of the April 18-
20 1967, Spring Joint Computer Conference, AFIPS 1967 (Spring), pages
611-621, New York, NY, USA, 1967. Association for Computing Machinery.

Rob Pike, David L. Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-
son, Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(2):221-254, 1995.

Copyright Fred B. Schneider

All rights reserved

336 BIBLIOGRAPHY

[41] Gerald J. Popek and Robert P. Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412-421, July 1974.

[42] Gerald J. Popek and Charles S. Kline. The PDP-11 virtual machine ar-
chitecture: A case study. In Proceedings of the Fifth ACM Symposium on
Operating Systems Principles, SOSP 75, pages 97-105, New York, NY,
USA, 1975. Association for Computing Machinery.

[43] Gerald J. Popek and Charles S. Kline. A verifiable protection system.
In Proceedings of the International Conference on Reliable Software, pages
294-304, New York, NY, USA, 1975. Association for Computing Machinery.

[44] Daniel Price and Andrew Tucker. Solaris zones: Operating system sup-
port for consolidating commercial workloads. In Proceedings of the 18th
USENIX Conference on System Administration, LISA ’04, pages 241-254,
USA, 2004. USENIX Association.

[45] Allison Randal. The ideal versus the real: Revisiting the history of virtual
machines and containers. ACM Computing Surveys, 53(1), February 2020.
Article 5.

[46] R. Rhode. Secure multilevel virtual computer systems. Technical Report
ESD-TR 74 370, MITRE Corporation, Bedford, MA, February 1975.

[47] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s
ability to support a secure virtual machine monitor. In Proceedings of the
9th USENIX Security Symposium, SSYM’00, USA, 2000. USENIX Associ-
ation.

[48] Nathaniel Rochester. The computer and its peripheral equipment. In Pa-
pers and Discussions Presented at the the November 7-9, 1955, FEastern
Joint AIEE-IRE Computer Conference: Computers in Business and In-
dustrial Systems, AIEE-IRE ’55 (Eastern), pages 64—69, New York, NY,
USA, 1955. Association for Computing Machinery.

[49] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete com-
puter system simulation: The SimOS approach. IEEE Parallel Distributed
Technology: Systems Applications, 3(4):34-43, 1995.

[50] J. M. Rushby. Design and verification of secure systems. In Proceedings
of the Eighth ACM Symposium on Operating Systems Principles, SOSP
'81, pages 12-21, New York, NY, USA, 1981. Association for Computing
Machinery.

[61] Jerome H. Saltzer. Protection and the control of information sharing in
Multics. Communications of the ACM, 17(7):388-402, July 1974.

July 2022 Copyright Fred B. Schneider All rights reserved

July 2022

BIBLIOGRAPHY 337

[52]

[53]

[54]

[55]

Roger R. Schell, Peter J. Downey, and Gerald J. Popek. Preliminary design
of secure military systems. Technical Report MCI-73-1, Air Force Systems
Command, Directorate of Information Systems Technology, January 1973.

W. L. Schiller. The design and specification of a security kernel for the
PDP-11/45. Technical Report MTR-2934, MITRE Corporation, Bedford,
MA, March 1975.

M. D. Schroeder. Cooperation of mutually suspicious subsystems in a com-
puter utility. PhD thesis, M.I.T. Department of Electrical Engineering,
September 1972. Also available as M.I.T. Project MAC Technical Report
TR-104.

Michael D. Schroeder. Engineering a security kernel for Multics. In Proceed-
ings of the Fifth ACM Symposium on Operating Systems Principles, SOSP
75, pages 25-32, New York, NY, USA, 1975. Association for Computing
Machinery.

Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for
implementing protection rings. Communications of the ACM, 15(3):157—
170, March 1972.

C. Strachey. Time-sharing in large fast computers. In Proceedings of Inter-
national Conference on Information Processing, pages 336-341. UNESCO,
June 1959.

Tom van Vleck. The IBM 360/67 and CP/CMS.
https://multicians.org/index.html.

Melinda Varian. VM and the VM community: Past, present and future.
In SHARE 89 Technical Conference Proceedings, SHARING Worlds Of
Knowledge. SHARE Association, August 1997. Session 9059-9061.

David Walden and Tom Van Vleck, editors. The Compatible Time Sharing
System (1961 — 1973) Fiftieth Aniversary Commemorative Overview. IEEE
Computer Society, June 2011. https://multicians.org/thvv/compatible-
time-sharing-system.pdf.

Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification
and verification of the UCLA Unix security kernel. Communications of the
ACM, 23(2):118-131, February 1980.

Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali:
Lightweight virtual machines for distributed and networked applications.
Technical Report 02-02-01, University of Washington, 2002.

J. Whitmore, A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and J. Stern.
Design for Multics security enhancements. Technical Report ESD-TR-74—
176, Honeywell Information Systems, Cambridge, MA, December 1973.

Copyright Fred B. Schneider

All rights reserved

338 BIBLIOGRAPHY

[64] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible ma-
chine simulation. In Proceedings of the 1996 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS 96, page 68-79, New York, NY, USA, 1996. Association for
Computing Machinery.

[65] Jeffrey R. Yost. An interview with Roger R. Schell, Ph.D. Charles Babbage
Institute, Center for the History of Information Teachnology, University of
Minnesota, Minneapolis, May 2012.

July 2022 Copyright Fred B. Schneider All rights reserved

